land surveying using auto level leveling

Upload: dsureshch20029057

Post on 07-Aug-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    1/97

    1 | P a g e  

    Objectives

      To learn to apply a system approach to a plan, execute and manage a survey given

    specification as a group

      To learn and undertake site measurements and calculations using proper equations

      To learn how to analyze data with respect to error theory and produce scale plots

      To learn how to work in a team

      Read information from maps and plans

      To learn how to use the survey equipment such as total stations and auto level

      To learn how to interpret the data obtained and how to use the spread sheets to reduce,

    adjust and analyze the data

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    2/97

    2 | P a g e  

    Introduction

     According to J. Uren’s and W.F.Price’s book, Surveying for Engineers, they describe surveying

    as an art of determining the relative positions of different object on the surface of the earth by

    measuring the horizontal distance between them and by preparing a map to any suitable scale.

    Engineering surveying involves the following:

      Investigating land, using computer based measuring instruments and geographical

    knowledge, to work out the best position to construct bridges, tunnels and roads.

      Producing up-to-date plans which form the basis for the design of a project.

      Setting out a site, so that a structure is built in the correct location and to the correct

    size.

      Monitoring the construction process to make sure that the structure remains in the rightposition and recording the final as-built position.

      Providing control points by which the future movement of structures such as dam and

    bridges can be monitored.

    J. Uren & W.F. Price (2006)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    3/97

    3 | P a g e  

    We carried out the task at Lanjut Resort (4.210484, 101.9755766) Latitude and Longitude of the

    place. We spent one week over there and one task was carried out every day. It usually began

    after breakfast at 9-10am and we were usually done by 2-3pm. We had rain interruption on

    Friday which was why our readings for task 4 had a little more margin of error.

    The report is separated into four different tasks:

      Task 1: Polar radiation survey

      Task 2: Closed loop traverse survey

      Task 3: Setting out of building outline (levelling)

      Task 4: Curve re-alignment survey

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    4/97

    4 | P a g e  

    General Introduction

     A dictionary definition of engineering surveying is that:

    The measurement, definition and portrayal, either digitally or graphically in the form of

    maps or plans, of the physical features of, and the structures on the Earth’s surface. The

    ability to understand engineering design information and from this provide dimensional

    control for all stages of construction work.

    So in simple words, surveying is used in engineering to measure the heights, angles and

    distances between two or more points on a landmark.

    Heribert Kahmen & Wolfgang Kaig (1988)

    In this assignment, we have carried out four different tasks. After collecting initial results, I have

    used trigonometry equations and other basic surveying formulas to calculate various different

    readings and values.

    I have used the basic designing skills to draw Auto Cad 2D and 3D drawings which were

    required for the tasks one to four.

    I have also discussed the different sources of errors which took place during the surveying and

    how to improve those errors and the discussion of the accuracy of the readings obtained.

    I have also noted down what was my experience from the surveying camp and the surveying

    assignment which I have produced as a result. What I have learnt from the experience and how

    this has expanded my knowledge of civil engineering.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    5/97

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    6/97

    6 | P a g e  

    We took the reading of the hotel lobby. We took measurements of all the columns at the hotel

    lobby. We will use the readings to obtain X, Y and Z using trigonometry equations.

    Civil engineering  – The design and construction for engineering projects, such as public andprivate works, such as infrastructure (roads, railways, water supply & treatment etc), pipelines,

    dams & reservoirs, bridges & tunnels, and buildings.

    Engineering surveying covers the detailed surveys required for design of engineering projects

    (roads, bridges, dams, buildings, tunnels etc) as well as the setting out and monitoring of the

    subsequent construction or structures.

    C.L. Berger Sons (2010)

    Construction surveying setting out involves staking out reference points & markers that will

    guide the construction of new structures such as roads or buildings for subsequent construction.

    Building or construction projects relates to specific structures e.g. low level; medium to high rise

    buildings, stadiums; residential buildings; standard & odd shaped structures, etc. It can include

    civil structures, (such as bridges, tunnels, dams, drainage facilities such as treatment plants,

    pump stations) with significant structural elements involved.

    C.L. Berger Sons (2010)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    7/97

    7 | P a g e  

    SURVEY TYPES

    Engineering surveys 

    • Engineering surveys are conducted to obtain data essential for planning, estimating, locating

    and layout for the various phases of projects. The objectives of engineering surveys include

    obtaining preliminary data required for selecting suitable routes and sites and for preparing

    structural designs, establishing a system of reference points, and marking lines, grades and

    principal points.

    David Allen (2010)

    Principles of Surveying

    • There are a few rules that apply to all categories and whenever field work is being carried out

    & should be adhered to at all times.

    David Allen (2010)

    Accuracy

    Use of instruments to measure angles, distances and level (requires techniques & procedures

    to be mastered). Important to realise that Absolute precision can never be obtained, despite

    ideal conditions and the use of the best equipment & techniques

    Errors

    Much of what is done in surveying is prone to errors

    Gross (mistakes), systematic & random (unavoidable)

    Mistakes arise from inattention, inexperience and carelessness. Important to adopt procedures

    or independent checks that eliminate or isolate such errors. Systematic errors are those which

    may exist but whose pattern and effects are known, can be monitored and compensated for by

    application of appropriate corrections. (e.g. EDM distance; - also measure temp & pressure)

    David Allen (2010)

    Random errors are unavoidable & due to imperfections in instruments used, human elements

    such as eyesight, & inconsistent conditions that cause such errors.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    8/97

    8 | P a g e  

    Survey methods

    Surveys can usually be executed in several ways by a combination of instruments and methods.

    Main factors to consider when deciding upon technique to be used:

      Purpose & extent of the survey

      Degree of accuracy required

      Control of errors

      Nature of the country (i.e. topography, vegetation, visibility & access issues, etc)

      Commercial issues (i.e. budget & programme considerations)

    C.L. Berger Sons (2010)

    Good survey practice (As a general guide)

    Use equipment which is well maintained, regularly checked and “calibrated” 

     Analyse acceptable error limits for each component of the survey (i.e. set the target accuracy

    specification). Be aware of likely error sources; resolve existing & underlying errors (don’t

    introduce new ones)

    Confirm with defendable marking, measuring, recording and processing methods.

     ALWAYS take check (‘redundant’) measurements. 

    Be careful & objective when collecting, assessing and recording measurements & data, & while

    documenting and analysing results. (Don’t cook the books!!) 

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    9/97

    9 | P a g e  

    Setting Out

    Definition

    Setting out is the establishment of marks & lines to define the position & level of elements of the

    construction work so that works may proceed with reference to them. This process may be

    contrasted with the purpose of Surveying which is to determine by measurement the positions of

    existing features.-

    C.L. Berger Sons (2010)

     Alternate definition is that setting out is the reverse of Surveying. (i.e. surveying is a process of

    producing a plan or a map of a particular area, setting out begins with the plan and ends with

    the various elements of an engineering project correctly positioned in the area.

    (Uren, J. et al 2006)

     Attitudes to setting out vary from site to site, with generally insufficient importance attached to

    the process.

    It tends to be rushed (time constraints & pressure from contractors), often leading to errors & in

    some cases resultant costly corrections.

    Good work practices & techniques in setting out essential to minimise errors & to ensure the

    construction process proceeds smoothly.

    Good knowledge is vital, as the setting out phase is one of the most important stages in any civil

    engineering construction project.

    Setting out aims

    The aims of setting out are to position the works in their correct relative spatial and absolute

    positions, & to ensure that they proceed smoothly and that their costs are minimised. (Uren,

    J. et al 2006)

    Chances of this aim being achieved will be greatly enhanced by the use of suitable control

    methods, availability & reference to correct plans, and where good working practices are

    adopted.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    10/97

    10 | P a g e  

    Two main aims:

    Various elements of the scheme must be correct in all three-dimensions both relative and

    absolute (i.e. correct size, plan position & reduced level).

    Once set-out begins, it must proceed quickly & with little or no delay so the works can proceed

    smoothly and costs can be minimised.

    David Allen (2010)

    Apparatus

    The following apparatus were used for the first task

      Traverse booking sheet

      Levelling booking sheet

      Total station

      Prism

      Tripod

      Measurement tape

      Field record book

      Pen

      Recording sheet

      Staff

    (Assignment Brief)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    11/97

    11 | P a g e  

    Procedure

    There are three main steps to follow when setting up the total station:

      Centering the total station

      Levelling the total station

      Elimination of parallax

    The first step is to set up the tripod over the peg. The legs of the tripod are placed an equal

    distance from the peg and are extended to suit the observer’s height. 

    The total station is then taken out of its case, and carefully placed on top of the tripod. It is

    screwed onto the tripod.

    The ground mark (peg) is focused now through the optical plummet. The three foot screws are

    adjusted until the peg can be seen in clear focus.

    The circular bubble on the upper part of the total station is now adjusted till it is centered by

    adjusting the individual tripod legs.

    The final step is to centre the plate level bubble which is done by adjusting the foot screws.

    Once the bubble is in the center, the instrument is turned 90° and the bubble is checked again.

