monolith multiphase 2012

52
Monolith reactors - 1 Monoliths as G-L-S reactors Book: “Structured Catalysts and Reactors” (2 nd  edition) - 2006  A. Cybulski and J.A. Moulijn, T aylor and Francis  Boca Raton Multiphase Reactors 6PE20

Upload: asertve

Post on 06-Mar-2016

235 views

Category:

Documents


1 download

DESCRIPTION

Monoliths as G-L-S reactors

TRANSCRIPT

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 1/52

Monolith reactors - 1

Monoliths as G-L-S reactors

Book:“Structured Catalysts and Reactors” (2nd edition) - 2006 A. Cybulski and J.A. Moulijn, Taylor and Francis – Boca Raton

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 2/52

Monolith reactors - 2

History

 Mono = one, single  Lithos = stone

Concise Oxford (1995)

Webster (1991)

IntroductionMultiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 3/52

Monolith reactors - 3

History

•  Automotive Catalytic Converters

• Monolith Key Features: – no attrition

 – high surface area – low pressure drop – rapid light-off

pellet filled catalytic converter

monolith catalytic converter

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 4/52

Monolith reactors - 4

History

Matsumoto et al., 1993US 5266543

 Air Purification

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 5/52

Monolith reactors - 5

Structured ReactorsDriving forces

• Pressure drop

• Mass transfer

• Counter Current operation• Surface area

• Catalyst Efficiency

• Fluid distribution• Catalyst Separation

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 6/52

Monolith reactors - 6

Ceramics: Cordierite, alumina, titania, silicaMetal

Sulzer

Packing  Foams 

Structured Packings-Appearance

Monoliths

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 7/52Monolith reactors - 7

200 cpsi 400 cpsi 600 cpsi

1.80/0.27 mm1934 m2/m3  = 0.74

1.27/0.16 mm2678 m2/m3  = 0.75

1.04/0.11 mm3348 m2/m3  = 0.79

Monoliths - Cell density 

1 cm

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 8/52Monolith reactors - 8

Sphere

Monolith

0.1 1 10 10010

100

1000

10000

100000

a

(mm)

(m2/m3)

75.0;4

  V 

c

V  M d 

a     

6.0;6

  S 

S S d 

a     

1   S V      

void solid

d  

Specific Surface Area

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 9/52Monolith reactors - 9

0  2  4  6  8  10 300 

1000 

10000 

10-5 

10-4 

10-3 Cylinder  

Quadrulobe

Monolith

Sphere 

 Acat  /V bed (m2/m3) 

D (mm) 

Diffusion length  

D (m) 

D(m2 /s) 10 mm 1 mm 0.1 mm 0.01 mm 0.001 mm

 unconfined gas 10-50.5 s 50 ms 0.5 ms 0.005 ms 50 ns

unconfined liquid 10-950 ks 500 s 5 s 50 ms 0.5 ms

liquid in catalyst pore 10-10500 ks 5 ks 50 s 0.5 s 5 ms

liquid in zeolite pore 10-115 Ms 50 ks 500 s 5 s 50 ms

diffusion length

Estimated diffusion time

 D

l  D D

2

2

  

Geometric surface area and diffusion lengthfor catalytic reactors

No longer a fixed ratio

between catalyst particle

size and diffusion length!!

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 10/52Monolith reactors - 10

0  2  4  6  8  10 300 

1000 

10000 

10-5 

10-4 

10-3 Cylinder  

Quadrulobe

Monolith

Sphere 

 Acat  /V bed (m2/m3) 

D (mm) 

Diffusion length  

D (m) 

Geometric surface area and diffusion lengthfor catalytic reactors

Conventional (non-structured) packings:

The price you payfor shorter diffusiondistances is thepressure drop (=energy costs)!

