kampung capacity 21.09.2013 - university of california...

32
RURAL SUSTAINABLE ENERGY SUPPLY POTENTIAL: ACASE STUDY OF THE BARAM RIVER BASIN,SARAWAK,MALAYSIA Prepared by Rebekah Shirley and Daniel M. Kammen Renewable and Appropriate Energy Laboratory http://rael.berkeley.edu University of California, Berkeley September, 2013

Upload: others

Post on 15-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

1    

 

RURAL  SUSTAINABLE  ENERGY  SUPPLY  POTENTIAL:    

A  CASE  STUDY  OF  THE  BARAM  RIVER  BASIN,  SARAWAK,  MALAYSIA  Prepared  by  

Rebekah  Shirley  and  Daniel  M.  Kammen  

 Renewable  and  Appropriate  Energy  Laboratory  

http://rael.berkeley.edu  

University  of  California,  Berkeley  

September,  2013  

 

   

Page 2: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

2    

ABSTRACT  In   this   report,   we   document   the   potential   for   renewable   energy   resource   supply   and   electricity  generation   in   village   communities   in   Sarawak,   Malaysia.   This   research   exercise   was   done   in  collaboration   with   the   Sabah-­‐based   NGO   Land,   Empowerment,   Animals   and   People   (LEAP),   Sabah-­‐based   Friends   of   Village   Development  or   Tonibung   and   Oregon   based   NGO   Green   Empowerment.  These  groups  are  currently  engaged  in  rural  development  and  expanding  rural  energy  access  in  East  Malaysia.   There   are   over   600   rural   villages   (more   than  50km   from  an  urban   center)   in   the   state   of  Sarawak.   Amongst   other   issues   including   the   formalization   of   native   customary   lands,   logging   and  palm   oil   concession   infringement   and   urban  migration,   the   common   lack   of   affordable   and   reliable  energy  access  poses  a  barrier  to  development  in  many  villages.    

A  majority  of  rural  villages  in  East  Malaysia  are  not  grid  connected  and  rely  heavily  on  diesel  fuel  for  all   electricity   and   transportation   needs.   Tonibung   and   Green   Empowerment   have   been   installing  micro-­‐hydro  systems  in  Malaysia  for  over  a  decade.  They  have  already  installed  micro-­‐hydro  plants  in  a  number  of   Sarawakian  villages   including  Long  Lawen1  and  have  plans   for  multiple   installations   in  Baram   River   villages   and   the   Kelabit   Highlands.   The   results   of   our   current   assessment   show   that  Sarawak’s   rural   economy   could  benefit   greatly   from  a  higher  penetration  of   such   renewable   energy  projects.  Using  data  obtained   from   literature,   surveys,   and  measurements  we  estimate   load  demand  and  resources  available  for  a  sample  of  prospective  villages  within  the  Baram  River  watershed.  Using  the   Hybrid   Optimization   Model   for   Electric   Renewables   (HOMER)2   we   will   find   the   optimal  configuration   for   each   surveyed   village   based   on   cost   and   resource   availability.   The   report   thus  answers  three  primary  questions:    

• What  level  of  energy  demand  exists  in  village  communities?  • What  local  resources  are  available  to  individual  village  communities  for  energy  provision?  • What  is  the  optimal  and  most  cost  effective  system  design  for  rural  electrification?  

Our  energy   team  at  RAEL  directed  by  Professor  Daniel  Kammen  has  over  20  years  of   experience   in  conducting   these   types   of   studies   in   North   America,   Europe,   Asia,   Africa,   Latin   America   and   the  Caribbean.   We   have   prepared   a   number   of   reports   and   decision   support   tools   focused   on   island  communities3.   RAEL   researchers   played   a   core   role   in   highlighting   viable   alternative   clean   energy  scenarios  for  Sabah  in  20104.    We  seek  to  expand  this  feasibility  study  work  into  Sarawak  to  support  the   work   of   NGOs   and   Government   Agencies   that   are   dedicated   to   empowering   and   strengthen  indigenous  life  in  East  Malaysia.    

 

                                                                                                                           1  http://www.greenempowerment.org/countries/8/project/17  2  HOMER  is  developed  by  the  U.S.  National  Renewable  Energy  Laboratory  (http://homerenergy.com/)  3  https://rael.berkeley.edu/sustainableislands  4  Pinkowski,  TIME  Magazine,  http://www.time.com/time/health/article/0,8599,2052627,00.html  

Page 3: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

3    

EXECUTIVE  SUMMARY  In  this  study  we  explore  the  potential  for  rural  renewable  energy  supply  through  a  focus  on  villages  of  the  Baram  River  Basin  in  Sarawak  as  the  basin  next  scheduled  for  mega  hydroelectricity  development  by  the  state  government  of  Sarawak.  The  Baram  Villages  do  not  fall  into  the  category  of  lacking  energy  access   given   transport   routes,   diesel   fuel   availability   and   the   introduction   of   cash-­‐based   rural  economies.   However   diesel   fuel   cost,   while   not   entirely   prohibitive,   is   a   barrier   which   creates  exclusion.   Designing   more   cost   effective   ways   to   meet   current   electricity   demand   will   relieve   an  economic  burden  while  simultaneously  creating  potential  for  new  economic  revenue  streams.  As  such  we  have  explored  optimal  system  designs  for  electricity  supply  in  villages  of  the  Baram  and  determine  that   lower   cost,   higher   reliability   options   are   available   for   the   villages   given   current   resource  potential.  The  average  village  household  uses  41  kWh/month  compared  to  205kWh/month  for  urban  Sarawak   households.   Currently   electricity   from   diesel   effectively   costs   2.24   RM/kWh   in   village  communities,  compared  to  a  0.31  RM/kWh  domestic  electricity  tariff  for  utility  (SESCO)  customers.        

