modulation doping of ferromagnetism in manganite superlattices · •10 differentially‐pumped...

39
Modulation Doping of Ferromagnetism in Manganite Superlattices Tiffany S. Santos Center for Nanoscale Materials Argonne National Laboratory NIST Summer School May 14, 2010 Support: DOEBES Contract # DEAC0206CH11357

Upload: others

Post on 24-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Modulation Doping of Ferromagnetism in Manganite Superlattices

Tiffany S. SantosCenter for Nanoscale MaterialsArgonne National Laboratory

NIST Summer SchoolMay 14, 2010

Support: DOE‐BES Contract # DE‐AC02‐06CH11357

Page 2: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Ozone-MBE Team

LaMnO3

/SrMnO3

superlattice 

Tiffany SantosAnand BhattacharyaBrittany Nelson‐CheesemanSteve May (now at Drexel U.)

STEM: Amish Shah, J.‐M. Zuo, UIUC

nano.anl.gov

CNM

Tiffany Santos, 2010 NIST Summer School

Page 3: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Talk Outline

Disordered La/SrRandom Alloy La1‐x

Srx

MnO3

Ordered La/SrSMO1

/ LMO1

O. Chmaissem, et al., PRB 2003

Tuning across the F/AF phase transition at x=0.5 by digital synthesis

Delta‐doping of ferromagnetism into the antiferromagnetic state

Page 4: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Manganites (La1-x Srx MnO3 ): Magnetic Ordering

Exhibit wide variety of ordering phenomena (magnetic, orbital)

Magnetic ordering related to Mn valence state

SMO, d3

band 

insulator

Mn 3d

states

LaMnO3SrMnO3

t2g

eg

LMO, d4

Mott 

insulator

La1/3

Sr2/3

MnO3

: insulating AFM

La2/3

Sr1/3

MnO3

: half‐metal, CMR effect,TC

> RT

Tiffany Santos, 2010 NIST Summer School

Page 5: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Competition between double exchange and superexchange

Double exchange

t ~ cos(θ/2)θ

Mn3+

Superexchange

Ferromagnetic,  metallic

Mn4+

Antiferromagnetic, insulating

Mn4+ Mn4+

C. Zener, PRB (1951)

θ(tpd

)2

~

cos2(θ)

J. B. Goodenough, Phys. Rev. (1955)

Determines the magnetic properties across the phase diagram 

Tiffany Santos, 2010 NIST Summer School

Page 6: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

F-AF Phase Transition at x ~ 0.5

Previous x=0.5 studies: Koida et al, PRB (2002); P. K. Muduli et

al, JPCM (2007);M. Izumi et al, PRB (2000); Y. Konishi et al, J. Phys. Soc. Jpn.

(1999)

A‐type AF order• x2‐y2

lie in MnO2

sheets

• F double exchange in plane

• AF superexchange along c

F state• orbital disorder

Has TN

and TC

Page 7: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Order vs Disorder of Sr/La on A-sites

Disordered La/SrRandom Alloy La1‐x

Srx

MnO3

Ordered La/SrSMO1

/ LMO1

vs

Why study order ?

Tiffany Santos, 2010 NIST Summer School

Page 8: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

(R0.7 M0.3 )MnO3 : Suppressed TC with A-site Disorder

avg. cation radius <rA

> = 1.23 Ådoping level

x

= 0.30

σ2

(rA

)  = <rA2> ‐

<rA

>2

Rodriguez-Martinez and Attfield, PRB (1996)

Cation disorder decreases TC

Variance

in local tolerance factor  t =< A − O >

2 < Mn − O >

Tiffany Santos, 2010 NIST Summer School

Page 9: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Ln0.5 Ba0.5 MnO3 : New Ground States with Ordered Analogs

D. Akahoshi et

al., PRL (2003)

A‐site disorder drastically changes the ground stateTiffany Santos, 2010 NIST Summer School

Page 10: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Ozone-Assisted Molecular Beam Epitaxy

• Pure ozone

• 10 differentially‐pumped K‐cells

• 3 e‐beam sources

• in situ RHEED

• Rate measured by QCM

• Composition calibrated by RBS

• Atomic absorption in progress

This is a user facility !nano.anl.gov

Tiffany Santos, 2010 NIST Summer School

Page 11: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Ozone-Assisted Molecular Beam Epitaxy

• Pure ozone

• 10 differentially‐pumped K‐cells

• 3 e‐beam sources

• in situ RHEED

• Rate measured by QCM

• Composition calibrated by RBS

• Atomic absorption in progress

Ozone

Ca Sr Ni Ba Mn Co Ti LaCr V

RHEED

AA lampAA PMT

This is a user facility !nano.anl.gov

Tiffany Santos, 2010 NIST Summer School

Page 12: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

101

102

103

104

105

106

44 45 46 47 48

Cou

nts

2Θ (deg)

STO (0 0 2)

LMO (0 0 2)

LaMnO3 , SrMnO3 on SrTiO3

10-1

100

101

102

103

104

100 150 200 250 300

LMO 20 uc / STO

ρ(Ω

-cm

)

T (K)