    If it is still in the centre, then the instrument is ready for measurements to be taken.

    Wilfred Schofield & Mark Breach (2007)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    12/97

    12 | P a g e  

    Fig 1.2 The drawing explains the angle we were measuring at the hotel lobby room

    (Wilfred Schofield & Mark Breach (2007)

    ST Line Face left Face right

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    13/97

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    14/97

    14 | P a g e  

    XK1 34 01 40 214 01 10

    XK2 34 01 40 214 01 10

    XL1 89 16 20 269 16 41XL2 89 16 20 269 16 41

     After we found the face right and face left from the site, we shall use equations to find the other

    data which we need:

    Mean

    There are two conditions when we are finding the mean:

      If face left is bigger than the face right:

    ℎ 180°2  

      If face left is smaller than the face right:

    ℎ − 180°2

     

    Mean in radians form

    We use the following formula to convert the means from degrees to radians

    Angle x °⁄  

    The next step is to obtain the HD which we can get by using the measuring tape. We measure

    from the centre of the tripod to the point. The readings are in metres.

    Calculation of WCB

    Back Bearing = Forward Bearing - 180° if the forward bearing is greater than 180°

    Back Bearing = Forward Bearing + 180° if the forward bearing is less than 180°

    J. Uren & W.F. Price (2006)

    Line Mean Reduced angle Whole circle bearing

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    15/97

    15 | P a g e  

    Degree Minutes Seconds Degree Minutes Second Degree Minutes SecondXA1 223 10 31 00 00 00 00 00 00XA2 223 10 31 00 00 00 00 00 00

    XD04 223 57 4.5 00 46 33.5 00 46 33.5XD03 223 57 4.5 00 46 33.5 00 46 33.5

    XD01 229 58 06 06 47 35 06 47 35XD02 229 58 06 06 47 35 06 47 35

    XB3 238 59 21.5 15 48 50.5 15 48 50.5XB2 239 06 3.5 15 55 32.5 15 55 32.5

    XB1 239 21 37 16 11 06 16 11 06

    XB4 278 14 57.5 55 04 26.5 55 04 26.5XB5 278 14 57.5 55 04 26.5 55 04 26.5

    XC1 281 14 47 58 04 16 58 04 16XC2 281 14 47 58 04 16 58 04 16

    XD1 301 30 32.5 78 20 1.5 78 20 1.5XD2 301 30 32.5 78 20 1.5 78 20 1.5

    XE1 271 10 40 48 00 09 48 00 09XE2 271 10 40 48 00 09 48 00 09

    XF1 208 02 55.5 344 52 24.5 344 52 24.5XF2 208 02 55.5 344 52 24.5 344 52 24.5

    XG1 142 36 06 279 25 35 279 25 35XG2 142 36 06 279 25 35 279 25 35

    XH1 339 45 24.5 116 34 53.5 116 34 53.5XH2 339 45 24.5 116 34 53.5 116 34 53.5

    XI1 333 26 36 110 16 05 110 16 05XI2 333 26 36 110 16 05 110 16 05

    XJ1 347 58 32.5 124 48 1.5 124 48 1.5XJ2 347 58 32.5 124 48 1.5 124 48 1.5

    XJ3 01 25 17.5 138 14 46.5 138 14 46.5XJ4 01 25 17.5 138 14 46.5 138 14 46.5

    XJ5 22 46 12 159 35 41 159 35 41XJ6 22 46 12 159 35 41 159 35 41

    XK1 34 01 25 170 50 54 170 50 54

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    16/97

    16 | P a g e  

    XK2 34 01 25 170 50 54 170 50 54

    XL1 89 16 30.50 226 05 59.50 226 05 59.50

    XL2 89 16 30.50 226 05 59.50 226 05 59.50

    The next step is to find the ∆E Easting and ∆N Northing using the following formula: 

    Northing ∆N Equation used 

    HD x Sin Angle x °⁄  

    The calculator should be in radians form

    11.66 x Sin 00°46’33.50” x °⁄  = 11.658

    8.78 x Sin 15°48’50.5” x  °⁄  =8.447

    The triangle shows the ∆N and ∆E and how it is used for the trigonometric valuesobtained

    Easting ∆E Equation used 

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    17/97

    17 | P a g e  

    HD x Cos Angle x °⁄  

    The calculator should be in radians form

    11.66 x Cos 00°46’33.50” x °⁄  = 0.15791

    8.78 x Cos 15°48’50.5” x °⁄  = 2.3926

    The triangle shows the ∆N and ∆E and how it is used for the trigonometric valuesobtained

    After this, we shall obtain the ∆E and ∆N using last three digits of my passport numberplus 100. My passport number is so for X it will be 106, Y is 100 and Z is 100.

    X = 106 + ∆E 

    X = 106 + 0.1579 = 106.1579

     Y = 100 + ∆N 

     Y = 100 + 11.65893 = 111.65893

    Line Degree  Radians  Length  ∆E  ∆N  X   Y 

    106 100

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    18/97

    18 | P a g e  

    XA1 0 0 12.2 0 12.2 106 12.2

    XA2 0 0 12.2 0 12.2 106 12.2

    XD04 0.775972 0.013543 11.66 0.15791 11.65893 106.1579 111.6589XD03 0.775972 0.013543 11.66 0.15791 11.65893 106.1579 111.6589

    XD01 6.793056 0.118561 11.8 1.395747 11.71716 107.3957 111.7172XD02 6.793056 0.118561 11.8 1.395747 11.71716 107.3957 111.7172

    XB3 15.81403 0.276007 8.78 2.392689 8.447688 108.3927 108.4477

    XB2 15.92569 0.277956 8.78 2.409148 8.443009 108.4091 108.443

    XB1 16.185 0.282482 11.42 3.183207 10.96739 109.1832 110.9674

    XB4 55.07403 0.961223 11.1 9.100806 6.354945 115.1008 106.3549

    XB5 55.07403 0.961223 11.1 9.100806 6.354945 115.1008 106.3549

    XC1 58.07111 1.013532 15.4 13.07006 8.144541 119.0701 108.1445XC2 58.07111 1.013532 15.4 13.07006 8.144541 119.0701 108.1445

    XD1 78.33375 1.367182 11.35 11.11553 2.295089 117.1155 102.2951

    XD2 78.33375 1.367182 11.35 11.11553 2.295089 117.1155 102.2951

    XE1 48.0025 0.837802 6.25 4.644838 4.181864 110.6448 104.1819

    XE2 48.0025 0.837802 6.25 4.644838 4.181864 110.6448 104.1819

    XF1 344.8735 6.019178 6.42 -1.67531 6.197559 104.3247 106.1976

    XF2 344.8735 6.019178 6.42 -1.67531 6.197559 104.3247 106.1976

    XG1 279.4264 4.876911 3.4 3.35409 0.556853 102.6459 100.5569XG2 279.4264 4.876911 3.4 3.35409 0.556853 102.6459 100.5569

    XH1 116.5815 2.034732 3.1 2.772325 -1.38716 108.7723 98.61284

    XH2 116.5815 2.034732 3.1 2.772325 -1.38716 108.7723 98.61284

    XI1 110.2681 1.924541 9.9 9.287014 -3.42949 115.287 96.57051

    XI2 110.2681 1.924541 9.9 9.287014 -3.42949 115.287 96.57051

    XJ1 124.8004 2.178178 10.1 8.293565 -5.76427 114.2936 94.25373

    XJ2 124.8004 2.178178 10.1 8.293565 -5.76427 114.2936 94.25373

    XJ3 138.2463 2.412852 5.9 3.92899 -4.40148 109.929 95.59852XJ4 138.2463 2.412852 5.9 3.92899 -4.40148 109.929 95.59852

    XJ5 159.5947 2.785453 8.35 2.911298 -7.82604 108.9113 92.17396

    XJ6 159.5947 2.785453 8.35 2.911298 -7.82604 108.9113 92.17396

    XK1 170.8483 2.981866 7.17 1.140377 -7.07873 107.1404 92.92127

    XK2 170.8483 2.981866 7.17 1.140377 -7.07873 107.1404 92.92127

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    19/97

    19 | P a g e  

    XL1 226.0999 3.946187 7.3 -5.26001 -5.06185 100.74 94.93815XL2 226.0999 3.946187 7.3 -5.26001 -5.06185 100.74 94.93815

    Vertical Data

    Line Face Right Face Left

    XA1 97 16 0 262 44 10

    XA2 81 17 0 278 43 20

    XDO4 87 15 0 272 45 30

    XDO3 97 27 20 262 32 50

    XDO1 97 24 20 262 35 30

    XDO2 87 18 20 272 41 10

    XB3 92 16 20 267 43 50

    XB2 99 47 40 260 12 20

    XB1 92 4 0 267 56 20

    XB4 97 49 20 262 10 30

    XB5 91 48 0 268 12 20

    XC1 95 41 20 264 18 10

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    20/97

    20 | P a g e  

    XC2 83 8 40 276 51 50

    XD1 97 40 0 262 20 30

    XD2 80 42 0 279 18 40

    XE1 103 43 40 256 16 50

    XE2 73 21 26 286 38 0

    XF1 103 29 0 256 31 10

    XF2 73 58 20 286 1 0

    XG1 114 22 40 245 37 30

    XG2 60 40 0 299 20 50

    XH1 116 14 40 243 45 0

    XH2 58 29 20 301 30 0

    XI1 98 49 0 261 11 40

    XI2 79 26 20 280 33 50

    XJ1 98 40 0 261 20 40

    XJ2 84 48 20 275 11 20

    XJ3 104 31 20 255 28 20

    XJ4 81 57 20 278 2 0

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    21/97

    21 | P a g e  

    XJ5 100 29 40 259 30 10

    XJ6 84 36 40 275 23 10

    XK1 102 7 0 257 53 50

    XK2 75 21 0 284 40 30

    XL1 101 51 20 258 8 40

    XL2 76 39 20 284 20 0

    Mean

    To calculate the mean, the following equation was used:

