kern method iit - delhi

34
8/13/2019 Kern Method IIT - Delhi http://slidepdf.com/reader/full/kern-method-iit-delhi 1/34 Kern Method of SHELL-AND-TUBE HEAT EXCHANGER Analysis P V Subbarao Professor  Mechanical Engineering Department I I T Delhi Simplified Procedures using Semi- Empirical Correlations.….  

Upload: vivekbanu

Post on 04-Jun-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 1/34

Kern Method of

SHELL-AND-TUBE HEAT EXCHANGER Analysis

P V Subbarao

Professor 

Mechanical Engineering DepartmentI I T Delhi

Simplified Procedures using Semi-Empirical Correlations.…. 

Page 2: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 2/34

Properties  Crude Oil  Heavy gas oil Density, kg/m3  915  890 Specific heat, kJ/kg K   2.62  3.08 Viscosity, cPoise

 0.664/0.563

 0.32/0.389

 Thermal conductivity,

W/m.K   0.124  0.14 

Page 3: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 3/34

Thermal Analysis for Tube-Side

Page 4: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 4/34

 

Page 5: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 5/34

Number of Tubes

• The flow rate inside the tube is a function of the density of thefluid, the velocity of the fluid, cross-sectional flow area of the

tube, and the number of tubes.

By using above Eq. and replacing  Ac by p d i2 /4, number of tubes

can be calculated as

2

it t 

tubet d u

m N 

p   

t ct t tube   N  Aum    

where d i is the tube inside diameter.

Page 6: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 6/34

Tubes in Shell and Tube Hx

• The number and size of tubes in an exchanger depends on the

•  Fluid flow rates

•  Available pressure drop.

• The number and size of tubes is selected such that the

• Tube side velocity for water and similar liquids ranges from

0.9 to 2.4 m/s.

• Shell-side velocity from 0.6 to 1.5 m/s.

• The lower velocity limit corresponds to limiting the fouling,and the

• upper velocity limit corresponds to limiting the rate oferosion.

• When sand and silt are present, the velocity is kept highenough to prevent settling.

Page 7: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 7/34

Number of Tubes Vs Reynolds Number

Page 8: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 8/34

Number of Tubes Vs Heat Transfer Coefficient

Page 9: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 9/34

Tube-Side Nusselt Number

For turbulent flow, the following equation developed by Petukhov-Kirillov is used:

2

322

1

28.3Reln58.1 

1Pr 2

7.1207.1

Pr Re2

 

  

 

t t 

tube

 f  Where

 f  

 f  

 Nu

Properties are evaluated at mean bulk temperature and constants

are adjusted to fit experimental data.

Validity range: 104 < Ret < 5 x 106 and 0.5 < Pr t < 2000 with

10% error.

Page 10: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 10/34

For laminar flow, the Sieder and Tate correlation is be used.

31

Pr Re86.1

 L

d  Nu   it t 

tube

is applicable for 0.48 < Pr t  < 16700 and (Ret  Pr t  d i /L)1/3 > 2.

The heat transfer coefficient for the tube-side is expressed asfollows:

i

t t t 

k  Nuh  

Page 11: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 11/34

Page 12: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 12/34

Page 13: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 13/34

Thermal Analysis for Shell-Side

Page 14: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 14/34

Tube Layout

• Triangular pitch (30o layout) is better for heat transfer andsurface area per unit length (greatest tube density.)

• Square pitch (45 & 90 layouts) is needed for mechanicalcleaning.

•  Note that the 30°,45° and 60° are staggered, and 90° is in line. • For the identical tube pitch and flow rates, the tube layouts in

decreasing order of shell-side heat transfer coefficient and pressure drop are: 30°,45°,60°, 90°.

• The 90° layout will have the lowest heat transfer coefficientand the lowest pressure drop.

• The square pitch (90° or 45°) is used when jet or mechanicalcleaning is necessary on the shell side.

Page 15: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 15/34

Tube Layout & Flow Scales

 A Real Use of Wetted Perimeter !

Page 16: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 16/34

Tube Pitch • Tube pitch Pt is chosen so that the pitch ratio is 1.25 < PT/do <

1.5.

• When the tubes are to close to each other (PT/do less than1.25), the header plate (tube sheet) becomes to weak for

 proper rolling of the tubes and cause leaky joints.• Tube layout and tube locations are standardized for industrial

heat exchangers.

