m i t o s i s

57
The process of cell replication

Upload: raymond-dyer

Post on 30-Dec-2015

36 views

Category:

Documents


1 download

DESCRIPTION

t h e M - p h a s e. M I T O S I S. The process of cell replication. Genes and Proteins. Proteins do the work of the cell: growth, maintenance, response to the environment, reproduction, etc. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: M I T O S I S

The process of cell replication

Page 2: M I T O S I S

Genes and Proteins Proteins do the work of the cell:

growth, maintenance, response to the environment, reproduction, etc.

Proteins are chains of amino acids. The sequence of amino acids in each protein is coded in the DNA as a specific sequence of A, C, G and T bases: a gene.

Each gene codes for a different protein.

Page 3: M I T O S I S

Genes and Proteins Key points:

All cells within an organism have the same genes.

What makes cells different from each other is that different genes are turned on and turned off in different cells.

The DNA must be copied and then divided exactly so that each cell gets an identical copy.

Page 4: M I T O S I S

MITOSIS VS. MEIOSIS Mitosis is normal cell division, which

goes on throughout life in all parts of the body. Meiosis is the special cell division that creates the sperm and eggs, the gametes. We will discuss meiosis separately.

Mitosis and meiosis occur in eukaryotes. Prokaryotes use a different method—”binary fission” to divide.

Page 5: M I T O S I S

NUMBERS OF CHROMOSOMES

Humans have 46 chromosomes 23 from each parentEvery cell has the same 46

chromosomesEach species has a characteristic

number of chromosomes: ○ corn has 20, ○ house flies have 10, ○ chimpanzees have 48.

Page 6: M I T O S I S

SOME VOCABULARY Chromosomes exist in 2 different

states: Chromatin: Between cell divisions,

DNA/protein complex is loosely coiled (easier for protein synthesis)

Chromatid: Right after DNA replication, the chromosomes are tightly coiled together (it is easier to “arrange” chromosomes this way) There are 2 copies of the

chromosome Centromere: The two copies of the

chromatid after replication are held together by the centromere.

Page 7: M I T O S I S

CELL CYCLE Some cells divide constantly: cells in the

embryo, skin cells, gut lining cells, etc. Other cells divide rarely or never: only to replace themselves.

Actively dividing cells go through a cycle of events that results in mitosis. Most of the cycle was called “interphase” by the microscopists who first studied cell division. During interphase the cell increases in size, but the chromosomes are invisible.

The 3 stages of interphase are called G1, S, and G2.

Page 8: M I T O S I S

INTERPHASE

Interphase is the normal part of cellular function. It includes the following (about 90% of cell life):G1 phaseS phaseG2 phase

Page 9: M I T O S I S

prop

hase

met

aph

ase

anap

has

ete

loph

ase

cytokinesis

G2(Gap 2)

S-Phase(DNA Self-Replication)

M

1

2

G1(Gap 1)

G0THECELLCYCLE

http://www.biology.arizona.edu/cell_bio/tutorials/cell_cycle/cells2.html

M I T O S I S

Page 10: M I T O S I S

G1 (GAP 1) PHASE G1 (“Gap”) is the period between

mitosis and S, when each chromosome has 1 chromatin (not chromatid). Cells spend most of their time in G1: it is the time when the cell grows and performs its normal function. Control of cell division occurs in G1: a cell that isn’t destined to divide stays in G1, while a cell that is to divide enters the S phase.

Page 11: M I T O S I S

S PHASE

The S phase (“Synthesis”) is the time when the DNA is replicated, when the chromosome goes from having one chromatin to having 2 chromatids held together at the centromere.

Page 12: M I T O S I S

G2 (GAP 2) PHASE

G2 is the period between S and mitosis. The chromosome have 2 chromatids, and the cell is getting ready to divide.