    (90° − ) ( ℎ − 270°)

    XA1

    (90° − 97°16′00") (262°42′10" − 270°)

    = - 7°15’55” 

    Reduce Face Left

    90° - Face Left

    90° − 97°16′00" 

    = -7°16’00” 

    Reduce Face Right

    ℎ − 270° 

    262°42′10" − 270° 

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    22/97

    22 | P a g e  

    =--7°17’50” 

    The next step is to obtain the vertical distance. In this case, the distance is found by the

    following equation:

    VD = Tan Mean Angle x Length

    VD = Tan -7°15’55” x 12.2 

    VD = -1.555

    The next step is to add the VD to 100 to find Z

    VD + 100 = Z

    -1.555 + 100 = Z

    99.975 = Z

    Reduced Face Right Reduced Face Left MEAN

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    23/97

    23 | P a g e  

    7 16 0 7 15 50 7 15 55

    8 43 0 8 43 20 8 43 10

    2 45 0 2 45 30 2 45 15

    7 27 20 7 27 10 7 27 15

    7 24 20 7 24 30 7 24 25

    2 41 40 2 41 10 2 41 25

    2 16 20 2 16 10 2 16 15

    9 47 40 9 47 40 9 47 40

    2 4 0 2 3 40 2 3 50

    7 49 20 7 49 30 7 49 25

    1 48 0 1 47 40 1 47 50

    5 41 20 5 41 50 5 41 35

    6 51 20 6 51 50 6 51 35

    7 40 0 7 39 30 7 39 45

    9 18 0 9 18 40 9 18 20

    13 43 40 13 43 10 13 43 25

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    24/97

    24 | P a g e  

    16 38 34 16 38 0 16 38 17

    13 29 0 13 28 50 13 28 55

    16 1 40 16 1 0 16 1 20

    24 22 40 24 22 30 24 22 35

    29 20 0 29 20 50 29 20 25

    26 14 40 26 15 0 26 14 50

    31 30 40 31 30 0 31 30 20

    8 49 0 8 48 20 8 48 40

    10 33 40 10 33 50 10 33 45

    8 40 0 8 39 20 8 39 40

    5 11 40 5 11 20 5 11 30

    14 31 20 14 31 40 14 31 30

    9 2 40 9 2 0 9 2 20

    10 29 40 10 29 50 10 29 45

    6 23 20 6 23 10 6 23 15

    12 7 0 12 6 10 12 6 35

    14 40 0 14 40 30 14 40 15

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    25/97

    25 | P a g e  

    11 51 20 11 51 20 11 51 20

    14 20 40 14 20 0 14 20 20

    VD = Tan Mean Angle x Length

    VD = Tan -7°15’55” x 12.2 

    VD = -1.555

    The next step is to add the VD to 100 to find Z

    VD + 100 = Z

    -1.555 + 100 = Z

    99.975 = Z

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    26/97

    26 | P a g e  

    Length HI V.D Z

    100 100

    12.2 101.53 -1.555 99.975

    12.2 101.53 1.871 103.401

    11.66 101.53 0.561 102.091

    11.66 101.53 -1.526 100.004

    11.8 101.53 -1.534 99.996

    11.8 101.53 0.554 102.084

    8.78 101.53 0.348 101.878

    8.78 101.53 -1.516 100.014

    11.42 101.53 -0.413 101.117

    11.1 101.53 -1.525 100.005

    11.1 101.53 -0.348 101.182

    15.4 101.53 -1.535 99.995

    15.4 101.53 1.853 103.383

    11.35 101.53 -1.527 100.003

    11.35 101.53 1.86 103.39

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    27/97

    27 | P a g e  

    6.25 101.53 -1.526 100.004

    6.25 101.53 1.868 103.398

    6.42 101.53 -1.539 99.991

    6.42 101.53 1.844 103.374

    3.4 101.53 -1.541 99.989

    3.4 101.53 1.911 103.441

    3.1 101.53 -1.529 100.001

    3.1 101.53 1.9 103.43

    9.9 101.53 -1.535 99.995

    9.9 101.53 1.846 103.376

    10.1 101.53 -1.538 99.992

    10.1 101.53 0.918 102.448

    5.9 101.53 -1.529 100.001

    5.9 101.53 0.939 102.469

    8.35 101.53 -1.547 99.983

    8.35 101.53 0.935 102.465

    7.17 101.53 -1.538 99.992

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    28/97

    28 | P a g e  

    7.17 101.53 1.877 103.407

    7.3 101.53 -1.532 99.998

    7.3 101.53 1.866 103.396

    The height of the instrument is 1.53m.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    29/97

    29 | P a g e  

    Discussion and Analysis

    The experiment was successfully carried out. We found the face right and face left of the whole

    reception at Lanjut Resort and then we proceeded for the calculations part using the equations

    as shown above for mean, whole circle bearing, X, Y and Z.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    30/97

    30 | P a g e  

    The precise observation of angles is dependent on the perpendicularity of the primary axes of

    the total station. The plate level vial axis must be perpendicular to the vertical axis. The vertical

    axis must be perpendicular to the horizontal axis. The axis of the line of sight must be

    perpendicular to the horizontal axis.

    There are many different types of errors which have occurred at the sight:

    Instrumental : Plate level vial out of adjustment 

    Detection: Level instrument in two directions as per typical setup. Rotate instrument 180° from

    either of these directions, and bubble should remain centred. Any mis-centering indicates that

    the plate level vial axis is not perpendicular to the vertical axis.

    Correction: Level instrument with bubble not centred by 1/2 of the detected error (bubble run),

    or follow manufacturer's procedure for removal of error.

    Horizontal axis not perpendicular to vertical axis

    This error causes errors in both horizontal and vertical angles since telescope travels in inclined

    plane instead of vertical plane.

    Error can be removed by observing angles in both direct and reversed mode, and averaging.

    Dual-axis compensators can remove this error is the instrument is properly calibrated.

    Heribert Kahmen & Wolfgang Kaig (1988)

    Axis of sight not perpendicular to horizontal axis

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    31/97

    31 | P a g e  

    This error causes the telescope to scribe out a cone when it is plunged.

    Corrected by using double-centering technique when extending a line, and by doubling

    angles (measuring in both direct and reversed modes.)

    Vertical indexing error

    Eccentricity of the plates-Occurs when vertical axis of instrument does not coincide with centre

    of plates. Compensated for by taking several readings about the plates and averaging. This

    happens automatically in surveying grade instruments.

    Circle graduation errors  - Caused by irregularities in marking of plates. Take many reading

    about the plates and average. This is generally handled by modern total stations.

    Errors caused by peripheral equipment  - Be sure that tripods and targets are mechanically

    sound and in adjustment. Use targets that are appropriate for sight distances.

    Natural errors

    Wind. Vibrates tripod and target in windy condition. When this happens you can (1) protect

    instrument from wind by using shield, or (2) Wait until wind speed reduces.

    Temperature 

    It can cause uneven expansion of tripod and instrument parts resulting in instrument

    mislevelling. When this happens you can shield instrument using umbrella.

    Refraction

    Causes bending of sight line. Avoid having sight line close to objects (within 0.5 m) that can

    create microclimates such as the ground, cars, and large trees. When this cannot be done,

    postpone observations until better conditions exist.

    Tripod setting

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    32/97

    32 | P a g e  

     Avoid situation where legs are placed on different surfaces, and extreme soft-ground

    conditions. When this cannot be avoided such as in marshes and swamps, pound long wooden

    stakes flush with surface and set tripod on stakes. Most total station instruments have sensors

    to suspend observations when mislevelling becomes too great.

    Personal errors-

    Instrument not centred

    Can cause observed angle to be too large or small. Carefully centre and level instrument. Size

    of error is reduced when angles have long sight lengths.

    Target not centred

    Can cause observed angle to be too large or small. Use long sight distances to reduce effect

    on observed angles.

    Improper use of clamps and tangent screws

    Practice in formation of good observing habits and familiarity with equipment will reduce these

    errors.

    Poor focusing

    One of the most common errors. Be sure parallax is removed before taking observation. Avoiddifferent operators during observation procedure.