• However, these are general rules of thumb and can be“violated” for custom heat exchanger designs. 

Page 17: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 17/34

Equivalent Counter Flow : Hydraulic or Equivalent

Diameter

• The equivalent diameter is calculated along (instead of

across) the long axes of the shell and therefore is taken

as four times the net flow area as layout on the tube

sheet (for any pitch layout) divided by the wetted

perimeter.

r erperimeteheattransf   De

areaflow-Free Net4

Page 18: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 18/34

Equivalent diameter for square layout:

O

OT 

e

 flow

 squareed 

d  P 

 P 

 A D

22

44

4

Equivalent diameter for Triangular layout:

2

84

34

4

2

2

O

O

e

 flow

triangular e

d  P 

 P 

 A D

Page 19: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 19/34

Shell-Side Reynolds Number

Reynolds number for the shell-side is based on theequivalent diameter and the velocity on the cross flow

area at the diameter of the shell:

 s

e

 s

 s s

 D Am

    Re

 s

e s

 s

e s s s

 DG DU   

   Re

Page 20: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 20/34

Page 21: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 21/34

Shell-Side Flow 

Page 22: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 22/34

Overall Heat Transfer Coefficient for the Heat

Exchanger

The overall heat transfer coefficient for clean surface (U c ) is

given by

Considering the total fouling resistance, the heat transfer

coefficient for fouled surface (U f ) can be calculated from the

following expression: 

Page 23: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 23/34

Outlet Temperature Calculation and Length of

the Heat Exchanger

The outlet temperature for the fluid flowing through the tube

is 

The surface area of the heat exchanger for the fouled condition is

Page 24: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 24/34

and for the clean condition 

where the LMTD  is always for the counter flow.

The over surface design (OS) can be calculated from :

Page 25: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 25/34

The length of the heat exchanger is calculated by

Page 26: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 26/34

Page 27: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 27/34

Hydraulic Analysis for Tube-Side

• The pressure drop encountered by the fluid making N  p passes through the heat exchanger is a multiple of the

kinetic energy of the flow.

• Therefore, the tube-side pressure drop is calculated by

228.3Reln58.1     t tube f  

Properties are evaluated at mean bulk temperature and constants

are adjusted to fit experimental data.

Validity range: 104

 < Ret < 5 x 106

 

Page 28: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 28/34

Where,

 bafflesof  Number:b N 

 velocitymasssideShell: sG

.correction propertyVariable:

14.0

w

 b

 

 

 

 

 

 

  s

factor frictionsideShell: s f  

Shell side Hydraulic Analysis

Page 29: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 29/34

 μb is the viscosity of the shell-side fluid at bulk

temperature, and μw is the viscosity of the tube-side fluid

at wall temperature.

The wall temperature can be calculated as follows:

Page 30: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 30/34

Pumping Power

oil hot  p

tubeoil hot tube

 pm P 

   

oil crude p

 shell oil crude shell 

 pm P 

   

Page 31: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 31/34

Roadmap To Increase Heat Transfer

Page 32: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 32/34

Roadmap To Increase Heat Transfer • Increase heat transfer coefficent

• Tube Side

 – Increase number of tubes

 – Decrease tube outside diameter

• Shell Side

 – Decrease the baffle spacing

 – Decrease baffle cut

• Increase surface area

 – Increase tube length

 – Increase shell diameter à increased number of tubes

 – Employ multiple shells in series or parallel• Increase LMTD correction factor and heat exchanger

effectiveness

 – Use counterflow configuration

 – Use multiple shell configuration

Page 33: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 33/34

Roadmap To Reduce Pressure Drop • Tube side

 –  Decrease number of tube passes

 –  Increase tube diameter

 –  Decrease tube length and increase shell diameter and number of

tubes

• Shell side

 –  Increase the baffle cut

 –  Increase the baffle spacing

 – 

Increase tube pitch –  Use double or triple segmental baffles

Page 34: Kern Method IIT - Delhi

8/13/2019 Kern Method IIT - Delhi

http://slidepdf.com/reader/full/kern-method-iit-delhi 34/34

• Study the effect of baffle spacing on size of heat

exchanger.

• Study the effect of baffle spacing on total pumping

power.