We  model  three  Kenyah  villages  along  the  Baram  River  –  Long  San,  Tanjung  Tepalit  and  Long  Anap  -­‐  representing  high,  medium  and   low  energy  use  based  on   size   and   village   activity.   Their   size   ranges  from  50  to  25  houses  and  total  energy  demand  ranges  from  45kW  to  14kW.  We  find  these  villages  to  have  significant  energy  resource  potential  with  monthly  averaged  insolation  of  5.34  kWh/m2-­‐day,  high  river   flow   rates   and   about   0.2   tonnes   rice   husk/family   per   year.   We   developed   a   set   of   inputs   to  HOMER  that  cover  a  number  of  resource  and  technology  inputs  for  each  village.  The  study  shows  that  there   are   significant   savings   which   could   come   from   using   renewable   technologies   for   electricity  generation.   In   each   village   modeled   the   least   cost   option   was   some   combination   of   hydro,   biogas  generators   and   accompanying  batteries   (see   Figure  1   as   an   example).   In   each   village   case   this   least  cost  option  was  20%  or  less  of  a  diesel  base  case  cost.  The  Levelized  Cost  of  Electricity  (LCOE)  of  these  renewable  options  was  also  all  less  than  20%  of  their  diesel  base  case  scenarios  (see  Figure  2).    

We  observe  that  hydroelectricity   is   the   lowest  cost  means  of  electricity  production  available   to  each  village.     Small   scale   biogasification   is   financially   feasible   and   profitable   for   village   communities  however  the  technical  feasibility  of  maintaining  a  biogas  system  must  be  considered.  Despite  the  cost  of   diesel   fuel,   photovoltaic   systems   (PV)   are   not   cost   effective   for   the   village   communities.   When  employed  they  do  not  act  as  dominant  energy  sources.  Capital  and  replacement  costs  of  battery  packs  are   often   the   major   cost   component   for   many   least   cost   systems.   Despite   this,   diesel,   even   at   the  subsidized   government   price,   is   the   most   expensive   form   of   energy   for   Baram   villages,   given   the  recurrent  annual  fuel  costs  that  it  implies.  In  fact,  we  find  that  the  Payback  Period  on  Hydro  and  Biogas  systems   can   be   two   years   or   less   compared   to   100%   Diesel   base   case   scenarios.   These   findings  highlight  the  potential  of  villages  in  rural  Sarawak  to  satisfy  their  own  energy  access  needs  with  local  and   sustainable   resources.   This   conclusion   supports   a   state-­‐wide   energy   development   strategy   that  considers  small  scale  energy  solutions  and  technologies  as  an  important  part  of  providing  rural  energy  access  and  rural  development  opportunity.    

 

Page 4: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

4    

 

Figure  1  Tanjung  Aru  Optimal  System  Types  

 

 

Figure  2  Difference  in  LCOE  for  Least  Cost  Options  and  Diesel  Base  Case  Diesel  

 

 

Page 5: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

5    

TABLE  OF  CONTENTS  

 1.   RURAL  ENERGY  ACCESS  ........................................................................................................................  6  

1.1.   THE  VALUE  OF  ENERGY  ACCESS  ......................................................................................................  6  

1.2.   RURAL  SARAWAK  ...........................................................................................................................  7  

2.            THE  VILLAGES  OF  THE  BARAM  RIVER  ......................................................................................................  9  

2.1.   DESCRIPTION  OF  ENERGY  USE  IN  SELECTED  VILLAGES  ..............................................................  9  

2.1.1.   GENERAL  DESCRIPTION  ........................................................................................................  9  

2.1.2.   ENERGY  USE  IN  THE  VILLAGES  ............................................................................................  10  

2.1.3.   DESCRIPTION  OF  ENERGY  RESOURCES  .................................................................................  14  

3.   ENERGY  MODELING  OF  THE  BARAM  VILLAGES  ....................................................................................  18  

3.1.   OPTIMIZATION  MODEL  FRAMEWORK  ......................................................................................  18  

3.2.   GENERAL  MODEL  RESULTS  .....................................................................................................  19  

3.2.1.   TANJUNG  TEPALIT  ..............................................................................................................  19  

3.2.2.   LONG  ANAP  .........................................................................................................................  21  

3.2.3.   LONG  SAN  ...........................................................................................................................  22  