    Overly careful sights

    This is a common beginner error. Take careful sights on targets, but do not redo procedure.

    Beginners tend to observe, then reobserve, then reobserve ... before taking sight. This process

    results in unsettling instrument and reducing pointing accuracy. Trust your eyes.

    J. Uren & W.F. Price (2006)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    33/97

    33 | P a g e  

    Autocad Drawings

    Figure 1.9: 3D drawing of the Lobby Room from the top front

    Fig 1.94: Another top view showing the columns and hotel reception with entrance and

    door

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    34/97

    34 | P a g e  

    Fig 1.95: Showing the columns and reception from front top view

    Fig 1.96: Shows the columns and front reception from side top view

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    35/97

    35 | P a g e  

    Fig 1.97: Shows the columns and reception from reception view

    Sketches

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    36/97

    36 | P a g e  

    ConclusionSo I can further conclude that the experiment was successfully carried out and all of the

    requirements for this task were completed as scheduled.

    I have learnt from this task on the methodology involved with setting out, how it is carried out,

    and what the necessary precautions which have to be taken are and at the same time the errors

    involved with setting out.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    37/97

    37 | P a g e  

    Task 2 Close loop traverse of a control survey

     According to J. Uren and W.F. Price, a traverse is defined as a chain of straight lines which is

    used as a basis for the measurement of details. A traverse is produced and developed by

    measuring the internal angles and distances between points forming a boundary of the site. We

    shall be measuring close traverse in this task, where area will be found of a piece of land. Each

    of these straight lines is called a traverse leg and each point is called a traverse station.

    Figure 2.0: Close Traverse

    Close traverse

     A close traverse begins and ends at the same point whose position is known. The closed

    traverse is mostly used for locating the boundaries at lakes, woods, or grasslands.

    Wilfred Schofield & Mark Breach (2007)

    Open traverse

     An open or free traverse contains a series of linked traverse lines which do not return to the

    starting point. They are mainly used for road constructions.

    Fieldwork

    In a traverse, there are three stations which are considered to be of importance. The stations

    are referred to as the rear station, the occupied station and the forward station.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    38/97

    38 | P a g e  

    Rear station: it is the one from which the person who is performing the traverse has just moved

    to or a point to which the azimuth is known. It is the starting point.

    Occupied station: it is the station at which the angle-measuring instrument is set up. This is the

    point which the person is measuring.

    Forward station: it is the next station which the person will measure in succession.

    During the traverse, the horizontal angles, vertical angles and horizontal distances are

    measured.

    Fig 2.2: It shows the basic concept behind traversing

    Horizontal angles: these are determined from instrument readings made at the occupied

    station by sighting the instrument on the rear station and turning the instrument clockwise to the

    forward station. When measuring horizontal angles, the instrument is always sighted at the

    lowest visible point of the station markers designated the rear and forward stations. It is done in

    order to avoid errors and have a more accurate drawing. Horizontal angles are used in

    determining bearings.

    Vertical angles: these are determined from instrument readings made at the occupied station

    to the height of instrument on the station marker (using a staff) at the forward station. Vertical

    angles are used in determining the difference in height between stations.

    Distance: the distance was measured by using a 30 meters measuring tape. The distance is

    very important as it helps to determine coordinates and heights.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    39/97

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    40/97

    40 | P a g e  

    The equipment used was the total station. A total station is defined as a device which in

    combination with a theodolite and an EDM together with an inboard computer or

    microprocessor, has the capacity to perform various computations such as determining the

    horizontal and vertical components of slope distances, computing elevations and coordinates of

    sighted points.

    J. Uren & W.F. Price (2006)

    Errors in traverse method

      Inaccurate centering of the theodolite, total stations or target

      Non-verticality of targets

      Inaccurate bisection of targets

      Parallax not eliminated

      Lateral refraction, wind and atmospheric effects

      Theodolite or total stations not level or not in adjustment

      Incorrect use of the theodolite or total stations

      Mistakes in writing the readings and bookings

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    41/97

    41 | P a g e  

    Levelling work

    Equipment used

     Auto level is used to carry out levelling. It is set up on a tripod and a staff is used to take the

    measurements. The staff bubble should be accurately centered in order to obtain a highly

    accurate reading. After use, all the equipment used should be carefully stored with care.

    Setting it up

      Setup your tripod as level as possible, step on tripod legs to drive into the

    ground. 

       Attach auto level to the tripod. 

       Adjust level so bubble is centred in vial. 

       Adjust recital until crosshairs are clear. 

       Adjust the objective lens until object you are sighting on is clear. 

    J. Uren & W.F. Price (2006)

    Care of Auto Levels

    If the instrument becomes wet leave it unpacked. Wipe down instrument, clean and dry

    transport case. Pack up instrument only when it is perfectly dry. Never touch the glass

    with fingers, use soft clean lint-free cloth to clean lens. 

    Checking Auto Level Accuracy

      Set up instrument in an area that is as level as possible and which is about 65

    metres long. Place two matching level rods or two pieces of strapping in the

    ground about 15 meters apart with the faces toward each other. Position and

    level the instrument so that the distance from the instrument to each rod is the

    same measure. 

      Take a reading on each rod with the instrument (or mark each piece of strapping

    where the crosshair is sighted). 

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    42/97

    42 | P a g e  

      Move transit to another spot on the line and take readings and mark both rods

    again. 

      The difference between the marks on the rod will be the error of the instrument.

    The error needs to be corrected by a competent repair technician.  

    Heribert Kahmen & Wolfgang Kaig (1988)

    Parallax Error

    It occurs when the image of the staff doesn’t fall exactly on the plane of the diaphragm or when

    the focal point is not found in the plane of the diaphragm.

    In our case, parallax error was avoided by using two different group members; they moved their

    eyes to different parts of the eyepiece when viewing the staff held by another group member.

    There was a slight change in the positions of the target and it was concluded that parallax error

    is present and since it couldn’t be completely eliminated, it was found in acceptable  range.

    Bookings

      Details of the site, work, date, observer, weather, wind, instrument and all other

    important information should be recorded

      Levelling sheets were printed and used for recording the measurements and all of them

    were numbered accordingly in order to keep track and not get recordings mismatched

    Reduced level

    HPC method and Rise and fall method are used to find the reduced level. The height of the

    instrument used is 1.53m.

    Heribert Kahmen & Wolfgang Kaig (1988)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    43/97

    43 | P a g e  

    Apparatus used

      Traverse booking sheet

      Levelling booking sheet

      Total station  Prism

      Tripod

      Automatic level

      Measurement tape

      Wooden peg

      Field record book

      Health and safety equipments

      Pen

      Recording sheet

      Nails

      Spray paint

      Staff

    Procedure

    a. First, we set up the bench mark. By referring to it, we placed the tripod on the ground

    and opened its legs. We first placed two legs into the ground and then the third one.

    Each of them were equally apart from each other roughly.

    b. We placed the theodolite on top of the tripod and then centred the bubbles to obtain

    accurate readings. Adjust recital until crosshairs are clear.

    c. We remove the black casing from the front lens and then switch on the theodolite. We

    reset it to zero. The nail with the spray paint is seen using the lens on the ground and

    until it is visible, the theodolite is then set up to be used.

    d. We take the reading of the bench mark and the point 20 from behind. We then set it to

    zero again and take the point number 2 in front.

    e. We take the horizontal distance by using the measuring tape. Every group member was

    assigned a different role in order to complete the task on time and more accurately.

    f. The total angles for our case was 3240° since the equation is (n-2)*180°. After doing the

    calculations, the angles were re-aligned while maintaining the same distance due to

    errors.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    44/97

    44 | P a g e  

    Calculation of WCB and Back Bearing

    We then have to calculate the Whole Circle Bearing and Back Bearing of each point. Theback bearing is defined as the angle from the south line of the same point.

    Back Bearing = Forward Bearing - 180° if the forward bearing is greater than 180°

    Back Bearing = Forward Bearing + 180° if the forward bearing is less than 180°

    The whole circle bearing is added with my last two digits of passport number. My passportnumber is so the last two digits are 00.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    45/97

    45 | P a g e  

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    46/97

    46 | P a g e  

    Calculating Northing ∆N and Easting ∆E 

    Now we find the Northing and Easting using the basic trigonometry equations which have sine,

    cosine and tangent together with the lengths recorded.

    The WCB is converted to radians form which is found using the formula below. The calculator is

    changed from degrees to radians.

    Angle x °⁄  

    177°56’21.97” x °⁄  = 3.105

    144°08’41.34” x °⁄  = 2.515

    Northing ∆N Equation used 

    HD x Cos Angle x °⁄  

    The calculator should be in radians form

    34.25 x cos 130°07’23.13” x °⁄  = -22.069

    18.15 x cos 105°01’21.26” x °⁄  = -4.704

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    47/97

    47 | P a g e  

    Easting ∆E Equation used 

    HD x Sin Angle x °⁄  

    The calculator should be in radians form

    34.25 x sin 130°07’23.13” x °⁄  = 26.1918

    18.15 x sin 105°01’21.26” x °⁄  = 17.5297

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    48/97

    48 | P a g e  

    Autocad Drawing

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    49/97

    49 | P a g e  

    HPC and Rise and Fall Method

    There are two ways of calculating reduced levels – the rise and fall method and the height plane

    collimation method.

