transmission in aperiodic severin superlattices text.pdf · transmission in aperiodic severin...

4
Nr 2/2014 ____________________ I N Ż YNIERIA MATERIA Ł O W A _________________________ 211 MICHAŁ SZOTA Transmission in aperiodic Severin superlattices INTRODUCTION Multilayers are materials with very interesting physical properties [1÷22], particularly interesting is the propagation of electromagnetic waves (EW) in superlattices [20]. It should be noted, that the internal design of the system and the medium in which it is immersed has a significant influence on the transmission of electromagnetic waves [17÷21]. Therefore it is important to understand the behaviour of an electromagnetic wave for the widest range of structures, which will allow to design systems with given properties. Calculation of superlattice transmission was made using the matrix method [17÷20, 22] for the Severin's superlattice [23]. TRANSMISSION CALCULATION Electromagnetic wave propagation can be described by the matrix equation: out in in in 1 1 1 0 J T , j j,j j E E E D PD (1) where in E is the intensity of the electric field of an electromagnetic wave incident on the structure, in E describes the electric field of the reflected electromagnetic wave, and out E is the intensity of the electromagnetic field of wave passing through the multilayer system. The was defined, hereinafter referred to as the characteristic matrix of 2 2 dimension, as: in 1 1 1 J , j j,j j D PD (2) what inserted into the equation (1) gives out in in 0 T E E E . (3) Matrixes of electromagnetic wave propagation P and transmission on the medium boundaries D were defined as: in 1 in 1 1 in 1 1 1 1 1 2 2 1 1 1 1 1 1 0 0 j j j j j j ,j , in,j ,j j,j j,j j,j j,j id n cos j id n cos r D r t r D r t e P e , (4) where j n is the refractive index of layer j , and j d is layer thickness; j describes angle of direction of incidence of electromagnetic wave to a normal of multilayer structure; is a wavelength. The variables t and r define Fresnel amplitude coefficients respectively for the transmission and reflectance of the polarization P and S P 1 1 1 1 1 1 1 P 1 1 1 S 1 1 1 1 S 1 2 sign sign sign sign sign sign sign 2 sign sign sign sig j j j j,j j j j j j j j j j j j j j,j j j j j j j j j j j,j j j j j j j j j j,j cos n n t cos cos n n n n cos cos n n n n r cos cos n n n n cos n n t cos cos n n n n cos n r 1 1 1 1 1 1 n sign sign sign j j j j j j j j j j cos n n n cos cos n n n n . (5) In equation (5) function sign x was defined as: 1 0 sign 0 0 1 0 , x x , x , x . (6) Using the characteristic matrix (2) we can determine the transmission T of given superlattice 2 out out in in 11 1 n cos T n cos (7) and reflectance R 2 11 21 R (8) Calculation of superlattice transmission were performed using the matrix method [17÷20] for the Severin's superlattice. SEVERIN'S STRUCTURE Creation of aperiodic Severin's structure requires the use the following substitution rule A BB B AB (9) The condition for the initial creation of the Severin's structure X k is Prof. asssoc. Michał Szota ([email protected]) Institute of Materials Engineering, Czestochowa University of Technology, Czestochowa, Poland

Upload: vuongthuy

Post on 17-Feb-2019

254 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transmission in aperiodic Severin superlattices text.pdf · Transmission in aperiodic Severin superlattices INTRODUCTION Multilayers are materials with very interesting physical properties

Nr 2/2014 ____________________ I N Ż Y N I E R I A M A T E R I A Ł O W A _________________________ 211

MICHAŁ SZOTA

Transmission in aperiodic Severin superlattices

INTRODUCTION

Multilayers are materials with very interesting physical properties [1÷22], particularly interesting is the propagation of electromagnetic waves (EW) in superlattices [20]. It should be noted, that the internal design of the system and the medium in which it is immersed has a significant influence on the transmission of electromagnetic waves [17÷21]. Therefore it is important to understand the behaviour of an electromagnetic wave for the widest range of structures, which will allow to design systems with given properties.