101

102

103

104

105

106

107

46 47 48 49 50

Cou

nts

2Θ (deg)

STO (0 0 2)

SMO (0 0 2)

SrMnO3LaMnO3

10-1

100

101

102

103

104

105

50 100 150 200 250 300 350

ρ (Ω

-cm

)

T (K)

cLMO

= 3.96 Å cSMO

= 3.78 Å

cSTO

= 3.91 Å

Page 13: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

LMOSMO

STO

LMOSMO

LMOSMO

LMOSMOSMO

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

LMOSMOSTO

x = 0.50

x = 0.44 x = 0.55

Digital Synthesis

SMO1

/ LMO1

superlattice

x 9 x 9

x 40

total thickness ~ 30 nm

compare with alloys of equivalent composition…Tiffany Santos, 2010 NIST Summer School

Page 14: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Reflection High Energy Electron Diffraction

‐ oscillations of specular peak‐ layer‐by‐layer growth

SrTiO3

substrate LaMnO3

/SrMnO3

superlatticeLMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

x = 0.44

5 supercells

Tiffany Santos, 2010 NIST Summer School

Page 15: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Smooth Surfaces: AFM and STM of x=0.50 SL

875 nm x 875 nm

350 nm x 350 nm

STM

In collaboration with Matthias Bode, CNM

AFM

Page 16: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

X-Ray Reflectivity: Simulation

LMO

LMO

LMO

LMO

SMO

SMO

SMO

SMOSMO

STO

x 9 LMOSMO

STO

x 40

x=0.50

x=0.55

Tiffany Santos, 2010 NIST Summer School

Page 17: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Single Layer Control: X-Ray Reflectivity

SL peaks not possible with layer roughness of a single unit cell

2θ=14°

LMOSMO

STO

x 40

x = 0.50

LMO

LMO

LMO

LMOLMO

SMO

SMO

SMO

STO

x 9

SMO

x = 0.44

x = 0.55 SL

x = 0.55 alloy

Tiffany Santos, 2010 NIST Summer School

Page 18: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

X-ray Diffraction(002) peak of the SrMnO3

/LaMnO3

superlattices

(002) RC width:

~ 0.049°

for the SLs

~ 0.039°

for the alloys

(~0.030°

for STO)

Tiffany Santos, 2010 NIST Summer School

Presenter
Presentation Notes
Point out transition
Page 19: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Enhanced Metallicity with A-site Order

• metal‐like behaviorρ

< 3 mΩ‐cm

x = 0.55

x = 0.50

x = 0.44

x = 0.44

x = 0.50, 0.55

• disorder raises resistivity

Tiffany Santos, 2010 NIST Summer School

Page 20: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Metal-like behavior near x=0.5

A‐type AF order• x2‐y2

lie in MnO2

sheets

• F double exchange in plane

• AF superexchange along c

F state• orbital disorder

• double exchange in 3D

Tiffany Santos, 2010 NIST Summer School

Page 21: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

A-type AF order: Neutron Diffraction, x = 0.55

Structurally forbidden (0 0 ½) diffraction peak below TN

coherence length ξ ~ film thickness

TN enhanced from bulk TN=220 K

Measured at HFIR, ORNLCollaboration with Lee Robertson, Jerel Zarestky

LMO

LMO

LMO

LMO

SMO

SMO

SMO

SMO

STO

x 9

MnO2

sheets

bulk T

N

0

Page 22: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

0

A-type AF order, x=0.50 LMOSMO

STO

x 40

bulk T

N

Tiffany Santos, 2010 NIST Summer School

Page 23: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

0

LMOSMO

STO

x 40

bulk T

N

TN greatly increased over bulk TNNo F phase at high T

Strain, rather than A‐site order, leads to enhanced TN:

compression of c‐axis  stronger superexchange

Enhanced Néel Temperature

?

Page 24: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

La1-x Srx MnO3 on the Verge of Ferromagnetism: x=0.44, 0.47

A‐type AF metal• x2‐y2

lie in MnO2

sheets

• F double exchange in plane

• AF superexchange along c

F state• double exchange 3D 

• orbital disorder

Adding mobile carriers to AF

Canting due to double exch.

(single orbital model by de Gennes, Phys. Rev. 1960;degenerate orbital model byvan der Brink & Khomskii, PRL ’99)

This study:The transition from an 

anisotropic AF

to an 

isotropic F

?

Presenter
Presentation Notes
Highly anisotropic conductor In analogy with de gennes idea, highly anistropic conductor, add electrons canting of antiferromagnet to the F side state How does it go to isotropic conductor? Modulation of the exchange interaction
Page 25: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

x = 0.44

x 9

(0 0 ½) 

0

x = 0.44 : Canted AF ? Modulated Behavior ?

Tiffany Santos, 2010 NIST Summer School

Page 26: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Compare x=0.44 SL and alloy

Alloy has higher moment than SL, but still < (4 – x) μBCanted ?

