nonlinear quantum bifurcations in semiconductor superlattices

24
Nonlinear Quantum Birnir Semiconductor Quantum Wells Bifurcations in Quantum Wells Bifurcations in Superlattices The Quantum Oscillator The GHz sources, period halvers, frequency squeezers and random sequence generators Nonlinear Quantum Bifurcations in Semiconductor Superlattices Björn Birnir * Center for Complex and Nonlinear Science and Department of Mathematics, UC Santa Barbara and University of Iceland, Reykjavík BIRS Banff August 2016 Co-authors Miguel Ruiz-Garcia , Jonathan Essen ?* , Manuel Carretero , Luis Bonilla ? Department of Physics, University of California, Santa Barbara Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Spain * Supported by U. S. Army Research Office under contract/grant number 444045-22682

Upload: others

Post on 05-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Nonlinear Quantum Bifurcations inSemiconductor Superlattices

Björn Birnir∗

Center for Complex and Nonlinear Scienceand

Department of Mathematics, UC Santa Barbaraand University of Iceland, Reykjavík

BIRS Banff August 2016

Co-authors Miguel Ruiz-Garcia†, Jonathan Essen?∗, Manuel Carretero†, LuisBonilla† ?Department of Physics, University of California, Santa Barbara

†Gregorio Millán Institute for Fluid Dynamics, Nanoscience and IndustrialMathematics, Universidad Carlos III de Madrid, Spain ∗Supported by U. S.

Army Research Office under contract/grant number 444045-22682

Page 2: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Outline

1 Semiconductor Quantum Wells

2 Bifurcations in Quantum Wells

3 Bifurcations in Superlattices

4 The Quantum Oscillator

5 The GHz sources, period halvers, frequency squeezersand random sequence generators

Page 3: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Outline

1 Semiconductor Quantum Wells

2 Bifurcations in Quantum Wells

3 Bifurcations in Superlattices

4 The Quantum Oscillator

5 The GHz sources, period halvers, frequency squeezersand random sequence generators

Page 4: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Nonlinear Coherent Electron States

In GaAs/AlGaAs quantum wells (QWs), the Coulombself-interaction of the two-dimensional electron gas(2DEG) leads to the emergence of experimentallyobservable nonlinear effects:

the depolarization shift of the intersubband absorptionpeakmodeled considering the interplay between theone-electron density matrix andmean-field (Hartree) potentialdipole-coupled optical driving fieldand thermal dissipation rates (depolarization anddecorrelation)

The nonlinear effects are most pronounced for highcarrier densities and driving field amplitudes

Page 5: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Outline

1 Semiconductor Quantum Wells

2 Bifurcations in Quantum Wells

3 Bifurcations in Superlattices

4 The Quantum Oscillator

5 The GHz sources, period halvers, frequency squeezersand random sequence generators

Page 6: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Nonperturbative theory of intersubbanddynamics in quantum wells

Galdrikian, Batista, and Birnir et al. (GBB) extended thetheory of Ando et al. [2]

By self-consistent numerical computation of thetime-dependent coherent electronic states [8, 7, 4, 3]Nonlinearities were enhanced in slightly assymetricquantum wells, containing one or more ‘step’ features inthe confinement potential (Figure 1)

One such step, nonlinear phenomena such asbistability, period-doubling bifurcations, andperiod-doubling cascades to chaos were observed inthe simulationsTwo or more steps resulted in a Hopf bifurcation of theperiodic orbit, giving quasi-periodic orbits on a torus,followed by a period-doubling cascade of theassociated invariant tori

Page 7: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

The two-step Quantum Well

Figure: The stationary self-consistent potential of the assymetricGaAs-AlGaAs quantum well from Batista et al. [4]. Theeigenstates’ energy levels are indicated by the horizontal lines.