Calculation of superlattice transmission was made using the matrix method [17÷20, 22] for the Severin's superlattice [23].

TRANSMISSION CALCULATION

Electromagnetic wave propagation can be described by the matrix equation:

outin in in 1 1

1 0

JT

, j j , jj

EE E D P D

(1)

where inE is the intensity of the electric field of an

electromagnetic wave incident on the structure, inE describes the

electric field of the reflected electromagnetic wave, and outE is

the intensity of the electromagnetic field of wave passing through the multilayer system. The was defined, hereinafter referred to as the characteristic matrix of 22 dimension, as:

in 1 11

J

, j j , jj

D P D

(2)

what inserted into the equation (1) gives

outin in

0

T EE E

. (3)

Matrixes of electromagnetic wave propagation P and transmission on the medium boundaries D were defined as:

in 1in 1

1in 1

11

11

2

2

111

111

0

0

j j j

j j j

, j,

in, j, j

j , jj , j

j , jj , j

id n cos

jid n cos

rD

rt

rD

rt

eP

e

, (4)

where jn is the refractive index of layer j , and jd is layer thickness; j describes angle of direction of incidence of electromagnetic wave to a normal of multilayer structure; is

a wavelength. The variables t and r define Fresnel amplitude coefficients respectively for the transmission and reflectance of the polarization P and S

P1

11

1

11

1P1

11

S1

11

1

S1

2sign

sign sign

sign sign

sign sign

2sign

sign sign

sig

jj

jj , j

j jj j

j j

j jj j

j jj , j

j jj j

j j

jj

jj , j

j jj j

j j

jj

j , j

cosn

nt

cos cosn n

n n

cos cosn n

n nr

cos cosn n

n n

cosn

nt

cos cosn n

n n

cosn

r

11

1

11

1

n sign

sign sign

jj

j j

j jj j

j j

cosn

n n

cos cosn n

n n

. (5)

In equation (5) function sign x was defined as:

1 0

sign 0 0

1 0

, x

x , x

, x

. (6)

Using the characteristic matrix (2) we can determine the transmission T of given superlattice

2

out out

in in 11

1n cosT

n cos

(7)

and reflectance R

2

11

21

R (8)

Calculation of superlattice transmission were performed using the matrix method [17÷20] for the Severin's superlattice.

SEVERIN'S STRUCTURE

Creation of aperiodic Severin's structure requires the use the following substitution rule

A BB

B AB

(9)

The condition for the initial creation of the Severin's structure Xk is

Prof. asssoc. Michał Szota ([email protected]) – Institute of MaterialsEngineering, Czestochowa University of Technology, Czestochowa, Poland

Page 2: Transmission in aperiodic Severin superlattices text.pdf · Transmission in aperiodic Severin superlattices INTRODUCTION Multilayers are materials with very interesting physical properties

212 _________________________ I N Ż Y N I E R I A M A T E R I A Ł O W A ___________________ ROK XXXV

0 B (10)

Using the formula (9) and (10) we create the next generation k of Severin's structure

0

1

2

B

AB

BBAB

(10)

Next generations of Severin's structure are showed in Table 1.

Table 1. Structure of first six generations k of Severin's structure Tabela 1. Struktura sześciu pierwszych pokoleń k łańcucha Severina

k Xk

1 AB 2 BBAB 3 ABABBBAB 4 BBABBBABABABBBAB 5 ABABBBABABABBBABBBABBBABABABBBAB 6 BBABBBABABABBBABBBABBBABABABBBAB

ABABBBABABABBBABBBABBBABABABBBAB 7 ABABBBABABABBBABBBABBBABABABBBAB

ABABBBABABABBBABBBABBBABABABBBAB BBABBBABABABBBABBBABBBABABABBBAB ABABBBABABABBBABBBABBBABABABBBAB

RESEARCH

In this study the propagation of electromagnetic waves thru Severin superlattice built with lossless and non-dispersive materials. For computation matrix method was used which takes into account the use of structure constructed from materials with a negative refractive index. The results of determining the transmission in superlattice were collected in Figures 1÷6. The horizontal axis defines the transmission map of the incident wave length λ of visible light. The vertical axis indicates the angle of electromagnetic wave to the normal vector of multilayer structure. By the white color complete transmission of electromagnetic wave has been marked, and by the black, when there is no transmission.

