lecture 2: double quantum dots - université de sherbrooke

35
• Basics Lecture 2: Double quantum dots • Pauli blockade Spin initialization and readout in double dots Spin initialization and readout in double dots • Spin relaxation in double quantum dots Jason Petta, Princeton University

Upload: others

Post on 08-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

• Basics

Lecture 2: Double quantum dots

• Pauli blockade

• Spin initialization and readout in double dots• Spin initialization and readout in double dots

• Spin relaxation in double quantum dots

Jason Petta, Princeton University

Quick ReviewSingle spin qubitQuantum dot

Qubit states:

450 nm EZeeman

1

0

Long spin relaxation time, T1 ~ 1 sec.

Jason Petta, Princeton University

Review: Coulomb blockade and charging in a single dotR1,C1 R2,C2 NN-1 N+1 N+2

I VG

Ener

gy

VSD

Charging energy E =e2/2C

E

VCharging energy Ec=e /2C VG

EF e2/C

VG VGKastner, RMP 64, 849 (1992)

Jason Petta, Princeton University

Double dot charge stability diagramR1,C1 R2,C2RM,CM

S D

VG1

S D

VG2

Two limits:CM 0 CM/C(1,2) 1

V (1 0) (1 1) (1 2)

(2,0) (2,1) (2,2)

VVG1

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2) VG1

Double dot review article: van der Wiel et al., RMP 75, 1 (2003)

VG2 VG2

Jason Petta, Princeton University

Double dot charge stability diagramR1,C1 R2,C2RM,CM

S D

VG1

S D

VG2

In between these limits:

(2,0) (2,1) (2,2)

(1,1)

(1 0)VG1 (1,0) (1,1) (1,2)

(0,0)

(1,0)

triple points

VG1

(0,0) (0,1) (0,2) (0,1)

VG2 VG2

Double dot review article: van der Wiel et al., RMP 75, 1 (2003)

Jason Petta, Princeton University

Experimental setupParameters: T= 0 030 K Feature size < 100 nm Frequency = 35 GHzT 0.030 K, Feature size < 100 nm, Frequency 35 GHz

Jason Petta, Princeton University

Charge transport T M, N~20Double dot measurements

0.5 m

GD

GD

(10

-650

mV

) (M+1,N) (M+1,N+1) 20

GSL

0-3e

2/h)

-670

VL (m (M,N) (M,N+1)

0

GSR

RL -660 -640VR (mV)Charge sensing M, N=0, 1, 2…

3e2 /h

)

100

150

GS

R

0.24 -1.0

L (V

)

dGSR /dV0

5

(0 0)

(1,0)(1,1)

GD

(10-3

0

50

R(e

2/h)

0 16

0.20

-1.1

VL V

L (a.u.)-10-5-

-(0,0)

(0,1)

QPC sensing: Field et al., PRL 70, 1311 (1993)

0-1.05 -1.00VR (V)

0.16-1.0-1.1 VR (V)

Petta et al., PRL 93, 186802 (2004)Elzerman et al., PRB 67, 161308 (2003)

Jason Petta, Princeton University

Charge physics: The one-electron regime-5 0 5 dgrs/dVL (a.u.)

(1 0) (0 1)

Charge -vs- spin qubits

(0 0) (0 1)

(1,1)(1,0)

(1,2)

-500

mV

)

(1,0) (0,1)

(0,0) (0,1)(0,2)

-550

VL (mvs.

-400VR (mV)-450

Spin physics: The two electron regime(0,2)

mV

)

-515Spin physics: The two-electron regime(1,1) (1,2)(1,1)

VL (m

-530

vs.

(0,1) (0,2)

-400-415 VR (mV)Jason Petta, Princeton University

1.0 VT (V)1 11 Vt =-1.04 V

Gate tunable interdot tunnel coupling

-1.08-1.04-1 01V

L(V

)

-1.11 Vt 1.04 V

Vt

1.01-1.12

1 09 1 08-10 0 dG /dV (a u )0.5M

L(V

)

VR (V)-1.09 -1.08

-1.13

10 0 dGS/dVL (a.u.)