    The arithmetic checks must be done for all levelling calculations.

    BS –  FS = Rises –  Falls = Last Initial RL – First RL

    When establishing the new heights of new TBMs and other important points, the BS and FS

    should be taken and the rise and fall method of calculation should be used.

    The HPC method of calculation can be much quicker when a lot of intermediate sights have

    been taken and it is a good method to use when mapping or setting out where many readingsare often taken from a single instrument position.

     A disadvantage of the HPC method is that the check on reduced levels calculated from IS can

    be long and there is a tendency for it to be omitted.

    Calculation checking

    Height of Collimation Method

    BS – FS = Last Initial RL – First RL

    27.72 – 27.73 = 100.00 – 99.99

    0.01 = 0.01

    Rise and Fall Method

    BS – FS = Rises – Falls = Last Initial RL – First RL

    27.72 – 27.73 = 9.52 – 9.53 = 99.99 – 100

    0.01 = 0.01 = 0.01

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    50/97

    50 | P a g e  

    Discussion & Analysis

    The total station.

    The plate level vial axis must be perpendicular to the vertical axis.

    The vertical axis must be perpendicular to the horizontal axis.

    The axis of the line of sight must be perpendicular to the horizontal axis.

    Errors

    Instrumental -

    Plate level vial out of adjustment

    Detection: Level instrument in two directions as per typical setup. Rotate instrument 180° from

    either of these directions, and bubble should remain centred. Any miscentering indicates that

    the plate level vial axis is not perpendicular to the vertical axis.

    Correction:

    Level instrument with bubble miscentred by 1/2 of the detected error (bubble run), or follow

    manufacturer's procedure for removal of error.

    Horizontal axis not perpendicular to vertical axis

    This error causes errors in both horizontal and vertical angles since telescope travels in inclined

    plane instead of vertical plane.

    Error can be removed by observing angles in both direct and reversed mode, and averaging.

    Dual-axis compensators can remove this error is the instrument is properly calibrated.

    Heribert Kahmen & Wolfgang Kaig (1988)

    Axis of sight not perpendicular to horizontal axis

    This error cause the telescope to scribe out a cone when it is plunged.

    Corrected by using double-centering technique when extending a line, and by doubling

    angles (measuring in both direct and reversed modes.)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    51/97

    51 | P a g e  

    Eccentricity of the plates-

    Occurs when vertical axis of instrument does not coincide with centre of plates. Compensated

    for by taking several readings about the plates and averaging. This happens automatically in

    surveying grade instruments.

    Heribert Kahmen & Wolfgang Kaig (1988)

    Circle graduation errors – 

    Caused by irregularities in marking of plates. Take many reading about the plates and average.

    This is generally handled by modern total stations.

    Errors caused by peripheral equipment – 

    Be sure that tripods, tribrach, and targets are mechanically sound and in adjustment. Use

    targets that are appropriate for sight distances.

    Heribert Kahmen & Wolfgang Kaig (1988)

    Natural errors -

    Wind

    Vibrates tripod and target in windy condition. When this happens you can (1) protect instrument

    from wind by using shield, or (2) Wait until wind speed reduces.

    Temperature

    Can cause uneven expansion of tripod and instrument parts resulting in instrument mislevelling.

    When this happens you can shield instrument using umbrella.

    Refraction

    Causes bending of sight line. Avoid having sight line close to objects (within 0.5 m) that can

    create microclimates such as the ground, cars, large trees. When this cannot be done, postpone

    observations until better conditions exist.

    Heribert Kahmen & Wolfgang Kaig (1988)

    Tripod setting

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    52/97

    52 | P a g e  

     Avoid situation where legs are placed on different surfaces, and extreme soft-ground

    conditions. When this cannot be avoided such as in marshes and swamps, pound long wooden

    stakes flush with surface and set tripod on stakes. Most total station instruments have sensors

    to suspend observations when misleveling becomes to great.

    Personal errors-

    Instrument miscentering

    Can cause observed angle to be too large or small. Carefully centre and level instrument. Size

    of error is reduced when angles have long sight lengths.

    Target miscentering

    Can cause observed angle to be too large or small. Use long sight distances to reduce effect

    on observed angles.

    Improper use of clamps and tangent screws

    Practice in formation of good observing habits and familiarity with equipment will reduce these

    errors.

    Poor focusing

    One of the most common errors. Be sure parallax is removed before taking observation. Avoiddifferent operators during observation procedure.

    Overly careful sights

    This is a common beginner error. Take careful sights on targets, but do not redo procedure.

    Beginners tend to observe, then re observe, then re observe ... before taking sight. This process

    results in unsettling instrument and reducing pointing accuracy. Trust your eyes.

    Heribert Kahmen & Wolfgang Kaig (1988)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    53/97

    53 | P a g e  

    Sources of error in levelling

      Collimation error

    Collimation error is produced when sight lengths from one instrument position are not equal,

    since the collimation error is proportional to the difference in these.

    In our site work carried out at Lanjut Resort, I believe the collimation error was avoided to its

    acceptable limits since we kept sight lengths equal, especially focusing on the BS and FS.

     A two peg test was also carried out in order to check the collimation error. We first placed pegs

    on both sides of the total station and then found the difference in elevation. Then, we moved the

    level 30cm past both pegs and then took the readings again. There was a slight difference in

    elevation from both readings and it was concluded that it is in the acceptable range.

    J. Uren & W.F. Price (2006)

      Compensator not functioning 

    To check the compensator, gently tap the total station, move the foot screw slightly off level or

    push the compensator check lever to make sure whether the reading remains constant.

    In our case, the compensator was functioning perfectly since the total station used was in good

    condition.

      Parallax 

    It occurs when the image of the staff doesn’t fall exactly on the plane of the diaphragm or when

    the focal point is not found in the plane of the diaphragm.

    In our case, parallax error was avoided by using two different group members, they moved their

    eyes to different parts of the eyepiece when viewing the staff held by another group member.

    There was a slight change in the positions of the target and it was concluded that parallax error

    is present and since it couldn’t be completely eliminated, it was found in acceptable range.  

    J. Uren & W.F. Price (2006)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    54/97

    54 | P a g e  

      Defects of the staff  

    The total station used was fairly new so this error is eliminated from the readings. Another error

    which arises from staff defects is the zero error. It usually occurs when two staffs are used for

    the same series of readings, and it is advised to use only one staff for all the readings which is

    what we followed for our tasks.

    J. Uren & W.F. Price (2006)

    Field or on-site errors

      Staff not vertical

    The bubble was checked before every reading was taken and it was made sure that the bubble

    was in the centre. The staff is held vertically straight as well since we are measuring the vertical

    height of the ground.

      Unstable ground 

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    55/97

    55 | P a g e  

    Task three and four were carried out on the beach. The staff was inserted into soft sand which

    is why there was trouble keeping the bubble on the centre for long since the sand kept the total

    station and the staff move a little.

    To keep the accuracy in the readings, the measurement was taken quickly.

      Handling the instrument and tripod 

    Though constant warnings were given to other group members, someone always ended up

    coming into contact with the tripod legs. To avoid this, a circle was made around the tripod and

    no one was allowed to enter the circle except the one using the total station. Fingertips were

    used to focus the total station and not the complete hand.

    J. Uren & W.F. Price (2006)

      Reading and booking errors 

    Readings were immediately recorded into the recording sheets and the reading was repeated

    twice loud so that there is no mistake in recording the measurements taken.

      Human error  

    Humans also tend to make error and there are three which I have experienced in survey camplast week:

      Reading the staff incorrectly

      Writing the wrong value for a reading in the recording sheet

      Making mistakes in calculations

    J. Uren & W.F. Price (2006)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    56/97

    56 | P a g e  

    Conclusion

    Overall, the traverse method was successfully completed and the margin of error obtained was

    3240° - 3239°53’57.5” giving us 00°06’2.5”. 

    There were a lot of errors and mistakes in this task but it was successfully completed and such

    a small margin of error states that from a student of civil engineering, we are on the right verge.

    We worked as a team for this task and everyone was given different tasks to complete. My skills

    for working as a team were tested for this task. We all made new friends and got closer to each

    other individually then we were before.

    The best part was that I learnt a lot from this task. It improved my knowledge on whole circle

    bearing, how to obtain mean, and how to draw a closed traverse using pen and paper and in

    autocad.

    The autocad part was very challenging in the beginning but slowly as I managed to see some

    videos on You Tube and learn from the Auto Cad help section, I managed to make the drawings

    required for this task.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    57/97

    57 | P a g e  

    Task 3

    The task 3 involves setting out at given points. The figure is provided and the task was to

    produce the same figure on the beach and then measure the face right and face left and

    levelling measurements from stations 1, 2 and 3.