Refractive index of the layers for the investigated structures were established on A 1 544n . (NaCl) and B 3 4n . (GaAs) respectively [22], except Figure 2, where a change in a trans-mission was studied, when material B is converted to its metamaterial equivalent [7], for which the refractive index is

B 3 4n . . Figure 1 shows the map of transmission for the future

generations of Severin's structure, calculated for the polarization P and S. Structure was then placed in vacuum ( in out 1n n ). Thickness of single layer was B A 200 nmd d .

Fig. 1. Charts for transmission T for the Severin's superlattice, depending on the incident wavelength λ and the angle of incidence Θ. The parameter k specifies the number of superlattice generations. The thickness of a single layer was 200 nm. The refractive index of the material A was 1.544, material B was equal to 3.4, and for the input and output layers were respectively nin = nout = 1 Rys. 1. Wykresy transmisji T dla supersieci Severina w zależności od długości fali padającej λ i kąta padania Θ. Parametr k określa numer pokolenia supersieci. Grubość pojedynczej warstwy wynosiła 200 nm. Współczynnik załamania materiału A wynosił 1,544, materiału B był równy 3,4, a dla warstw wejściowej i wyjściowej wynoszą odpowiednio nin = nout = 1

Fig. 2. Charts for transmission T for the Severin's superlattice, depending on the incident wavelength λ and the angle of incidence Θ. The parameter k specifies the number of superlattice generations. The thickness of a single layer was 200 nm. The refractive index of the material A was 1.544, material B was equal to –3.4, and for the input and output layers were respectively nin = nout = 1 Rys. 2. Wykresy transmisji T dla supersieci Severina w zależności od długości fali padającej λ i kąta padania Θ. Parametr k określa numer pokolenia supersieci. Grubość pojedynczej warstwy wynosiła 200 nm. Współczynnik załamania materiału A wynosił 1,544, materiału B był równy –3,4, a dla warstw wejściowej i wyjściowej wynoszą odpowiednio nin = nout = 1

Page 3: Transmission in aperiodic Severin superlattices text.pdf · Transmission in aperiodic Severin superlattices INTRODUCTION Multilayers are materials with very interesting physical properties

Nr 2/2014 ____________________ I N Ż Y N I E R I A M A T E R I A Ł O W A _________________________ 213

Fig. 3. Charts for transmission T for the Severin's superlattice, depending on the incident wavelength λ and the angle of incidence Θ. The parameter k specifies the number of superlattice generations. The thickness of a single layer was 100 nm. The refractive index of the material A was 1.544, material B was equal to 3.4, and for the input and output layers were respectively nin = nout = 1 Rys. 3. Wykresy transmisji T dla supersieci Severina w zależności od długości fali padającej λ i kąta padania Θ. Parametr k określa numer pokolenia supersieci. Grubość pojedynczej warstwy wynosiła 100 nm. Współczynnik załamania materiału A wynosił 1,544, materiału B był równy 3,4, a dla warstw wejściowej i wyjściowej wynoszą odpowiednio nin = nout = 1