SL

SL

alloy alloy

Tiffany Santos, 2010 NIST Summer School

Page 27: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

R ++(qz

)

R – – (qz

)

z

x

H,M

H,M

Polarized Neutron ReflectometryStudy magnetic depth profiles with sub‐nm resolution

Sensitive to the in‐plane component of magnetization

Measurement at NIST Center for Neutron Research

NG1 and AND/R, Brian Kirby and Brian Maranville

Suzanne te Velthuis, Argonne

Tiffany Santos, 2010 NIST Summer School

Page 28: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

x=0.44 Alloy: Polarized Neutron Reflectivity

H = 6750 OeMsat

II HT = 120 K

Alloy has no Bragg peak no modulation

Page 29: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

PNR: Modulated Moment in x=0.44 SL

Bragg peak at q = 0.18 Å‐1 modulated momentcommensurate with SL structure

H = 6750 OeMsat

II HT = 120 K

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

x = 0.44

34.6 Å

Page 30: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

LMOSMO

LMOSMO

LMOSMO

LMOLMOSMO

LMOSMO

LMOSMO

LMOSMO

LMOLMOSMO

low M

high M

low M

high M

high M

low M

x 7

H

x=0.44: PNR fitting model

Tiffany Santos, 2010 NIST Summer School

Butterfly spin structure‐

canted, modulated

High M layer: 2.2 µB

, 6 u.c.,  θ

= 102°

Low M layer: 0.7 µB, 3 u.c., θ

= 157°

θ H

Page 31: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Delta-Doping of FerromagnetismInserting a single layer of electrons enhances double‐exchange along the c‐axis  canting  higher moment

Tuning the strength of the ferromagnetic exchange interactions

Locally change the property of the material, without introducing disorder or frustration

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

LMOSMO

LMOSMO

LMOSMO

LMOLMOSMO

LMOSMO

LMOSMO

LMOSMO

LMOLMOSMO

low M

high M

low M

high M

high M

low M

H

La0.60

Sr0.40

MnO3

La0.6

Sr0.4

FeO3

(I)La0.45

Sr0.55

MnO3

(M)Compare with:

What is the magnitude of the induced moment?

How far does the delta‐doped charge extend?

Can we design a modulated profile with a different periodicity?

AF

F

Izumi, Tokura, et al PRB ‘99,‘00 

Tiffany Santos, 2010 NIST Summer School

Presenter
Presentation Notes
Locally changing the property of the material in an ordered state
Page 32: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

x=0.47 superlattice

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

x = 0.47

x 4LMOSMO

LMOSMO

LMOSMO

SMOLMOSMOLMO

R+ +

R ‐ ‐

2 Bragg peaks expected

Double LaMnO3

in middle

On the verge of ferromagnetism

PNR simulation

Tiffany Santos, 2010 NIST Summer School

Page 33: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

x = 0.47 superlattice: SL x 4 / L / SL x 5

LMOSMOSTO

LMOSMO

LMOSMO

LMOLMOSMO

x = 0.47

x 4LMOSMO

LMOSMO

LMOSMO

SMOLMOSMOLMO

Thickness = 287 ÅSurface roughness < 2 Å

X‐ray reflectivity

Tiffany Santos, 2010 NIST Summer School

Page 34: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

x = 0.47 superlattice – X-Ray Diffraction

Tiffany Santos, 2010 NIST Summer School

Page 35: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

X = 0.47 SL – Magnetization & Resistivity

properties follow trend with other SL compositions

200 Oe

Tiffany Santos, 2010 NIST Summer School

Page 36: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

PNR: x = 0.47 SL – Modulation here too!

T = 120 KH = 8150 Oe

Tiffany Santos, 2010 NIST Summer School

Page 37: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

PNR fitting model: x=0.47 SL

low M

high M

LMOSMO

LMOSMO

LMOSMO

LMOLMOSMO

LMO

��x 3

SMO

LMO

SMO

LMOSMO

SMOLMOSMOLMO

LMOSMO

SMO

LMOSMO

low M�

LMOLMO

LMO

LMOSMO

SMOLMOSMOLMO

LMOSMO

SMO

LMOSMO

high M

low M�

Induced moment Length scale for carrier confinement

High M layer: 2.2 µB

, 6 u.c.,  θ

= 102°

Low M layer: 0.7 µB, 13 u.c., θ

= 158°

Page 38: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Salvador

et al. APL ‘99; C. Adamo et al APL ’08; many 

othersA. Bhattacharya et al

PRL ‘08S. May et al, Nat. Mat. ‘09

Koida

et al, PRB

(2002); 

T. Santos et al PRB

‘09

La1-x Srx MnO3 Ordered Analogs

Tiffany Santos, 2010 NIST Summer School

Page 39: Modulation Doping of Ferromagnetism in Manganite Superlattices · •10 differentially‐pumped K‐cells •3 e‐beam sources • in situ RHEED •Rate measured by QCM •Composition

Conclusions

Tuning across F‐AF phase boundary using digital synthesis

Enhanced TN over bulk La1‐xSrxMnO3, measured by neutron diffraction

Canted, modulated magnetic profile revealed by PNR

Delta‐doping of ferromagnetism without disorder

x=0.47 superlattice− Solved the magnetic structure: 

Magnitude of the induced moment

Length scale for spreading of charge

Tiffany Santos, 2010 NIST Summer School