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 11/52

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 12/52Monolith reactors - 12

Structure in catalyst application

m dm cm mm mm nm Å

1 10-1  10-2  10-3  10-4  10-5  10-6  10-7  10-8  10-9  10-10 

Dimensions in catalytic reactor

Regular arrangement

decoupling

optimal reactor performance

‘monoliths’ 

zeolite pores

monolith channels

washcoat thickness

macropores

mesopores

zeolite crystals

metal crystallites

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 13/52Monolith reactors - 13

Monolithic Reactors

 Advantages• No filtering of catalyst necessary• No attrition of catalyst• Low pressure drop

• High geometric surface area• Efficient mass-transfer• In the case of internal diffusion limitations:

more efficient use of catalyst dueto thin catalytic layer

DisadvantageLittle practical experience in multi-phase applications

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 14/52Monolith reactors - 14

Flow regimes in Monoliths

• Co current

• Counter current

u s,L 

u s,G 

gasliquid

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 15/52Monolith reactors - 15

Film flow • counter- and co-current

operation• high gas throughputs• low pressure drop

• high catalyst load• high S/V ratio• short diffusion length

Monolith

Reactor

Hydrodynamic regimes in monoliths

Taylor flow• co-current

• low pressure drop• high surface area• high mass transfer• plug flow behaviour• egg-shell catalyst

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 16/52Monolith reactors - 16

Gas 

   L   i  q  u   i   d

   L   i  q  u   i   d

Film flow • counter- and co-current

operation• high gas throughputs• low pressure drop

• high catalyst load• high S/V ratio• short diffusion length

Monolith

Reactor

Hydrodynamic regimes in monoliths

Taylor flow• co-current

• low pressure drop• high surface area• high mass transfer• plug flow behaviour• egg-shell catalyst

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 17/52Monolith reactors - 17

monolith wall

Gas-liquid-solid system - monolith

 porous support

active

component

zeolite

 g a s  e s 

l  i   q ui   d  s  

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 18/52Monolith reactors - 18

washcoating polymer coating

Catalyst preparation

 AluminaSilica

Carbon

Cordierite

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 19/52Monolith reactors - 19

Co-Current Applications

(Taylor Flow)

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 20/52Monolith reactors - 20

S r

Mass Transfer in Taylor Flow

• Four mass-transfer steps

G/LG/SL/S

liquid circulation

thin liquid film

Internal mass transfer

thin walls

 Assume liquid in slugs = ideally mixed

Multiphase Reactors 6PE20

M T f i T l Fl

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 21/52Monolith reactors - 21

Mass Transfer in Taylor FlowGas-Solid

G/Sd

‘Direct’ fast supply of gas to catalyst 

Film thickness d  L slug   Lbubble

uTP =u L,s+uG,s

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 22/52Monolith reactors - 22

Mass Transfer in Taylor FlowGas-Liquid

 slug bubbleUC    L L L  

Saturation of liquid slugs with gas

OFA

 LU U 

  s g  s L

b

,,

(OFA=open frontal area)

For gas absorption mass transfer via film is also important!

G/L

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 23/52Monolith reactors - 23

Mass Transfer in Taylor FlowLiquid-Solid

Transfer from liquid slugs to solid

 D

d k Sh

 

Mass transfer of both liquid reactant (product) AND dissolved gas

L/S

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 24/52

Monolith reactors - 24

Mass Transfer in Taylor FlowInternal Mass Transfer

S r

Internal mass transfer

eff  D

 L 

• Approximate using Thiele modulus (calculate efficiency) – recommended• Or calculate concentration profile in wall

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 25/52

Monolith reactors - 25

S r

Mass Transfer in Taylor Flow

G/L G/SL/S

• Simplify by assuming ideal plug flow behavior (nomixing between slugs)

•  Assume equal distribution over channels• Complexing factor:

• Change in bubble volume by pressuredifferences or consumption of gas

More details:Kreutzer et al.  Chem.Eng.Sci. 56 (2001) 6015-6023

Chem.Eng.Sci. 60 (2005) 5895-5916

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 26/52

Monolith reactors - 26

Pressure drop

(single phase water flow)

(m/s)

(Pa/m)

• Monolith

• Sphere – packed bed

Laminar Channel Flow

Ergun Equation

(mm)

Re

16;

4

2

1   2

 f d 

V  f  L

 p  

2

2

3

2

2 )1(75.1)1(150V 

S V 

S    d V 

d V 

 L p

    

  m   

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 27/52

Monolith reactors - 27

Unstable !

