meat substitutes - prepared foods

10
the ultimate Meat Substitutes guide

Upload: others

Post on 22-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Meat Substitutes - Prepared Foods

the ultimate

Meat Substitutesguide

Page 2: Meat Substitutes - Prepared Foods

Summary

INTRODUCTION • An environmental challenge • Proven trends in Flexitarism

MEAT SUBSTITUTES • New generation of Meat substitutes • Raw materials for meat subistitutes production

PROTEIN FIBRATION •Proteinfibrationbytwin-screwextrusion •Akeypoint:thetexture

CONCLUSION

1

Page 3: Meat Substitutes - Prepared Foods

IntroductionAn Environmental Challenge

With the world’s population increase and relative rise of the living standards in developing coun-tries, global meat consumption continues to grow (consumption has more than doubled in the last50years).Tosatisfythisexpandingdemand,industriallivestockproductionhasmultiplied,leadingtodiscussionsabouttheenvironmental,ethicalandhealthconsequencesofsuchlarge-scaleconsumption.

The environmental impact of this production escalation is indisputable: emissions of green-housegases(methaneandnitrogenmonoxide),waterpollution,deforestation....Fromahealthstandpoint, excessive consumption of meat can lead to problems such as cardiovascular di-seaseandcolorectalcancer(forredmeat),amongothers.Therearealsoethicalquestionsoflivestockwelfareandtheuseofedibleplantresourcesforanimalfeed:44%oftheworldwidecereal-cultivatedlandand33%ofthetotalworldwidecultivatedlandisusedtofeedlifestock.Intotal,70%ofarablelandsworldwidearedirectlyorindirectlydedicatedtothebreeding/farmingof animals to feed humans.

One of the major challenges of the 21st century will be feeding the growing global population,

taking into account societal constraints such as environmen-

tal protection and animal welfare.

Proven Trends in flexitarism

Thishasledtoanewtrendofconsumptionknownasflexitarism.Awareofthesocietalandenvironmentalef-fectsofananimal-baseddiet,flexitariansarewillingtoreducetheirmeatconsumptionbyintroducingnon-ani-malproteinsourcesintotheirdiets.Flexitarienconsu-mersaredefinedasregularmeat-eaters,environmen-talconsciousandlookingforhealthyalternativestothetraditionalmeatproducts.

Mankind being omnivorous, we can anticipate that the global population will still, on average, include meat in itsdiet.However,someofthisconsumptionofmeatpro-ductscouldbereplacedbyanothertypeofhighproteinfood:meatsubstitutes.

2

Page 4: Meat Substitutes - Prepared Foods

Meat substitutes are plant-based products thathave the protein content, appearance and taste of realmeat,meat-like textures,andhighlybenefi-cial compositions containing essential amino acids withlowornocholesterol.Theirproductiondoesnotcauselarge-scaleethicalorenvironmentalim-pacts.

Vegetablemeats(ormeatanalogues)havebeenproduced for decades but found limited commer-cialsuccess.Yetanewgenerationofmeatrepla-cements developed with improved ingredient and processtechnologyisincreasinglyindemandto-daybyEuropeanandAmericanconsumers.

The new generation ofmeat substitute ormeatanaloguematchspecificallythecharacteristicsofmeattexture.Itnowisalsopossibletomodulatecolour,usingnaturalcolourings,andflavour,witharomasorspices.

Meat subsTitutesNew Generation of Meat Substitutes

Raw Materials for MeatSubstitutes Production

Meat substitutes are made of fibratedproteins. Fibrated proteins are vegetableproteinsthatarecholesterol-free,lowinfat,highinproteinandfibercontent,andrichinnutrients.Theproteinsaredirectlyextractedfromplantssuchassoya,cereals,orpulses(peasandbeans)orotherplants.Theycanalsointegratefishormeat-basedrawmate-rials,forhumanoranimalconsumption.

Plant proteins are widely available and al-low preparations of various compositions including vegetarian and vegan products.Among the main sources of plant proteins wecancite:wheatgluten,soyabean,pea,lentil, fababean, chickpea, common bean, andlupine.

Protein sources can be used in differentforms: Isolate, concentrate, defatted flour,and even full fat flour, providing adequateequipmentconfiguration.Theycanbemixedwithadditionalingredientstobringdifferentfunctionalities,textureandmouthfeel.

Soja

Lupine

Chickpeas

3

Page 5: Meat Substitutes - Prepared Foods

This New Generation of Meat Substitute is produced thanks

to Twin ScrewExtrusion Process

Protein Fibration by Twin Screw Extrusion

Extrusion-cooking has been described as a newmethod of continuous cooking of starchy andproteinaceousfoodstuffs.AsaHighTemperatureShortTime(HTST)processit favors mechanical action for the conversion of starchesandproteins.Largelyusedwithlowmoisture content (< 30% wwb), cooking-plasti-cizing of starchy and proteinaceousmaterials isintendedtogivetheresultingproductsaspecifictexture,typicallyexpanded,shapedortexturized,forasensoryorfunctionalpurpose(physicalend-useproperties).