Vt =-1.01 VVt (V) 2t (GHz)

V

d)

-1.14-1.08-1.04-1.01

<kT7.216.9

0.0d)

VR (V)-1.10 -1.09

1 0 1

12 1-

tanh kT

MN = = 2+4t2 DiCarlo et al.

Phys. Rev. Lett. 92, 226801 (2004)

(mV)-1 0 1

,Jason Petta, Princeton University

EAEA

Photon assisted tunneling in a one-electron double dot

Ene

rgy

ħ

Ene

rgy

ħ

E

EB

EEB

-1 13 52f=24 GHz -1.08 f=24 GHz 2 0

PAT in transport PAT in charge sensing

1.13

L(V

) 0

5

51f 24 GHz

-10

L(V

)

f 24 GHz1 0

)

-1.14

VL -5

(pA

)I D1

VL

-1.09 21

S(1

0-3

e2/h

)

-1.075-1.085 VR (V)

12

-1.072-1.080 VR (V)

GS

Jason Petta, Princeton University

y

Charge qubit spectroscopy On resonance: = (hf)2-4t2

f<35 GHzVt

Ene

rgy

hf2tVac

1.0

offf (GHz) Vt (V)

-1 082t (GHz)

2 4100

eV

)

off102030

-1.08-1.04-1.02-1.01

2.46.29.2

13.2

50S

plitt

ing

(

M 0.5

0

S

0.00

f (GHz)3020100

(mV)-1.0 0 1.0

See also: Oosterkamp et al., Nature 395, 873 (1998)Jason Petta, Princeton University

1.00

0 4 5 ns

Charge relaxation and dephasing measurement

1f=24 GHz*

)

0.4

)

5 ns1.0

2

1T2 ≥400 ps*

ax(

=5 n

s) 0.2M(

12 dB

max

()/M

ma

0.75

0.4 0.8 (mV)

0=1 s

0.5N

6 dB

Mm

T1~16 ns0 dB 2h/T2*

0.501010 10 01

0.0

-1 5 -1 0 -0 52 0

0 dB 2

(s)1010.10.01

(mV)-1.5 -1.0 -0.5-2.0

Petta et al., PRL 93, 186802 (2004)

Jason Petta, Princeton University

Charge qubit: Coherent oscillations

Enhancementin T2 at =0

Vion et al.,Science (2002)

Hayashi et al., PRL (2003), K. D. Petersson et al., PRL (2010)

Jason Petta, Princeton University

Single spin qubits -vs- Singlet-triplet qubits

Single spin qubit (Loss and DiVincenzo)g p q ( )

1EZeeman

0

Encoded spin qubit- “singlet-triplet” qubit (J. Levy)

Qubit encoded in two-electron spin states

21S

1

mS=0 Basis: S and T0, mS=0 Insensitive to field fluctuations

21

0T

T

mS=0

m =1

Insensitive to field fluctuationsdecoherence free subspace

T

T

mS=1

mS=-1Work in magnetic field, T+ and T-not relevant due to Zeeman energy

Jason Petta, Princeton University

The two electron regime

(1,1)(1,1)

(1,1) singlet-triplet splitting:

j=4t2/U=0 4 eV<<kTTO T+T-

j=4t2/U=0.4 eV<<kT

with U~4 meV, t~20 eVS j<<kT

(0,2) ( )(0,2)

Theory: J~0.3 meV

(0,2) singlet-triplet splitting:

Expt : J~0 1 to 1 meV

TO T+T-

Expt.: J~0.1 to 1 meVJ~400 eV

Kyriakidis et al., PRB 66, 035320 (2002)

Ashoori et al., PRL 71, 613 (1993)

S

Jason Petta, Princeton University

Double dot finite bias spectroscopyRL,CL RR,CRRM,CM

S D I

VL

S D

VR

Id

Vsd

(1 0) (1 1)

Finite bias “triangles”0 4 8|Id| (pA)

(1,0) (1,1)

100

5-1

.1V

L(V

)-1

.105

(0,0)(0,1)

-1.035 -1.030VR (V)

Jason Petta, Princeton University

Singlet-triplet spin blockade in dc transport

Ono et al., Science 297, 1313 (2002).