    The readings were then used to calculate the mean, whole circle bearing, Northing and Easting

    and the x and y using last two digits of the passport number. The height of collimation method

    and rise and fall method were used for the levelling calculations.

    This report will explain the research methodology used, procedure, data, analysis of data,

    discussion, conclusion, recommendation and reference and appendix in the order stated.

    Objective

    The objective of carrying out this task is to carry out:

      Levelling activities

      Determine the contour lines

      Plot the design building in AutoCAD

      Carry out Setting out on the building outline provided

    Apparatus

      Traverse booking sheet

      Levelling booking sheet

      Total station

      Prism

      Tripod

      Automatic level

      Measurement tape

      Wooden peg

      Field record book

      Health and safety equipment

      Pen

      Recording sheet

      Nails

      Spray paint

      Staff

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    58/97

    58 | P a g e  

    Procedure

    There are three main steps to follow when setting up the total station:

      Centering the theodolite

      Levelling the theodolite  Elimination of parallax

    The first step is to set up the tripod over the peg. The legs of the tripod are placed an equal

    distance from the peg and are extended to suit the observer’s height. 

    The total station is then taken out of its case, and carefully placed on top of the tripod. It is

    screwed onto the tripod.

    The ground mark (peg) is focused now through the optical plummet. The three foot screws are

    adjusted until the peg can be seen in clear focus.

    The circular bubble on the upper part of the theodolite is now adjusted till it is centered by

    adjusting the individual tripod legs.

    The final step is to centre the plate level bubble which is done by adjusting the foot screws.

    Once the bubble is in the center, the instrument is turned 90° and the bubble is checked again.

    If it is still in the centre, then the instrument is ready for measurements to be taken.

    Wilfred Schofield & Mark Breach (2007)

    Since we have to follow the following map, we set it out first by using the wooden pegs provided

    and then carried out the measurements using the total station.

     A total station can measure both horizontal and vertical distances and at the same time the

    slope distances. Using the vertical angle, the total station can calculate the horizontal and

    vertical distance components of the measured slope distance and display these.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    59/97

    59 | P a g e  

     A total station is used by setting it up over one end of the line and a reflector is held by the

    person at the measuring point. The instrument is pointed towards the reflector and part of the

    signal returns and is processed and in a few seconds, gives the slope distances with the

    horizontal and vertical distances.

    Wilfred Schofield & Mark Breach (2007)

     After setting up the total station, the first point taken was north, 10 meters and it was marked as

    point 1. After this, since our XY was 50, the next point was north 12.50 meters from point 1.

    The measurements of face right and face left were taken at every point until the whole figure

    was sketched out at the field using the wooden pegs and the rope was used to connect all the

    points.

    Wilfred Schofield & Mark Breach (2007)

    Then, a contour plan was set up by establishing wooden pegs every 2 by 2 meters. The auto

    level was used to carry out the levelling measurements at every point as one group member

    was holding the staff.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    60/97

    60 | P a g e  

    Calculations

     After taking the readings above, the next step was to calculate the reduced level and

    Misclosure, and then find the corrected reduced level values. This was done using height of

    collimation method and rise and fall method.

    The first bench mark was taken as 102 plus last two digits of my passport number. Since my

    passport number is, the TBM remained as 102. Therefore, the first HPC was 102 + 0.555 and

    that is 102.555. Microsoft excel was used to insert the data and do the calculations.

    To make sure there are no mistakes done, the answer was checked using the following

    equation:

    BS –  FS = Last Initial RL – First RL

    The value obtained was 0.003 which proved that the calculation was correctly carried out and

    that there were no mistakes. The error obtained is divided by the number of stations and then

    the value is distributed over the stations.

    Rise and Fall Method

    For the rise and fall method, there is also an arithmetic equation provided which can show us

    whether the equation used is correct or not.

    BS – FS = Rises – Falls = Last Initial RL – First RL

    4.664 – 4.667 = 1.409 – 1.412 = 101.997 – 102.000

    0.003 = 0.003 = 0.003

    Therefore the following calculation is correct since all the values are the same.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    61/97

    61 | P a g e  

    Discussion & Analysis

    Sources of error in levelling

      Collimation error

    Collimation error is produced when sight lengths from one instrument position are not equal,

    since the collimation error is proportional to the difference in these.

    In our site work carried out at Lanjut Resort, I believe the collimation error was avoided to its

    acceptable limits since we kept sight lengths equal, especially focusing on the BS and FS.

     A two peg test was also carried out in order to check the collimation error. We first placed pegs

    on both sides of the total station and then found the difference in elevation. Then, we moved the

    level 30cm past both pegs and then took the readings again. There was a slight difference in

    elevation from both readings and it was concluded that it is in the acceptable range.

    J. Uren & W.F. Price (2006)

      Compensator not functioning 

    To check the compensator, gently tap the total station, move the foot screw slightly off level or

    push the compensator check lever to make sure whether the reading remains constant.

    In our case, the compensator was functioning perfectly since the total station used was in good

    condition.

      Parallax 

    It occurs when the image of the staff doesn’t  fall exactly on the plane of the diaphragm or when

    the focal point is not found in the plane of the diaphragm.

    In our case, parallax error was avoided by using two different group members, they moved their

    eyes to different parts of the eyepiece when viewing the staff held by another group member.

    There was a slight change in the positions of the target and it was concluded that parallax error

    is present and since it couldn’t be completely eliminated, it was found in acceptable range.  

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    62/97

    62 | P a g e  

    J. Uren & W.F. Price (2006)

      Defects of the staff  

    The total station used was fairly new so this error is eliminated from the readings. Another error

    which arises from staff defects is the zero error. It usually occurs when two staffs are used for

    the same series of readings, and it is advised to use only one staff for all the readings which is

    what we followed for our tasks.

    J. Uren & W.F. Price (2006)

    Field or on-site errors

      Staff not vertical

    The bubble was checked before every reading was taken and it was made sure that the bubble

    was in the centre. The staff was held vertically straight as well since we are measuring the

    vertical height of the ground.

      Unstable ground 

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    63/97

    63 | P a g e  

    Task three and four were carried out on the beach. The staff was inserted into soft sand which

    is why there was trouble keeping the bubble on the centre for long since the sand kept the total

    station and the staff move a little.

    To keep the accuracy in the readings, the measurement was taken quickly.

    J. Uren & W.F. Price (2006)

      Handling the instrument and tripod 

    Though constant warnings were given to other group members, someone always ended up

    coming into contact with the tripod legs. To avoid this, a circle was made around the tripod and

    no one was allowed to enter the circle except the one using the total station. Fingertips wereused to focus the total station and not the complete hand.

      Reading and booking errors 

    Readings were immediately recorded into the recording sheets and the reading was repeated

    twice loud so that there is no mistake in recording the measurements taken.

      Human error  

    Humans also tend to make error and there are three which I have experienced in survey camplast week:

      Reading the staff incorrectly

      Writing the wrong value for a reading in the recording sheet

      Making mistakes in calculations

    J. Uren & W.F. Price (2006)

    The total station.

    The plate level vial axis must be perpendicular to the vertical axis.

    The vertical axis must be perpendicular to the horizontal axis.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    64/97

    64 | P a g e  

    The axis of the line of sight must be perpendicular to the horizontal axis.

    C.L. Berger Sons (2010)

    Errors

    Instrumental -

    Plate level vial out of adjustment

    Detection: Level instrument in two directions as per typical setup. Rotate instrument 180° from

    either of these directions, and bubble should remain centred. Any miscentering indicates that

    the plate level vial axis is not perpendicular to the vertical axis.

    C.L. Berger Sons (2010)

    Correction:

    Level instrument with bubble miscentred by 1/2 of the detected error (bubble run), or follow

    manufacturer's procedure for removal of error.

    Horizontal axis not perpendicular to vertical axis

    This error causes errors in both horizontal and vertical angles since telescope travels in inclined

    plane instead of vertical plane.

    Error can be removed by observing angles in both direct and reversed mode, and averaging.

    Dual-axis compensators can remove this error is the instrument is properly calibrated.

    Axis of sight not perpendicular to horizontal axis

    This error cause the telescope to scribe out a cone when it is plunged.

    Corrected by using double-centering technique when extending a line, and by doubling

    angles (measuring in both direct and reversed modes.)

    C.L. Berger Sons (2010)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    65/97

    65 | P a g e  

    Eccentricity of the plates-

    Occurs when vertical axis of instrument does not coincide with centre of plates. Compensated

    for by taking several readings about the plates and averaging. This happens automatically in

    surveying grade instruments.

    Circle graduation errors – 

    Caused by irregularities in marking of plates. Take many reading about the plates and average.

    This is generally handled by modern total stations.

    Errors caused by peripheral equipment – 

    Be sure that tripods, tribrach, and targets are mechanically sound and in adjustment. Use

    targets that are appropriate for sight distances.

    C.L. Berger Sons (2010)

    Natural errors -

    Wind

    Vibrates tripod and target in windy condition. When this happens you can (1) protect instrument

    from wind by using shield, or (2) Wait until wind speed reduces.