Protein f ibration

Intheearly1980s,anewextrusion-cookingprocess was developed consisting of plastici-zing food mixes at high moisture content ran-gingfrom50%to80%.

Thisprocesswasfirstappliedtoemulsifyandprepare gel cheese analogues or to prepare fat substitutes and was later extended to tex-turizeproteinsintomeatanalogues.

Thework studiesmade by two researchersA.Noguchi,working fromtheNationalFoodResearchLaboratoryinTsukuba(Japan),andJ.C.Cheftel,intheLaboratoryofBiochemistryand Food Technology at The University ofMontpellier(France),particularlycontributedto create the new innovative process of HighMoistureExtrusionCooking,alsocalledProteinFibrationTechnology.These food scientists successfully createdmeat-liketexturesfromsoyingredientsusingtwinscrewextrusion(Nogushi,1989).

Later, the process was successfully scaled-upandindustrializedbyCLEXTRAL,whowasgranted a patent for the process in France in 2001.

4

Page 6: Meat Substitutes - Prepared Foods

Theprocessofproteinfibrationcombines twomainunitoperations(Bouvier,2006):

Thermomechanical cookingand product fibration.

Thermo-mechanical cooking of protein inproteinfibrationprocessdoesoccur inacom-plex screw-barrel assembly of the twin screwextruder,which includesspecificscrewprofilewithhighL/Dratio(Length/Diameter),andhighmoisturecontent(generallybetween50and70%wwb).Temperaturesintherangeof130–160°Candrelatively long residence time are required toobtainfiberformation.Proteinfibrationprocessincludesaseconddevice,alongcoolingdie.

In the case of fibration technology, this longcoolingdie,playsakeyroleinthemechanismofproteinfibration:

WATER

Et

MOTOR

Ev

RAW MATERIALSFormulation w/ 50 to70% protein content

THERMOMECHANICAL COOKING

Conveying ; Compression ; Plasticizing

DIE FIBRATIONLaminar flow ; Gelling ;

Fiber formation

What happens in the twin screw extruder and die ?

NATIVE STATE UNFOLDED STATE

Extrusion-cooking(shear, heat)

CROSSLINKED STATE

Die texturization

Figure 1 : Mechanism of fiber formation in Protein Fibration Technology

5

Page 7: Meat Substitutes - Prepared Foods

Residence time of the product inside the fibra-tion die, design of the cooling channels of the die, cross-sectionareaandopeningdimensions,arealsocriticalparameters thatwillgreatly impactthequalityofthefibration.

Figure 2 : low-induced die fibration of protein melt

DIE FIBRATIONLaminar ; Gelling ;

Fiber Formation

A key point: the texture

The protein fibration technology producesuniqueintermediateproducts,withfibratedinternalstructuresimilartomeatmuscles.The strength of fibration can be adjustedbymanipulatingoperatingconditions(particu-larlymechanicalandthermalenergies,andmoisturecontent), ingredientsandformulationaswellasequipmentconfigurationsuchasthetwinscrewextruderandtheshortorlongdies.

As an illustration, profile A and profile B in figure 3, shows 2 types of fibration profiles. Profile A showsaroughsurface,withrelativelyshort and thick, cross- section orientedfibers.While Profile B shows a smoother surface, with longandthinlaminar-floworientedfibers.

Eachoftheseproductswillbededicatedtospe-cific food applications. For instance, profile Amight be used as an analog of chicken strips, whileprofileBmightbeusedasananalogofpulled-pork.

PROFIL A

PROFIL B

Figure 3 : Fiber formation profile of wet-protein products

6

Page 8: Meat Substitutes - Prepared Foods

Textureprofileofmeat-likeproductcanbefurtheranalyzedusinginstrumentaltextureanalysisusedintraditionalmeatproducts.Thecombinationofcomplementarymeasurementssuchastensileorshearstrengthstomeasurefirmness,elasticity,and/orchewinessallowsdescribingtheentirescopeoftextureofthefibratedproteinbyextrusion.

Figure 4 : Comparison of Shear strength using Texture analyzer TMS-PRO across fibrated proteins obtain by extrusion (=Analogue) and meat pieces (=Reference). SFIDC Studies, 2013

20

26

46

42

16

28

12

20

25

43

40

15

26

12

0 5 10 15 20 25 30 35 40 45 50

Pork Dry heat

Pork Pan fry

Beef Moist heat

Beef Dry heat

Chicken Pan Fry

Chicken Moist heat

Chicken Dry heat

TEXTURE (N) - ANALOGUE TEXTURE (N) - REFERENCE

Twin-screw extruders transform plant or animal protein mixtures into a variety of fibrous protein

foods used to createmarket-ready meals.

7

Page 9: Meat Substitutes - Prepared Foods

CONCLUSIONTwin screw extruders offerauniqueinnovativeand polyvalent method to transformproteinaceousrichmaterials(plantoranimalbased)into healthy and well-balanced fibratedproteinproductswithmeat-liketextureprofiles,such as the ones of chicken breast, moist-cookedroastbeef,flakytunaorporkchops.