Page 13: M I T O S I S

HOW TO IDENTIFY INTERPHASE

Page 14: M I T O S I S

Interphase

nuclear envelope

clearly visible

chromatin,NOchromosomes,yet

http://www.fed.cuhk.edu.hk/~johnson/photomicrographs/mitosis/animal/animal_interphase.htm

nucleolus (if any) still visible

Page 15: M I T O S I S

INTERPHASE

http://iccbweb.med.harvard.edu/mitchisonlab/Pages/mt.html

Page 16: M I T O S I S

interphaseinterphase

Page 17: M I T O S I S

INTERPHASE

Allium root tip

Coregonus blastula

Page 18: M I T O S I S

INTERPHASE is thenormal lifetime of acell, after being“born” by division,and before it dividesitself.

MITOSISINTERPHASE is nota stage of mitosis !

Biological Science, a Molecular Approach. BSCS Blue Version. Heath and Company, 1996.

Page 19: M I T O S I S

What is MITOSIS ?

THE PROCESS BY WHICH TWO NEW NUCLEII ARE FORMED, WITH EXACTLY

THE SAME KIND AND NUMBER OF CHROMOSOMES AS THE PARENT CELL.

(1 CELL TO 2 CELLS)

http://fairmanstudios.com/als.htm

Page 20: M I T O S I S

STEPS IN MITOSIS (In AP, the phases are not

emphasized) PROPHASE METAPHASE ANAPHASE TELOPHASE

Page 21: M I T O S I S

PROPHASE In prophase, the cell begins the process of

division. The chromosomes condense. The

proteins attached to the DNA cause the chromosomes to go from long thin structures to short fat one, which makes them easier to pull apart (VISIBLE).

The nuclear envelope disappears. The double membrane that surround the nucleus dissolves into a collection of small vesicles, freeing the chromosomes to use the whole cell for division

Centrosomes form and move to opposite poles. During interphase, the pair of centrosomes were together just outside the nucleus. In prophase they separate and move to opposite ends of the cell.

The spindle starts to form, growing out of the centrosomes towards the chromosomes.

Page 22: M I T O S I S

PROMETAPHASE

Nuclear membrane fragments Spindle interaction with chromosomes Kinetochore develops at the

centromere (this is where the spindle microtubules are going to bind)

Page 23: M I T O S I S

HOW TO IDENTIFY PROPHASE

Page 24: M I T O S I S

PROPHASE

•Nuclear membrane dissolves.•Nucleolus disappears.•Chromosomes form.•Centrioles migrate & form spindle.

http://www.blc.arizona.edu/courses/181gh/Lectures_WJG.01/mitosis_F.01/mitosis.html

Page 25: M I T O S I S

PROPHASE

chromosomesbecome visible

nuclear envelopedisappears

nucleolusdisappears

http://www.ac-dijon.fr/pedago/svt/documents/mitose/prophase.gif

Page 26: M I T O S I S

PROPHASE

http://www.itg.uiuc.edu/technology/atlas/structures/mitosis/prophase.htm

Page 27: M I T O S I S

PROPHASE

Coregonus blastulaAllium root tip

Page 28: M I T O S I S

METAPHASE Metaphase is a short

resting period where the chromosomes are lined up on the equator of the cell, with the centrosomes at opposite ends and the spindle fibers attached to the kinetochore. Everything is aligned for the rest of the division process to occur.

Page 29: M I T O S I S

HOW TO IDENTIFY METAPHASE

Page 30: M I T O S I S

METAPHASE

http://www.chembio.uoguelph.ca/educmat/chm736/cycletx.htm

•chromatids line up on the equator.

chromatids

spindle

centriole

Page 31: M I T O S I S

METAPHASE

http://genenlab.spoono.com/gnu/mandm.shtml

TWO IDENTICAL COPIES OF ONE CHROMOSOME.