0

L

 p

0

L

 p

 L= 0.9 0.8 0.7 0.6 0.5

0.4

0.3

0.2

0.1

U Gs / m s-1 

U Ls / m s-1 

0 1

0

1

0

0

Flow map for Taylor flow 

High gas and

liquid

velocitiesrequired for

stable

operation !!!

Check you are in a

stable operating regime

when designing a

monolithic reactor!!

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 28/52

Monolith reactors - 28

Gas-liquid distribution

Foam layer cruc ial

no gas supply

maldistributiongas bubbles

proper distributionclear liquid

exit

inlet

Multiphase Reactors 6PE20

M T f li it d ti

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 29/52

Monolith reactors - 29

Mass Transfer limited reaction: 

a-Methylstyrene hydrogenation

• Efficient catalyst use

• Excellent mass transfer

Monolith (Taylor flow)

Trickle bed

400 600200

0

1

2

3

4

5

6

7

   R

  e  a  c   t   i  o  n  r  a   t  e   (  m  o   l   /  s   /   X   )

m 3 reactor   m 2 

ext. cat. 

*1000 

g catalyst 

*100 

g Ni 

Monolith (only liquid)

400

CH2

CH3

+   H2

CH3

CH3

CH2

CH3

+   H2

CH3

CH3

CH2

CH3

+   H2

CH3

CH3

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 30/52

Monolith reactors - 30

Selectivity Improvement

Benzaldehyde hydrogenation

Ni/g-Al2O3 410 K15 bar

• Batch – slurry , monoliths or extrudates

 – slurry < 50 µm, monolith 4 cm Ø, extrudates 1.7x 5mm

• Pilot – monoliths 1 cm Ø - variation cell density

 – trickle bed 4.7 cm Ø, extrudates 1.7x 5 mm

OH

+   H2

OHH2

H2+

CH3OH

+   H2

OHH2

H2+

CH3

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 31/52

Monolith reactors - 31

Batch reactor - monolith

10 

15 

20 

25 

30 

35 

0  100  200  300  400 

Time (min) 

   C  o  n  c  e  n   t  r  a   t   i  o  n   (  a .  u .   ) 

benzaldehyde 

benzylalcohol 

toluene 

Little mass transfereffect: high

selectivity possible

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 32/52

Monolith reactors - 32

40 

80 

120 

160 

0  1  2  3  4 

Time (h) 

   C  o  n  c  e  n   t  r  a

   t   i  o  n   (  m  o   l   /  m   3   )  benzaldehyde 

benzylalcohol 

toluene 

Pilot reactor - trickle bed

•Internal mass transfer•Stagnant zones•Non-ideal plug flow

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 33/52

Monolith reactors - 33

pu re feed  

600

Monolith

Trickle bed

400

Slurry

Batch CSTR  Pilot  Industrial

dilu ted feed  

Benzaldehyde hydrogenation -selectivities

rates up to 2.5 mol / mR 3 s

at 50% conversion

99.5  99.5 

90 

94 

73 

96 94 

   S  e   l  e  c   t   i  v   i   t  y

70

80

90

100 97.5 

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 34/52

Monolith reactors - 34

Taylor-flow - Summary

• Only co-current

• Very high mass transfer rates

• Stable operation only at high superficialvelocities

• Gas-liquid ratio between 1:3 and 3:1

Most suited for fast reactions

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 35/52

Monolith reactors - 35

Counter-Current Applications

(Film Flow)

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 36/52

Monolith reactors - 36

gas liquid

Flooding !cocurrentcountercurrent

Co-current, counter-current?????