Fig. 4. Charts for transmission T for the Severin's superlattice, depending on the incident wavelength λ and the angle of incidence Θ. The parameter k specifies the number of superlattice generations. The thickness of a single layer was 200 nm. The refractive index of the material A was 1.544, material B was equal to 3.4, and for the input and output layers were respectively nin = nout = 2 Rys. 4. Wykresy transmisji T dla supersieci Severina w zależności od długości fali padającej λ i kąta padania Θ. Parametr k określa numer pokolenia supersieci. Grubość pojedynczej warstwy wynosiła 100 nm. Współczynnik załamania materiału A wynosił 1,544, materiału B był równy 3,4, a dla warstw wejściowej i wyjściowej wynoszą odpowiednio nin = nout = 2

Fig. 5. Charts for transmission T for the Severin's superlattice, depending on the incident wavelength λ and the angle of incidence Θ. The parameter k specifies the number of superlattice generations. The thickness of a single layer was 100 nm. The refractive index of the material A was 1.544, material B was equal to 3.4, and for the input and output layers were respectively nin = nout = 3 Rys. 5. Wykresy transmisji T dla supersieci Severina w zależności od długości fali padającej λ i kąta padania Θ. Parametr k określa numer pokolenia supersieci. Grubość pojedynczej warstwy wynosiła 100 nm. Współczynnik załamania materiału A wynosił 1,544, materiału B był równy 3,4, a dla warstw wejściowej i wyjściowej wynoszą odpowiednio nin = nout = 3

Page 4: Transmission in aperiodic Severin superlattices text.pdf · Transmission in aperiodic Severin superlattices INTRODUCTION Multilayers are materials with very interesting physical properties

214 _________________________ I N Ż Y N I E R I A M A T E R I A Ł O W A ___________________ ROK XXXV

Fig. 6. Charts for transmission T for the Severin's superlattice, depending on the incident wavelength λ and the angle of incidence Θ. The parameter k specifies the number of superlattice generations. The thickness of a single layer was 100 nm. The refractive index of the material A was 1.544, material B was equal to 3.4, and for the input and output layers were respectively nin = nout = 4 Rys. 6. Wykresy transmisji T dla supersieci Severina w zależności od długości fali padającej λ i kąta padania Θ. Parametr k określa numer pokolenia supersieci. Grubość pojedynczej warstwy wynosiła 100 nm. Współczynnik załamania materiału A wynosił 1,544, materiału B był równy 3,4, a dla warstw wejściowej i wyjściowej wynoszą odpowiednio nin = nout = 4

Charts from Figure 2 show the transmission for the parameters of Figure 1 with the revised value of the refractive index for the B layer. In Figure 3 you can see how the thickness of a single layer affects the transmission system from Figure 1, which is

B A 100 nmd d . Figures 4 to 6 show the effect of the external medium for the

propagation of electromagnetic wave. Refractive indexes of medium for Figures 4÷6 were respectively in out 2,n n in out 3n n and

in out 4n n

CONCLUSIONS

On the basis of the studies it can be concluded that the structure of transmission depends strongly on the polarization of the incident wave. The transmission has a band structure where for the consecutive numbers generations k there is an increase of the number of bands and reduction of their width at half maximum.

A change of material B for left-handed material material, changes the shape of the transmission bands (Fig. 1 and 2).

Decrease in the thickness of the single layer from B A 200 nmd d to B A 100 nmd d reduces the number of

bands and their movement (Fig. 1 and 3). Figures 4÷6 show the large impact of the change in refractive index of the environment on the map of transmission of Severin's superlattice. A shift of transmission bands towards lower angles appears. There should also be noted the phenomenon of tunneling of electromagnetic waves, noticeable in Figures 4÷6.

REFERENCES

[1] Steurer W., Suter-Widmer D.: Photonic and phononic quasicrystals. J. Phys. D, Appl. Phys. 40 (2007) R229.

[2] Lugo J. E. et al: Multiband negative refraction in one-dimensional photonic crystals. Optics Express, 17 (2009) 3042.

[3] Zhang H., Chen X., Li Y., Fu Y., Yuan N.: The Bragg gap vanishing phenomena in one-dimensional photonic crystals Optics Express, 17 (2009) 7800.

