lutocline formation by waves

15
Lutocline formation by waves Susana B. Vinzon Universidade Federal do Rio de Janeiro

Upload: phyllis-mcneil

Post on 03-Jan-2016

13 views

Category:

Documents


0 download

DESCRIPTION

Lutocline formation by waves. Susana B. Vinzon Universidade Federal do Rio de Janeiro. Lutoclines :Steps in suspended sediment concentration. Lutocline generation: source of sediments?. Ressuspension from the bottom by tidal currents and/or waves Deposition from suspension. flood-ebb. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Lutocline formation by waves

Susana B. Vinzon

Universidade Federal do Rio de Janeiro

Page 2: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Lutocline generation: source of sediments?-Ressuspension from the bottom by tidal currents and/or waves-Deposition from suspension

0

2

4

6

8

10

12

14

16

18

0,01 0,10 1,00 10,00

Concentration (g/l)

De

pth

(m

)

slackflood-ebb

Lutoclines :Steps in suspended sediment

concentration

Page 3: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

100

0

5

10

15

concentration (g/l)

dept

h (m

)

320 g/l

Secondary

Primary

Tidal currents:

Amazon Shelf data

AMASSEDS project

Page 4: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Salt stratification effect:

Page 5: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

concentration (g/l)

sett

ling

velo

city

(m

m/s

)

10-1

100

101

102

10-4

10-3

10-2

10-1

100

101

Hindered settling effect:

Flocculation

Hindered Settling

Page 6: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

1 0- 2

1 0- 1

1 00

1 01

1 02

1 03

0

2

4

6

8

1 0

s e d i m e n t c o n c e n t r a t i o n ( g / l )

dept

h (m

)

s e c o n d a r yl u t o c l i n e

p r i m a r yl u t o c l i n e

1 0- 2

1 0- 1

1 00

1 01

1 02

1 03

0

2

4

6

8

s e d i m e n t c o n c e n t r a t i o n ( g / l )

dept

h (m

)

1 0

Ws: uniforms: uniform

Lutocline simulations

Page 7: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Steady state turbulent kinetic energy balance

wg

dz

duvu

Shear production

z

u 3

2uwu

1

ew

wsvs H

zCgww

g

Buoyancy

Dissipation

Tz

kau rb

3

16.0Wave-mean turbulence intensity

(Sleath,1991)

Lutocline generation by waves

Page 8: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Lutocline height:

4

1

3

2

33

65.0

w

wsvs

rbe

CgwT

kaH

Page 9: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

0

0,02

0,04

0,06

0,08

0,1

0 0,02 0,04 0,06 0,08 0,1

measured lutocline height (m)

calc

ula

ted

lu

tocl

ine

he

igh

t (m

)ws = 0.05 mm/s

kr = 2 cm

Laboratory results:

Page 10: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Field data (Traykovski et al 2000):

Page 11: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Discussion

• Closer look at the wave turbulence model

(for field conditions)

• Limitation of the lab experiments (Re)

• The model considers no erosion threshold

Page 12: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Importance of Primary Lutocline for sediment transport:

10-4

10-2

100

102

0

2

4

6

8

10

12

14

16

18

Concentration (g/L)

Dep

th (

m)

Page 13: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

Time

depth

depth

Page 14: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

0

2

4

6

8

10

12

14

16

18

20

VelocityD

ep

th0

2

4

6

8

10

12

14

16

18

20

Velocity

De

pth

First Hypothesis

No mud layer

High measured velocities near bottom due to log profile

Mud layer

High measured velocities near bottom because the profiler don’t find the true bottom

Second Hypothesis

Page 15: Lutocline formation by waves

2 4 6 8 10 12 14 16 18 20 22 24

tim e (h)

2

4

6

8

10

12

14

dept

h (m

)

How to know which one is correct?

Do we need new field techniques for measuring SSC and velocities below the primary lutoclines?