THISCHROMATIDWILL SOONMOVE TO

NORTH POLE

THISCHROMATIDWILL SOONMOVE TO

SOUTH POLE

Page 32: M I T O S I S

Nature (408. 423, 2000).

chromatids spindle

centriole

http://www.blc.arizona.edu/courses/181gh/Lectures_WJG.01/mitosis_F.01/mitosis.html

Page 33: M I T O S I S

METAPHASE

http://iccbweb.med.harvard.edu/mitchisonlab/Pages/mt.html

Page 34: M I T O S I S

METAPHASE

Coregonus blastulaAllium root tip

Page 35: M I T O S I S

ANAPHASE In anaphase, the

centromeres divide. At this point, each individual chromosome goes from: 1 chromosome with 2

chromatids to: 2 chromosomes with

one chromatid each. Then the spindle fibers

contract, and the chromosomes are pulled to opposite poles, towards the centrosomes.

Page 36: M I T O S I S

HOW TO IDENTIFY ANAPHASE

Page 37: M I T O S I S

http://www.blc.arizona.edu/courses/181gh/Lectures_WJG.01/mitosis_F.01/mitosis.html

ANAPHASE

•chromatids migrate to each pole.

Page 38: M I T O S I S

ANAPHASE

http://www.univ-orleans.fr/SCIENCES/BIOCHIMIE/MMC/accueil.htm

Page 39: M I T O S I S

Conly Rieder http://www.wadsworth.org/BMS/SCBlinks/WEB_MIT2/HOME.HTM

ANAPHASE

early late

Page 40: M I T O S I S

ANAPHASE

Coregonus blastulaAllium root tip

Page 41: M I T O S I S

TELOPHASE In telophase the cell actually

divides. The chromosomes are at the

poles of the spindle. The spindle disintegrates The nuclear envelope re-forms

around the two sets of chromosomes (become less coiled).

The cytoplasm is divided into 2 separate cells, the process of cytokinesis.

Page 42: M I T O S I S

CYTOKINESIS The organelles (other than the

chromosomes) get divided up into the 2 daughter cells passively: they go with whichever cell they find themselves in.

Plant and animal cells divide the cytoplasm in different ways.

In plant cells, a new cell wall (CELL PLATE)made of cellulose forms between the 2 new nuclei, about where the chromosomes lined up in metaphase. Cell membranes form along the surfaces of this wall. When the new wall joins with the existing side wall, the 2 cells have become separate.

In animal cells, a ring of actin fibers (microfilaments are composed of actin) forms around the cell equator and contacts, pinching the cell in half. (CLEAVAGE FURROW)

Page 43: M I T O S I S

CELL CYCLE CONTROL

These will control whether a cell divides or notGrowth Factor: a protein that is released that

induces a cell to divide (cell communication)Density-Dependent Inhibition: if an area is too

crowded with cells, cell division is inhibited. If the area lacks cells, division is allowed to occur

Anchorage Dependence: must be attached to a substrate

Page 44: M I T O S I S

HOW TO IDENTIFY TELOPHASE

Page 45: M I T O S I S

http

://w

ww

.bm

b.ps

u.ed

u/co

urse

s/bi

sci2

/mito

sis/

mito

sis.

htm

•Chromosomes dissolve.

•Nuclear membrane forms.•New nucleoli form.

•Mitotic spindle dissolves.

TELOPHASE

Page 46: M I T O S I S

TELOPHASE

ONEDAUGHTERNUCLEUSFORMS AT

NORTH POLE

ONEDAUGHTERNUCLEUSFORMS AT

SOUTH POLESPINDLEAPPARATUSDISSOLVES

Page 47: M I T O S I S

TELOPHASE

early late

New nuclei form at the poles. Cytokinesis

begins.

http://www.blc.arizona.edu/courses/181gh/Lectures_WJG.01/mitosis_F.01/mitosis.html

Page 48: M I T O S I S

TELOPHASE

Page 49: M I T O S I S

TELOPHASE

Coregonus blastulaAllium root tip

Page 50: M I T O S I S

Summary of Mitosis Prophase:

○ Chromosomes condense○ Nuclear envelope disappears○ centrosomes move to opposite sides of the cell○ Spindle forms and attaches to centromeres on the chromosomes

Metaphase○ Chromosomes lined up on equator of spindle○ centrosomes at opposite ends of cell