[4] de Dios-Leyva M., Drake-Perez J. C.: Zero-width band gap associated with the n=0 condition in photonic crystals containing left-handed materials. Phys. Rev. E 79 (2009) 036608.

[5] Srivastava R., Thapa K. B., Pati S., Ojha S. P.: Negative refraction in 1D photonic crystals. Sol. State Comm. 147 (2008) 157.

[6] Fang Y.-T, Zhou J., Pun E. Y. B.: High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials Appl. Phys. B (2007) 86 587.

[7] Ramakrishna S. A., Grzegorczyk T. M.: Physics and Applications of Negative Refractive Index Materials Physics and Applications of Negative Refractive Index Materials, SPIE Press and CRC Press 2009.

[8] Hu X., Liu Z., Gong Q.: A multichannel filter in a photonic crystal heterostructure containing single-negative materials J. Opt. A: Pure Appl. Opt. 9 (2007) 877.

[9] de Medeiros F. F., Albuquerque E. L., Vasconcelos M. S.: Transmission spectra in photonic band-gap Fibonacci nanostructures. Surface Science 601 (2007) 4492.

[10] Fang Y., He S.: Transparent structure consisting of metamaterial layers and matching layers. Phys. Rev. A 78 (2008) 023813.

[11] Macia E.: The role of aperiodic order in science and technology. Rep. Prog. Phys. 69 (2006) 397.

[12] Bruno-Alfonso A., Reyes-Gomez E., Cavalcanti S. B., Oliveira L. E.: Band edge states of the <n>=0 gap of Fibonacci photonic lattices. Phys. Rev. A, 78 (2008) 035801.

[13] Eds. Krowne C. M., Zhang Y.: Physics of negative refraction and negative index materials. Springer 2007.

[14] Da H. X., Xu C., Li Z. Y.: Omnidirectional reflection from one-dimensional quasi-periodic photonic crystal containing left-handed material. Phys. Lett. A 345 (2005) 459.

[15] Li J., Zhao D., Liu Z.: Zero-n image photonic band gap in a quasiperiodic stacking of positive and negative refractive index materials. Phys. Lett. A 332 (2004) 461.

[16] Kohomoto M., Sutherland B., Iguchi K.: Localization of optics: Quasiperiodic media. Phys. Rev. Lett. 58 (1987) 2436.

[17] Klauzer-Kruszyna A., Salejda W., Tyc M. H.: Polarized Light Transmission through Generalized Fibonacci Multilayers. I. Dynamical maps approach. Optik 115 (2004) 257.

[18] Klauzer-Kruszyna A., Salejda W., Tyc M. H.: Polarized Light Transmission through Generalized Fibonacci Multilayers. II. Numerical Results. Optik 115 (2004) 267÷276.

[19] Klauzer-Kruszyna A.: Propagacja światła spolaryzowanego w wybranych supersieciach aperiodycznych. Praca doktorska, Wrocław (2005).

[20] Garus S., Duś-Sitek M., Zyzik E.: Wpływ domieszki żelaza na własności transmisyjne supersieci FexNi(1-x)/Cu. Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej. XII Międzynarodowa Konferencja Naukowa. Cz. 2., Częstochowa (2011)

[21] Garus S., Garus J., Gruszka K.: Emulacja propagacji fali elektromagnetycznej w supersieciach przy użyciu algorytmu FDTD = Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering. A Collective Monograph Edited by Henryk Dyja, Anna Kawałek. Chapter 2., Wydawnictwo WIPMiFS Politechniki Częstochowskiej (2012) 768÷771

[22] Yeh P.: Optical waves in layered media. John Wiley & Sons, New York (1988).

[23] Severin M., Dulea M., Riklund R.: Periodic and quasiperiodic wavefunctions in a class of one dimensional quasicrystals: an analytical treatment. J. Phys.: Condens. Matter 1 (1989) 8851.