    Temperature

    Can cause uneven expansion of tripod and instrument parts resulting in instrument mislevelling.

    When this happens you can shield instrument using umbrella.

    Refraction

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    66/97

    66 | P a g e  

    Causes bending of sight line. Avoid having sight line close to objects (within 0.5 m) that can

    create microclimates such as the ground, cars, and large trees. When this cannot be done,

    postpone observations until better conditions exist.

    C.L. Berger Sons (2010)

    Tripod setting

     Avoid situation where legs are placed on different surfaces, and extreme soft-ground

    conditions. When this cannot be avoided such as in marshes and swamps, pound long wooden

    stakes flush with surface and set tripod on stakes. Most total station instruments have sensors

    to suspend observations when misleveling becomes too great.

    Personal errors-

    Instrument miscentering

    Can cause observed angle to be too large or small. Carefully centre and level instrument. Size

    of error is reduced when angles have long sight lengths.

    Target miscentering

    Can cause observed angle to be too large or small. Use long sight distances to reduce effecton observed angles.

    C.L. Berger Sons (2010)

    Improper use of clamps and tangent screws

    Practice in formation of good observing habits and familiarity with equipment will reduce these

    errors.

    Poor focusing

    One of the most common errors. Be sure parallax is removed before taking observation. Avoid

    different operators during observation procedure.

    Overly careful sights

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    67/97

    67 | P a g e  

    This is a common beginner error. Take careful sights on targets, but do not redo procedure.

    Beginners tend to observe, then re observe, then re observe ... before taking sight. This process

    results in unsettling instrument and reducing pointing accuracy. Trust your eyes.

    C.L. Berger Sons (2010)

    Contour drawing for task 3

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    68/97

    68 | P a g e  

    Conclusion

    I come to the conclusion that the error obtained was 0.03. The different sources of error were

    discussed in order to explain how surveyors encounter the different errors and the best part was

    that most of the errors we had experienced them at the surveying camp so it gave us a verygood description and made it easy for me to explain on the errors section.

    I used Auto Cad for this task as well but it was the 2D figure which was required so I didn’t have

    much trouble making it.

    The Contour lines came out properly and they do not meet which is an essential requirement in

    contour drawing. The Points seem to be parallel to each other.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    69/97

    69 | P a g e  

    Task 4

    Road Curve

    This task involves the making of a road. The survey is carried out in order to establish the points

    required and to ensure that the road is properly produced. Now the making of a road curve

    involves extension of the tangent lines. You can understand the drawing properly by checking

    the figure below:

    We are carrying out the survey in order to check the health and safety issues involved with the

    road. If the proper dimensions are not used, even a small margin of errors can cause accidents

    which can cost us human lives and damage of infrastructure and vehicles. In other words, it canbe the reason of major transportation crisis. This is why highway engineering is respected by

    the whole engineering society because they hold one of the most difficult jobs in the world and

    even a slight error is not affordable.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    70/97

    70 | P a g e  

    Total Station

      Capable of measuring angles in both the

    horizontal and vertical planes, slope distances

      Can trigonometrically convert slope distances to

    their horizontal and vertical components of distances

      Can compute XYZ coordinates of points using

    observations. (Z is elevation)

      All information can be digitally recorded

      Can be used to stake-out engineering projects using

    coordinates

      Can measure multiple angles and average the results

      Displays measurements on liquid crystal displays

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    71/97

    71 | P a g e  

    All total stations have

      standards

      telescopes

      objective lens and focus

      eyepiece lens and focus

      both lenses must be focused to avoid parallax

      define axis of sight

      EDM

      horizontal axis

      vertical axis

      levels (many instruments use digital levels today)

      keypad

      display

      battery

      angle measurement system

      horizontal circle

      vertical circle

      horizontal and vertical motion screws

      lock screw

      tangent screw

      automatic compensator to correct for mislevelment - not on all instruments

      collimator - used to roughly sight on target

      Communication port

      optical/laser plummet

      base - permit interchange of equipment with tribrach

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    72/97

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    73/97

    73 | P a g e  

    Procedure for setup over a point

      Remove tribrach from instrument in case, and place on tripod if it has an optical

    plummet.

      Place legs such that two are downhill and are not in the lines of sight. This will prevent

    you from having to lean over legs in most instances.

      Extend legs so that the shortest person in your crew can comfortably use total station

    without standing on tiptoes.

      Roughly centre and level tripod over point. You can use a coin or stone to check

    centring. Drop it from the centre of the tripod and observe where it hits.

      Place instrument on tripod if required. Make sure tribrach is centred on tripod head to

    ensure maximum flexibility in centring.

      Focus optical plummet eyepiece and objective lens to bring ground and centring wires

    into sharp focus. Make sure parallax is removed.

      Using levelling screws, centre optical plummet over point

      Using adjustable legs, carefully level circular bubble.

      Steps 8 & 9 should bring the instrument roughly centred and levelled over the point. If

    not, repeat steps.

      Use precise level to roughly level instrument.

      Loosen tribrach and centre instrument over point. Be careful not to rotate instrument

    when sliding on head of tripod.

      Fine level instrument using precise level, and tribrach levelling screws.

      Check instrument centring

      Check level.

      Repeat steps 10-13 until instrument is precisely centred and levelled over point. (If it

    takes more than the first attempt, you are doing something wrong!)

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    74/97

    74 | P a g e  

    Relationships between Distances and Angles

    From Euclidean geometry we know that

    S = R q

    Where S is the arc length on a circle of radius R subtended by

    and angle q in radian units.

    Thus

    1' of arc = 0.03 ft at 100 ft

    1" of arc = 1 ft at 40 mi, or 0.5 m at 100 km, or 1 mm at 200 m

    1" of arc = 0.000004848 radians

    1 radian = 206,264.8" of arc

     A traverse that requires a precision of 1:20,000 implies an angular accuracy of

    Important to pick a target that matches the accuracy of your instrument, and desired resulting

    angle.

    Example

     A chaining pin is used as a site on a station that is 100 ft from the instrument. The chaining pin

    is 0.01 ft wide. It is estimated that the operator can centre the sight within ±0.005 ft, or 1/2 of the

    pin. What resultant angular error can occur with this target? Would this be an appropriate target

    when using an instrument that has a specified accuracy of ±3"?

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    75/97

    75 | P a g e  

    Measuring Horizontal Angles

    The procedure for measuring angles is dependent on the total station used.

    There are two basic procedures for angle measurement.

    Repetition method: This method can only be done by some instruments. 

    Direction method : Can be performed using any total station. 

     An angle must be turned at least once direct, and reverse to ensure that instrumental errors are

    compensated. A set of each is known as a position.

    (1DR) means an angle turned once direct and once reverse. - 1 position

    (2DR) means an angle turned twice in the direct and reversed. 2 positions.

    General Procedures for Measuring Angles by Repetition Method

    1. With instrument at I sight on J (back sight)

    2. Zero display

    3. Turn instrument to K (foresight).

    4. Read and record display.

    5. Press button to hold value of angle on display. (Note: Not all instruments have this

    button.)6. Plunge scope, and sight J.

    7. Release angular value on display by pressing button. (Again, not all instruments have

    this feature.)

    8. Turn instrument and sight on K.

    9. Repeat steps 5-8 until desired number of turnings is obtained. (There must be an even

    number of angles to correct for instrumental errors.)

    10. Record final angular value.

    11. Take average of final value, and compare with first recorded reading to check

    consistency of angle turning. Repeat angle measurement procedure, if necessary.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    76/97

    76 | P a g e  

    General Procedure for Measuring an Angle Using the Directional Method (SMI)

    1. To complete the observation of the angle and distance.

    2. Sight the back sight station K and zero the instrument. For most instruments, zeroing

    can be done from the SETUP soft key menu.

    3. From the Setup soft key menu find the SHOTS submenu. Press SETUP, NXT, SHOTS.

    4. Press the BS soft key. This will read the instrument's horizontal and zenith angles and

    set the values in the BSDIR: line of the screen.

    5. Sight the instrument on your foresight station K, and press SHOT from the SHOTS

    submenu.

    6. Plunge the scope and re sight the foresight station K. Press the SHOT soft key to read

    the circle in the reverse position.

    7. Re sight the back sight station J and press the BS soft key.

    8. To measure the angle 2DR, press the SET1 soft key to toggle the data collector to

    SET2, and repeat steps a-f.

    9. Press the EVAL soft key in the SHOTS submenu. This will display the average of the

    two pointing and the error. If the error is less than 1.96´DIN of your instrument accept the

    shots by pressing the STPTS (store points) key. If the error is too large you can delete a

    pointing and repeat the shot.

    Once you willing to accept your observations press the STPTS (store points) button. The data

    collector will prompt to determine if this is a traverse point (TRAVR) or a side shot (SIDES).

    Press TRAVR soft key. The data collector will accept the shots, move the occupied point to

    station 2 (the next station in the traverse), and the back sight point to station 1 (the previous

    occupied point).

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    77/97

    77 | P a g e  

    General Procedure for Measuring an Angle Using the Directional Method

    1. The advantage of this method is that it allows you to sight on multiple stations with little

    additional effort.