Anaphase○ Centromeres divide: each 2-chromatid chromosome becomes two 1-chromatid

chromosomes○ Chromosomes pulled to opposite poles by the spindle

Telophase○ Chromosomes de-condense○ Nuclear envelope reappears○ Cytokinesis: the cytoplasm is divided into 2 cells

Page 51: M I T O S I S

CYTOKINESIS

1 2

MITOSIS isaboutorganizing anddistributing

CHROMOSOMES

http://www.dartmouth.edu/artsci/bio/cbbc/courses/bio4/bio4-lectures/theCell.html

Page 52: M I T O S I S

Cancer Cancer is a disease of uncontrolled cell division. It starts with a

single cell that loses its control mechanisms due to a genetic mutation. That cell starts dividing without limit, and eventually kills the host.

Normal cells are controlled by several factors. Normal cells stay in the G1 stage of the cell cycle until they

are given a specific signal to enter the S phase, in which the DNA replicates and the cell prepares for division. Cancer cells enter the S phase without waiting for a signal.

Normal cells are mortal. This means that they can divide about 50 times and then they lose the ability to divide, and eventually die. This “clock” gets re-set during the formation of the daughter cells. Cancer cells escape this process of mortality: they are immortal and can divide endlessly.

Normal cells that suffer significant chromosome damage destroy themselves due to the action of a gene called “p53”. Cancer cells either lose the p53 gene or ignore its message and fail to kill themselves.

Page 53: M I T O S I S

Cancer Progression There are many different forms of cancer, affecting different cell

types and working in different ways. All start out with mutations in specific genes called “oncogenes”. The normal, unmutated versions of the oncogenes provide the control mechanisms for the cell. The mutations are caused by radiation, certain chemicals (carcinogens), and various random events during DNA replication.

Once a single cell starts growing uncontrollably, it forms a tumor, a small mass of cells. No further progress can occur unless the cancerous mass gets its own blood supply. “Angiogenesis” is the process of developing a system of small arteries and veins to supply the tumor. Most tumors don’t reach this stage.

A tumor with a blood supply will grow into a large mass. Eventually some of the cancer cells will break loose and move through the blood supply to other parts of the body, where they start to multiply. This process is called metastasis. It occurs because the tumor cells lose the proteins on their surface that hold them to other cells.

Page 54: M I T O S I S

How is cancer harmful? What are the ways in which cancer is harmful? Some examples:

Lung cancer can damage the surrounding tissue and prevent the normal functioning of the lung until it collapses or fails

Stomach cancer can prevent the uptake of nutrients and cause loss of food uptake

Bone cancer can prevent the creation of blood cellsSome cancers create “chemcials” that can disrupt

the delicate balance of the bodySome cancers can lead to infections

Page 55: M I T O S I S

Cancer Treatment Two basic treatments: surgery to remove the tumor, and

radiation or chemicals to kill actively dividing cells. It is hard to remove all the tumor cells. Tumors often lack

sharp boundaries for easy removal, and metastatic tumors can be very small and anywhere in the body.

Radiation and chemotherapy are aimed at killing actively dividing cells, but killing all dividing cells is lethal: you must make new blood cells, skin cells, etc. So treatment must be carefully balanced to avoid killing the patient.

Chemotherapy also has the problem of natural selection within the tumor. If any of the tumor cells are resistant to the chemical, they will survive and multiply. The cancer seems to have disappeared, but it comes back a few years later in a form that is resistant to chemotherapy. Using multiple drugs can decrease the risk of relapse: it’s hard for a cell to develop resistance to several drugs at the same time.

Page 56: M I T O S I S

WHAT DO YOU THINK?

What do you think would be the OVERLYING purpose of cancer research?

What do you think are the major strategies to “cure” cancer?

Page 57: M I T O S I S

DEXOSOMES

1. Create dendritic cells

2. Induce the production of dexosomes (activates immune system)

3. Load the dexosomes with a peptide (protein that is found on a marker for cancer cells . . . acts as an antigen)

4. The peptide loaded dexosomes activate your immune system to attack and destroy cancer cells.