Page 8: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Outline

1 Semiconductor Quantum Wells

2 Bifurcations in Quantum Wells

3 Bifurcations in Superlattices

4 The Quantum Oscillator

5 The GHz sources, period halvers, frequency squeezersand random sequence generators

Page 9: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

GaAs/AlGaAs superlattices (SLs)

Dynamics are similarly dominated by the interplaybetween the electronic populations of each site and theself-consistent potentialWell-described by the resonant sequential tunneling(RST) model of Bonilla et al [5]In the RST model, the electronic states are assumed tobe localized at each site of the SL, while the electronicstates in the GBB model simultaneously occupymultiple regions between the stepsIntersubband dynamics at each site of the RST modelare not resolved in time; instead, they are treatedaccording to the Chapman-Enskog method [6]

Page 10: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Quantum Wells layered together in aSuperlattice

Figure: A mesa-shaped SL of 1.2 mm (square) width and 1.5 µmthickness. (a) shows a dc voltage-biased SL consisting of twocontact regions of about 0.5 µm thickness each and 50 periods,formed by the two semiconductor layers of different bandgaps (b).

Page 11: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Nonlinear Bifurcations in a Superlattice

We study the usual sequential tunneling model ofelectron transport in a weakly coupled n-doped SL,under a (DC) voltage bias and search for nonlinearbifurcations of coherent electron states, parametrizedby DC voltage V .The model is adapted from M. Alvaro, M. Carretero,and L. Bonilla, [1].Let the electric field, in well i , be Fi , wherei = 1, ...,N(N ≤ 50) is the number of SL periods, andJi→i+1 and J(t) is the tunneling current density fromwell i to well i + 1, and the total current density,respectively.

Page 12: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Superlattice Equations

εdFi

dt+ Ji→i+1 = J(t), (1)

J−i→i+1 =eni

lv (f )(Fi)−J−i→i+1(Fi ,ni+1,T ), (2)

ni = ND +ε

e(Fi −Fi−1), (3)

J−i→i+1(Fi ,ni+1,T ) =em∗kBT

π h2lv (f )(Fi) ln

[1 + e−

eFi lkbT (e

π h2ni+1m∗kbT −1)

],

(4)J0→1 = σ0F0, JN→N+1 = σ0

nN

NDFN , (5)

N

∑i=1

Fi =Vl. (6)

Page 13: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Outline

1 Semiconductor Quantum Wells

2 Bifurcations in Quantum Wells

3 Bifurcations in Superlattices

4 The Quantum Oscillator

5 The GHz sources, period halvers, frequency squeezersand random sequence generators

Page 14: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

The Bifurcation Diagram

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

V (Volts)

32

34

36

38

40

PF

6(a

.u

.)

Figure: The bifurcation diagram for N = 10 and Vbarr = 600 meV.The Hopf bifurcation from the steady state occurs at the kinkabove 1.7V. The period-doubling cascade occurs in the shadedregion above 2.1V.

Page 15: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

The Bifurcations

1.8

V

J(t) F6 vs F5 PF6 vs PF6 P [J ]

2.1

V2.

103

V2.

106

V

0 1 2 3 4 5 6 7 8

t (ns)

2.10

9V

F5 (a.u.) F6 (a.u.)

0 1 2

f (GHz)

Figure: Representative phase portraits. A periodic oscillation isshown in the first row. The period-doubling cascade to a chaoticattractor is shown in the bottom four rows.

Page 16: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Outline

1 Semiconductor Quantum Wells

2 Bifurcations in Quantum Wells

3 Bifurcations in Superlattices

4 The Quantum Oscillator

5 The GHz sources, period halvers, frequency squeezersand random sequence generators

Page 17: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Bifurcations and Devices

We simulate SLs that can be used as sources, periodhalvers and squeezers, random sequence generatorsand frequency mixers, at room temperature

Hopf bifurcation: The first bifurcation is the Hopfbifurcation from stationary state to periodic orbit. Thiselectron state is a source; it will emit radiation at thefrequency ω = 2π/T , where T is the fundamentalperiod, and at its superharmonics.Period doubling bifurcation: The second bifurcation thatwe find in the SL is the period-doubling bifurcation. Nowthe periodic orbit has period twice that of the originalperiodic orbit, so the frequency is halved: ω→ ω/2.Can then be used to compress information into adesirable frequency range or to squeeze out of itundesirable noise [9].