    2. With instrument at P, sight on Q.

    3. Zero display.

    4. Turn instrument to R. and read and record display.

    5. Turn instrument to S and read and record display.

    6. Plunge telescope.

    7. Turn instrument to sight on Q.

    8. Zero display.

    9. Turn instrument to R. and read and record display.

    10. Turn instrument to S and read and record display.

    11. Repeat step 5-9 until angle(s) are measured desired number of times.

    Vertical Angles

    Zenith/altitude angles are angles measured in the vertical plane.

    Zenith angles have zero pointing toward the instrument's zenith.

     All total stations measure zenith angles.

     Altitude angles have zero pointing toward the instrument's horizon

    ; "+" when above the horizon and "−" when below the horizon  

     Altitude angles were predominant with transits older transits.

    Relationship between zenith angle (z) and altitude angle (a) is

    Direct mode a = 90° - z

    Reversed mode a = z - 270°

    Indexing error is an error caused by the zero point on the vertical circle not truly being at the

    zenith.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    78/97

    78 | P a g e  

    The concept involved is that we shall increase the tangent length which allows us to

    have a larger curve radius and a larger curve distance which allows for a greater

    distribution of deflection angles at each given point.

     All roads are designed according to road speeds. This is the reason why every road has

    a different speed limit. The emphasis is given to the vehicle so it can be as comfortable

    and safe with the velocity and weight that it is carrying on the specific road.

    This is why, the smaller the radius of the curve, the greater is the radial force acting on

    the vehicle. In our case, the radius is 20°08’45” which is normal.  

    In a road, we can notice something an engineer will call as a super elevation. It

    shouldn’t exceed a certain limit because then the road will have more curve and the

    vehicles on it will slip off the way.

    Curves are aligned to provide smooth changes in direction in the form of deflection

    angles that will sum up to a certain amount by the end of the curve. It is often the case

    that the ratio between deflection angles and longest chord length are to be made in

    such a way that the angle is small over greater distance.

    The curve given for us was a horizontal curve with a constant radius.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    79/97

    79 | P a g e  

    Volume of the road curve

    Now, we need to find the volume of the road curve. We shall use the figure above plus the CorrRL values to find the area and then multiply it with the chord length to find the volume.

    Calculations

    The formation level given for group 1 is 101.XYZ. XYZ are the last three digits of my passportnumber so in my case, the formation level is 101.600.

    The following are the autocad drawings for the cut and fill part.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    80/97

    80 | P a g e  

    Figure 4.1 : It shows the Cut and Fill for Task 4

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    81/97

    81 | P a g e  

    Figure 4.2 : Shows the cut for road curve

    Figure 4.3 : Shows the cut for road curve

    Figure 4.4 : Shows the cut for road curve

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    82/97

    82 | P a g e  

    Figure 4.5 : Shows the cut for road curve

    Figure 4.6 : Shows the cut for road curve

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    83/97

    83 | P a g e  

    The drawing of the new road using the Autocad and Microsoft Office Design

    Calculations for the volume

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    84/97

    84 | P a g e  

    Cut and Fill

    F=a1 (.+.

      ) × 5 = 1.864m²

    =a2 (.+.

      ) × 5 = 2.239m² (Triangle 0.25m² on both sides) A1=4.103

    AT1 = ⁄   =.

    ⁄   = .² 

    A1 + AT1 = 4.103 + 0.25 + 0.25 = 4.603m2 

    Since there are two triangles, so we add 0.25m2 twice.

    E=a1 (.+.

      ) × 5 = 1.8165m²

    =a2 (.+.

      ) × 5 = 2.4665m² A2=4.283

    AT2 = ⁄   =.

    ⁄   = .² 

    A2 + AT2 = 4.283 + 0.25 + 0.25 = 4.783m2 

    Since there are two triangles, so we add 0.25m2 twice.

    D=a1 (.+.

      ) × 5 = 1.0665m²

    =a2 (.+.

      ) × 5 = 1.3915m² A3=2.458

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    85/97

    85 | P a g e  

    AT3 = ⁄   =.

    ⁄   = .² 

    A3 + AT3 = 2.458 + 0.25 + 0.25 = 2.958m2 

    Since there are two triangles, so we add 0.25m2 twice.

    C=a1 (.+.

      ) × 5 = 1.6085m²

    =a2 (.+.

      ) × 5 = 1.825m² A4=3.4918

    AT4 = ⁄   =.

    ⁄   = .² 

    A4 + AT4 = 3.4918 + 0.25 + 0.25 = 3.9918m2 

    Since there are two triangles, so we add 0.25m2 twice.

    B=a1 (.+.

      ) × 5 = 1.6085m²

    =a2 (.+.

      ) × 5 = 1.8335m² A5=3.442

    AT5 = ⁄   =.

    ⁄   = .² 

    A5 + AT5 = 3.442 + 0.25 + 0.25 = 3.992m2 

    Since there are two triangles, so we add 0.25m2 twice.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    86/97

    86 | P a g e  

     A=a1 (.+.

      ) × 5 = 0.984m 

    =a2 (.+.

      ) × 5 = 1.7923m 

    Therefore A6=2.7763

    AT6 = ⁄   =.

    ⁄   = .² 

    A6 + AT6 = 2.7763 + 0.25 + 0.25 = 3.2763m2 

    Since there are two triangles, so we add 0.25m2 twice.

    V1= (.+.

      ) × 9= 42.237m3 

    V2= (.+.

      ) × 9 = 34.8345m3 

    V3= (.+.

      ) × 9= 31.2741m3 

    V4= (

    .+.

      ) × 9= 35.9271m3

    V5= (.+.

      ) × 9 = 32.70735m3 

    Total= V1V2 V3 V4 V5 = . m3 

    Total= ( .+.

    )× 45 = . m3 

    The important point to note is that since the formation level is 101.600, all the points are to cut.

    This actually made it easier for me to calculate the area and the volume.

    The total volume to cut is 177.28m3.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    87/97

    87 | P a g e  

    Discussion & Analysis

    The total station.

    The plate level vial axis must be perpendicular to the vertical axis.

    The vertical axis must be perpendicular to the horizontal axis.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    88/97

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    89/97

    89 | P a g e  

    Wind

    Vibrates tripod and target in windy condition. When this happens you can (1) protect instrument

    from wind by using shield, or (2) Wait until wind speed reduces.

    Temperature

    Can cause uneven expansion of tripod and instrument parts resulting in instrument mislevelling.

    When this happens you can shield instrument using umbrella.

    Refraction

    Causes bending of sight line. Avoid having sight line close to objects (within 0.5 m) that can

    create microclimates such as the ground, cars, large trees. When this cannot be done, postpone

    observations until better conditions exist.

    Tripod setting

     Avoid situation where legs are placed on different surfaces, and extreme soft-ground

    conditions. When this cannot be avoided such as in marshes and swamps, pound long wooden

    stakes flush with surface and set tripod on stakes. Most total station instruments have sensors

    to suspend observations when misleveling becomes to great.

    Personal errors-

    Instrument miscentering

    Can cause observed angle to be too large or small. Carefully centre and level instrument. Size

    of error is reduced when angles have long sight lengths.

    Target miscentering

    Can cause observed angle to be too large or small. Use long sight distances to reduce effect

    on observed angles.

    Improper use of clamps and tangent screws

    Practice in formation of good observing habits and familiarity with equipment will reduce these

    errors.

    Poor focusing

    One of the most common errors. Be sure parallax is removed before taking observation. Avoid

    different operators during observation procedure.

    Overly careful sights

    This is a common beginner error. Take careful sights on targets, but do not redo procedure.

    Beginners tend to observe, then re observe, then re observe ... before taking sight. This process

    results in unsettling instrument and reducing pointing accuracy. Trust your eyes.

  • 8/20/2019 Land Surveying Using Auto Level Leveling

    90/97

    90 | P a g e  

    Sources of error in levelling

      Collimation error

    Collimation error is produced when sight lengths from one instrument position are not equal,since the collimation error is proportional to the difference in these.

    In our site work carried out at Lanjut Resort, I believe the collimation error was avoided to its

    acceptable limits since we kept sight lengths equal, especially focusing on the BS and FS.

     A two peg test was also carried out in order to check the collimation error. We first placed pegs

    on both sides of the total station and then found the difference in elevation. Then, we moved the

    level 30cm past both pegs and then took the readings again. There was a slight difference in

    elevation from both readings and it was concluded that it is in the acceptable range.

      Compensator not functioning 

    To check the compensator, gently tap the total station, move the foot screw slightly off level or

    push the compensator check lever to make sure whether the reading remains constant.

    In our case, the compensator was functioning perfectly since the total station used was in good

    condition.

      Parallax 

    It occurs when the image of the staff doesn’t fall exactly on the plane of the diaphragm or when

    the focal point is not found in the plane of the diaphragm.

    In our case, parallax error was avoided by using two different group member, they moved their

    eyes to different parts of the eyepiece when viewing the staff held by another group member.

    There was a slight change in the positions of the target an