Countercurrent:• Equilibrium reaction with gas phase reactant / product• Inhibition by gas phase product

Multiphase Reactors 6PE20

Counter-current gas/liquid flow; how to avoid

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 37/52

Monolith reactors - 37

GasLiquidCatalyst 

reactants   products 

liquid exit phenomena

Wavy Annular

Film Flow

gas liquid 

Counter-current gas/liquid flow; how to avoidflooding???

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 38/52

Monolith reactors - 38

a=50o  a=70o  a=70o 

a=70o 0.0 1.0 2.0 3.0

0.00

0.01

0.02

0.03

0.04

entrance

flooding

exit

flooding

Typical

region TBR  

annular

slug

flow

Finned Unfinned

uGs (m/s)

      u       L      s

   (  m   /  s   )

Flooding - influence outlet geometry

Liquid superficial velocities are low!

Multiphase Reactors 6PE20

Monolith

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 39/52

Monolith reactors - 39

0.00 0.50 1.00 1.50 2.000.00

0.02

0.03

0.05

0.06

0.08

u s ,L

u s ,G

0.00 0.50 1.00 1.50 2.000.00

0.02

0.03

0.05

0.06

0.08

u s ,L

u s ,G

0.00 0.50 1.00 1.50 2.000.00

0.02

0.03

0.05

0.06

0.08

u s ,L

u s ,G

  special IFM

▲ special square  70o tapered Sulzer Mellapak

MonolithComparison

Flooding

,   air/decane, 25 cpsi IFM,▲ air/water, 50 cpsi square

Data from Lebens (1999) and Heibel (1999)

250 Y

125 Y

170 Y

Sulzer Mellapak

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 40/52

Monolith reactors - 40

F z F z F 

F    g L p

y u

 x u

  

  

2

,2

2

,2

Momentum balance for:

• developed laminar flow in both phases• Newtonian rheology• no slip at all interfaces (G-L, L-S, G-S)• “corner -flow” due to surface tension forces 

High liquidvelocity

   A  x   i  a   l   v  e   l  o  c   i   t  y   [  m   /  s   ]

0.60

0.45

0.30

0.15

0.00

Low liquidvelocity

Hydrodynamics - velocity profiles

Significant velocity profile !Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 41/52

Monolith reactors - 41

Liquid 

2.0 

1.0 

0.0    V  e   l  o  c   i   t  y   [  m   /  s   ]

Gas 

Hydrodynamic model

uLS = 2.9 cm/sLiq. = 12 %

Pwet = 75%

uLS = 0.57 cm/s

Liq. = 5.5%

Pwet = 50%

   A

  x   i  a   l   v  e   l  o  c   i   t  y

   [  m   /  s   ]

0.60

0.45

0.30

0.15

0.00

Significant RTD for gas and liquid!!

Multiphase Reactors 6PE20

Residence time distribution

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 42/52

Monolith reactors - 42

t (s)

0 10 20

Et(1/s)

0.0

0.1

0.2

0.3

0.4

0.0 1.0 2.0 3.0

E         

0.0

0.5

1.0

1.5

2.0

Residence time distribution

W AVE/

M ALDISTRIBUTION L AMINAR

FILM SUBSTRATE

wateruLs = 0.020 m/su

Ls = 0.025 m/s 

uLs = 0.030 m/s

• Laminar flow leads to strong tailing of the RTD• Short residence time, due to wave formation & maldistribution• Lower RTD expected for organic liquids at industrial conditions

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 43/52

Monolith reactors - 43

 

0.00 0.05 0.10

Sh

0

5

10

15

 Average G/L mass transfer results

k GLa derived from experiments

a derived from hydrodynamicmodel

Sh determined from k GL andmaximum film thickness (dFm)

Sh

Sh  k d 

D

zD

d u

L Fm

L

L

Fm Lm

104 0 35   0 63

2

. .