Page 18: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

A Strange Attractor

The period doubling cascade leads to a strangeattractor:

Period doubling cascade: The period doubling of theperiodic orbit continues into a period-doubling cascadeto a strange attractor. Based upon the emergence of abroad peak between the two strongest harmonics, weconclude that the invariant manifold is a strangeattractor.A practical application of the dynamics in this regime isultrafast generation of random number sequences [12].This has many applications in areas such as securecommunication and data storage, stochastic modeling,and Monte Carlo simulations.

Page 19: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

The Design of the Superlattice

The design (b) that effectively quenches thebackground noise is taken from Huang et al. [11, 10].

Figure: Two superlattices, respectively GaAs/AlAs (a) and (b)GaAs/Al0.45Ga0.55As.

Page 20: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Conclusions

This work demonstrates that semiconductorheterostructures, consisting of a superlattice ofweakly-coupled quantum wells under a DC voltagebias, are nonlinear quantum systemsThe coherent electronic dynamics in the superlatticebifurcate with increased voltage.In our simulations, we find a Hopf bifurcation, aperiod-doubling of the resulting periodic orbit and aperiod-doubling cascade to a strange attractorThese bifurcations are observable at roomtemperature. These enable the design of a number ofdevices operating in the GHz range.

Page 21: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

M Alvaro, M Carretero, and LL Bonilla.Noise-enhanced spontaneous chaos in semiconductorsuperlattices at room temperature.EPL (Europhysics Letters), 107(3):37002, 2014.

Tsuneya Ando, Alan B. Fowler, and Frank Stern.Electronic properties of two-dimensional systems.Rev. Mod. Phys., 54:437–672, Apr 1982.

Adriano A. Batista, Bjorn Birnir, P. I. Tamborenea, andD. S. Citrin.Period-doubling and hopf bifurcations in far-infrareddriven quantum well intersubband transitions.Phys. Rev. B, 68:035307, Jul 2003.

Adriano A Batista, PI Tamborenea, Bjorn Birnir, Mark SSherwin, and DS Citrin.

Page 22: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Nonlinear dynamics in far-infrared driven quantum-wellintersubband transitions.Physical Review B, 66(19):195325, 2002.

Luis L Bonilla and Holger T Grahn.Non-linear dynamics of semiconductor superlattices.Reports on Progress in Physics, 68(3):577, 2005.

Luis L Bonilla and Stephen W Teitsworth.Nonlinear wave methods for charge transport.John Wiley & Sons, 2009.

B. Galdrikian and B. Birnir.Phys. Rev. Lett., 76:3308, 1996.

Bryan Galdrikian, Mark Sherwin, and Björn Birnir.Self-consistent floquet states for periodically drivenquantum wells.

Page 23: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Phys. Rev. B, 49:13744–13749, May 1994.

R Graham.Squeezing and frequency changes in harmonicoscillations.Journal of Modern Optics, 34(6-7):873–879, 1987.

Yuyang Huang, Wen Li, Wenquan Ma, Hua Qin,Holger T Grahn, and Yaohui Zhang.Spontaneous quasi-periodic current self-oscillations in aweakly coupled gaas/(al, ga) as superlattice at roomtemperature.Applied Physics Letters, 102(24):242107, 2013.

YuYang Huang, Wen Li, WenQuan Ma, Hua Qin, andYaoHui Zhang.

Page 24: Nonlinear Quantum Bifurcations in Semiconductor Superlattices

NonlinearQuantum

Birnir

SemiconductorQuantumWells

Bifurcations inQuantumWells

Bifurcations inSuperlattices

The QuantumOscillator

The GHzsources,periodhalvers,frequencysqueezersand randomsequencegenerators

Experimental observation of spontaneous chaoticcurrent oscillations in gaas/al0. 45ga0. 55assuperlattices at room temperature.Chinese Science Bulletin, 57(17):2070–2072, 2012.

Wen Li, Igor Reidler, Yaara Aviad, Yuyang Huang,Helong Song, Yaohui Zhang, Michael Rosenbluh, andIdo Kanter.Fast physical random-number generation based onroom-temperature chaotic oscillations in weakly coupledsuperlattices.Phys. Rev. Lett., 111:044102, Jul 2013.