The product expertise and process know-howare key points to reach the best meatanalo-guesusingdifferentproteinsources. Thesenewgenerations of meat analogues show higherconversion efficiency and better envi-ronmental impact compared to traditional meat products.They offer the opportunity to address anewconsumertrendcalled“flexitarism”.

ProteinFibrationTechnologyappearstobeonepossible key sustainable solution to feed theexpected 2 billion worldwide consumers in2050.

authorsAnne-SophieLECHEVINShannonHOOD-NIEFIERLucieTOBO

Clextral,aleaderintwin-screwextrusiontechnology,assistscustomersintheformulationandproductionofmeatanalogueswithfibratedstructureusingitsproprietaryHighMoistureExtru-sionCooking(HMEC)process.Consideringthatmeat-liketextureisanessentialcharacteristicofmeatreplacements,Clextralcarriedoutaqualitativestudyofthetextureofmeatanaloguesproducedbythecompany’sHighMoistureExtrusionCooking(HMEC)process.

AsapioneerintheHMECprocesswithover30yearsofproductionexpertise,(patentNrFR2827123B1)Clextraldeliverstheequipmentandprocessknowledgetothefoodindustryforproducingnovelfibratedproteinsformeatreplacementfoodstohelpfeedtheworldwhileres-pectingethicalandenvironmentalconsiderations.

Contact:[email protected]/www.clextral.com

8

Page 10: Meat Substitutes - Prepared Foods

REFERENCESADEQUATIONS.(2008).Laviande,problèmeécologique-Uneproductioncoûteuseenénergie.Consultéàl’adressehttp://www.adequations.org/spip.php?article287

ALVAREZ,V.B.,SMITH,D.M.,MORGAN,R.G.&BOOREN,R.M.(1990).Restructuringofmechani-callydebonedchickenandnonmeatbindersinatwin-screwextruder.JournalofFoodScience,942-946.

BOUVIER,J.M.Extrusion:anexampleofinnovationandtechnologytransfer.IntheProceedingsoftheInternationalScientificCongress,Clextral,France,18-19October,241-255,2006

BOUVIER JM,CAMPANELLAO.ExtrusionProcessingTechnology.FoodandNon-FoodBiomate-rials.WILEYBlackwell.305-307.2014

Carlhian,B. (2013).Deschercheursdoutentde lapertinencede laproductiondeviande invitro.ViandesetProduitsCarnés.Consultéàl’adressehttp://www.viandesetproduitscarnes.fr/phocadownload/vpc_vol_30/3015_carlhian_viande_artificielle.pdf

CHEFTEL,J.C.,KITAGAWA,M.&QUEGUINER,C.(1992).Newproteintexturizationprocessesbyextrusioncookingathighmoisturelevels.FoodReviewsInternational,235-275.

FAO.(2006).Lifestock’slongshadow:environmentalissuesandoptions.Consultéàl’adressehttp://www.fao.org/docrep/010/a0701e/a0701e00.htm

GARRIC, A., BOYER, M., BELLANGER, E., & EL MOKHTARI, M. (2015). 4 minutes pour com-prendre le vrai poids de la viande sur l’environnement. LeMonde.fr. Consulté à l’adressehttp://www.lemonde.fr/planete/video/2015/03/20/le-vrai-poids-de-la-viande-sur-l-environne-ment_4597689_3244.html

HOOD-NEIFER, S. (2013) Saskatchewan food industry development center, Canada. Internaldocument.TheEffectofFormulationandExtrusionParametersontheTextureofFibratedPlantProteinsproducedusingHigh-MoistureExtrusionTechnology.2013

HOOD-NEIFER,S.,LECORRE-LECHEVIN,A-S.,(2013).EffectoftheExtrusion-CookingProcessParametersontheMicrobiologicalProfileofHMECIntermediateProducts.2014.

LINKOC,HARPERP-JMChemists.343-370.1989(ed).SaintPaulMinnesota:AmericanAssocia-tionofCereal

NOGUSHI,A,Extrusion-cookingofhigh-moistureproteinfoods.ExtrusionCooking.Mercier

PARMENTIER,B.(2009).Lesgrandsproblèmesdel’agriculturemondialeauXXIesiècle.Nourrirl’humanité,ÉditionsLaDécouverte,Paris,2007-2009

SMITH,A.C.Studiesonthephysicalstructureofstarch-basedmaterialsintheextrusioncookingprocess.In:FoodExtrusionScienceandTechnology,ed.byKokini, J.L.,Ho,C.T.,Karwe,M.V.,NewYork,MarcelDekkerInc.,36,573-618,1992.

SWEERMAN,S.(2014).DownoftheMeatlessera.Food&BeverageAsia,18-20.

ZORPETTE,G.(2013,juin3).TheBetterMeatSubstitute.Consultéàl’adressehttp://spectrum.ieee.org/energy/environment/the-better-meat-substitute

9