;

 

uGs=0.24 - 0.47 m/s

uGs=0.71 - 0.95 m/s

model

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 44/52

Monolith reactors - 44

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8

Length (m)

   C  o  n  c  e  n   t  r  a   t   i  o  n   (  m  o   l   /  m   3   )

Ester 

Water 

Countercurrent

Cocurrent

No Stripping

(calculated)

Effect of stripping in IFM reactor  

O H  O H 

 

+ H2O

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 45/52

Monolith reactors - 45

Reactive stripping - Modeling Modeling of reactive stripping in monolithic configuration using FallingLaminar Film Flow Model (Lebens et al , 1999) and obtained kinetic data:

Reactor Length 8 mBEA loading 10 wt%Gas (sup. vel.) 5 cm/sLiq (sup. vel.) 1 cm/s

Results:Conversion (%) Selectivity (%)

Counter-current 98.7 95.2

Co-current 94.8 94.7

No stripping 82.1 94.6

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 46/52

Monolith reactors - 46

Film Flow - Summary

• Laminar flow• Mass transfer relatively slow (diffusion)

• Residence time distribution

• Low liquid superficial velocities• Flooding risk at exit

• Counter Current operation !!!

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 47/52

Monolith reactors - 47

Film-Flow monoliths - References• Gas and liquid distribution in the monolith film flow reactor  

 A. K. Heibel, F. J. Vergeldt, H. van As, F. Kapteijn, J.A. Moulijn and T. Boger AIChE Journal, Volume 49, (2003), Pages 3007-301 

• Flooding performance of square channel monolith structures  A. K. Heibel, F. Kapteijn and J. A. Moulijn - Ind.Eng.Chem.Res. 2002, 41, 6759-6771 

• Influence of channel geometry on hydrodynamics and mass transfer in the monolith filmflow reactor  

 A. K. Heibel, J. J. Heiszwolf, F. Kapteijn and J. A. Moulijn

Catalysis Today, Volume 69, Issues 1-4, 15 September 2001, Pages 153-163 • Gas –liquid mass transfer in an internally finned monolith operated countercurrently in thefilm flow regime P. J. M. Lebens, J. J. Heiszwolf, F. Kapteijn, S. T. Sie and J. A. MoulijnChemical Engineering Science, Volume 54, Issue 21, November 1999, Pages 5119-5125  

• Hydrodynamics and mass transfer issues in a countercurrent gas-liquid internally finnedmonolith reactor  

P. J. M. Lebens, M. M. Stork, F. Kapteijn, S. T. Sie and J. A. MoulijnChemical Engineering Science, Volume 54, Issues 13-14, July 1999, Pages 2381-2389 

• Potentials of internally finned monoliths as a packing for multifunctional reactors P. J. M. Lebens, F. Kapteijn, S. T. Sie and J. A. MoulijnChemical Engineering Science, Volume 54, Issue 10, May 1999, Pages 1359-1365  

Multiphase Reactors 6PE20

Novel Monolithic reactor designs

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 48/52

Monolith reactors - 48

• External recycle - liquid

• Internal recycle - gas

Exothermal systems

High rates - Low conversions

Liquid Gas

Novel Monolithic reactor designs

Co-current Monolithic reactor

Multiphase Reactors 6PE20

Novel Monolithic reactor designs

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 49/52

Monolith reactors - 49

vertical mode:

Staging possible

Cross-, co- and countercurrent

Liquid phase reactions

horizontal mode:

Novel Monolithic reactor designs

Monolithic Stirrer reactor

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 50/52

Monolith reactors - 50

H2O2 decompositionin a rotating monolith reactor

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 51/52

Monolith reactors - 51

Novel Monolithicreactor designs

Cross-Flow

module

Multiphase Reactors 6PE20

7/21/2019 Monolith Multiphase 2012

http://slidepdf.com/reader/full/monolith-multiphase-2012 52/52

Monoliths - Summary

Small Channel

• Co-Current

• Plug flow (Taylor flow)

• High velocities• High mass transfer

rates

• Low catalyst amount• Low P

• Fast reactions

Large Channels

• Counter-currentpossible

• Film flow• Low velocities

• Higher amount of

catalyst• Low P

• Slow(er) reactions