Jason Petta, Princeton University

(0,2) (1,1) transport is allowed

Singlet-triplet spin blockade in dc transport

( , ) ( , ) p

(1 1) (0 2) t t i i bl k d(1,1) (0,2) transport is spin blockedRL

VL

VLV V

VL

VL

Johnson, Petta, Marcus (2005). See also Ono et al., Science 297, 1313 (2002).VRVR

Jason Petta, Princeton University

(0,0) (0,1) (1,0)R Int

Singlet-triplet spin blockade in charge sensing

L

VLV

L

VL

VL

VR VR

Jason Petta, Princeton University

Loss & DiVincenzo ProposalPhys. Rev. A 57, 120 (1998)

• Prepare spin in ground state

• “Spin to charge conversion”

• T1 T2* T2

• ESR for single spin rotations• Exchange interaction

T1 , T2 , T2

g• Standard semiconductor fabrication

Jason Petta, Princeton University

Spin singlet state initialization

(1,1) (1,2)

VL (m

V)

(0,2)(0,1)

(0,2)

TVR (mV)

S510e

kTJ

TPP

SP

Jason Petta, Princeton University

Loss & DiVincenzo ProposalPhys. Rev. A 57, 120 (1998)

• Prepare spin in ground state

• “Spin to charge conversion”

• T1 T2* T2

• ESR for single spin rotations• Exchange interaction

T1 , T2 , T2

g• Standard semiconductor fabrication

Jason Petta, Princeton University

Spin state measurement (spin-to-charge conversion)

(1,1) (1,2)

VL (m

V)

(0,2) GQPCGQPC

(0,1)(0,2)

(1,1) (0,2)TVR (mV)

Ene

rgy

T TTS

Singlet measurement

S

TO T+T-

Jason Petta, Princeton University

Spin state measurement (spin-to-charge conversion)

(1,1) (1,2)

VL (m

V)

(0,2) GQPC(0,1)

(0,2)(1,1) (0,2)

TVR (mV)

Ene

rgy

T TTS

Triplet measurement

S

TO T+T-

Jason Petta, Princeton University

Loss & DiVincenzo ProposalPhys. Rev. A 57, 120 (1998)

• Prepare spin in ground state

• “Spin to charge conversion”

• T1 T2* T2

• ESR for single spin rotations• Exchange interaction

T1 , T2 , T2

g• Standard semiconductor fabrication

Jason Petta, Princeton University

Spin Relaxation and Dephasing: The Two-Electron System

Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Jason Petta, Princeton University

Pulsed-Gate Measurement of Spin Relaxation

(1 1) (1 2)(1,1) (1,2)

(0 1)(0,2)

(0,1)

Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Jason Petta, Princeton University

Pulsed-Gate Measurement of Spin Relaxation

(1 1) (1 2)(1,1) (1,2)

(0 1)(0,2)

(0,1)

Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Jason Petta, Princeton University

Pulsed-Gate Measurement of Spin Relaxation

(1 1) (1 2)(1,1) (1,2)

(0 1)(0,1)

Jason Petta, Princeton University

Pulsed-Gate Measurement of Spin Relaxation

(1 1) (1 2)(1,1) (1,2)

(0 1)(0,2)

(0,1)

Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Jason Petta, Princeton University

Spin relaxation: Getting stuck in (1,1)

In “measurement triangle”In measurement triangledark: transition to (0,2) occurslight: transition to (0,2) blockaded

Jason Petta, Princeton University

Enhanced, energy-dependent relaxation at zero field

Jason Petta, Princeton University

Effective nuclear field from hyperfine interaction

Large ensemble with random spin orientations slow internal dynamicsorientations, slow internal dynamics...

Quasistatic effective field

B b0 rk 2IkBnuc b0 rk

k Ik

rms Bnuc b0 I0(I0 1) /N

GaAs: b0=3.47 T, I0 =3/2Our device: N~106-107

Bnuc~2-6 mT, tnuc~3-10 ns

Jason Petta, Princeton University

BNuclearBNuclear

BTotalBTotalBBZeeman

BZeeman

T1, T2 short T1 long; T2 shortJason Petta, Princeton University

Measuring the nuclear field: Energy dependence of tunnel rates

Deviation above 1 msAdditional decaymechanism?

t(B)

B

2

1t(0) Bnuc

1

Bnuc=2.8 0.2 mT10 T ?tnuc~10 ns = T2?

Jason Petta, Princeton University