3.3.   RESULTS  ANALYSIS:  DESIGNING  SYSTEMS  FOR  VILLAGE  COMMUNITIES  ..................................  24  

4.   CONCLUSIONS  .....................................................................................................................................  26  

5.   APPENDICIES  ......................................................................................................................................  28  

5.1.   HOMER  DEFAULT  INPUT/ASSUMPTION  SUMMARY  .......................................................................  28  

5.2.   SIMULATION  RESULTS  ..................................................................................................................  30  

5.3.   SCENARIO  COMPARISON  RESULTS  .................................................................................................  32  

 

 

   

Page 6: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

6    

1. RURAL  ENERGY  ACCESS  

1.1. THE  VALUE  OF  ENERGY  ACCESS  Energy  is  essential  to  meeting  basic  human  needs  including  preparing  food,  providing  running  water,  heat,  light  and  transport.  Many  international  economic  development  agencies  acknowledge  that  poor  access  to  energy  impacts  on  quality  of  life,  educational  chances,  economic  production  and  healthcare  provision5.  According   to   the   International  Energy  Agency,   for   instance,  1.4  billion  people  around  the  world  lack  access  to  electricity  –  85%  of  them  in  rural  areas.  2.7  billion  people  rely  on  traditional  use  of  biomass,  and  that  number  is  expected  to  rise  to  2.8  billion  by  2030.  In  response  to  such  statistics  the  United  Nations  established   the  Sustainable  Energy   for  All   Initiative   to  attract  global  attention   to   the  importance   of   energy   for   development   and   poverty   alleviation.   The   goals   of   this   initiative   are   to  ensure   universal   access   to   modern   energy   services,   to   double   the   rate   of   improvement   in   energy  efficiency  and  to  double  the  share  of  renewable  energy  in  the  global  energy  mix6.    

Beyond  their  share  of  population,  rural  communities  are  widely  acknowledged  as  vital  to  developing  economies,   being   the   foundation   of   agrarian   society   and   industry.   Rural   agriculture   comprises   the  largest  working  population  in  India,  for  instance,  and  since  more  than  two-­‐thirds  of  the  population  of  India  lives  in  rural  areas,  it  has  widely  been  acknowledged  that  increased  rural  purchasing  power  is  a  valuable   stimulus   to   industrial   development   at   the   national   scale.   According   to   the   Food   and  Agriculture   Organization   (FAO),   a   lack   of   energy   access   stifles   both   small   scale   cottage   activity   and  larger  scale  rural  agriculture;  hampers  commercial  trading  opportunities;  and  inhibits  the  provision  of  basic  social  services  such  as  health  care  and  education.7  

The   total   installed   generation   capacity   on   Sarawak’s   SESCO   grid   was   roughly   1,345   MW   in   2010  generating  over  5,700  GWh  in  electricity  sales.  The   industrial  sector  was  the  main  user  of  electricity  with  45.2%  of   total   sales,   followed  by   the   commercial   sector   at   30.2%  and   the   residential   sector   at  23.3%.  Over   the  entire  decade,  growth  rate   in   total  electricity   sales   thus  averaged  7.3%  per  annum.  Despite  a  7.3%  average  annual   growth   rate  over   the  past  decade,   rural   electrification  has  expanded  much  more  slowly.  Even  with  plans  to  develop  large  scale  dams  with  high  voltage  transmission  from  rural  areas  in  the  state,  this  rarely  translates  into  electricity  access  for  affected  or  nearby  communities  (see  Figure  below).    

In  this  study  we  focus  on  villages  of  the  Baram  River  Basin  in  Sarawak,  as  the  basin  next  scheduled  for  mega  hydroelectricity  development.  The  Baram  Villages  do  not  fall  into  the  category  of  lacking  energy  access.  Transport  routes  are  open  enough  such  that  fuel  and  infrastructure  can  be  brought  to  village  communities.   Trade   in   meat   and   produce   creates   the   economic   base   which   makes   modern   energy  services  available.  Diesel  fuel  cost,  while  not  entirely  prohibitive,  is  a  barrier  which  creates  exclusion.  Most  of  the  villages  in  the  Baram  have  a  significant  number  of  families  that  do  not  own  generators  –  and  therefore  do  not  have  electricity  –  and  a  larger  number  of  families  that  have  generators  but  cannot  

                                                                                                                         5  http://www.gvepinternational.org/en/business/why-­‐energy  6  http://www.unfoundation.org/what-­‐we-­‐do/issues/energy-­‐and-­‐climate/clean-­‐energy-­‐development.html  7  Forestry  Department,  Food  and  Agriculture  Organization  (1987).  Technical  and  Economic  Aspects  of  Using  Wood  Fuels  in  Rural  Industries.  Chapter  2:  The  Importance  of  Rural  Industries  to  National  Economics  and  Rural  Development.  http://www.fao.org/docrep/004/ab780e/AB780E02.htm#ch2  

Page 7: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

7    

afford  a  consistent  fuel  supply  over  the  course  of  a  month.  While  in  some  villages  such  as  Long  San,  the  fraction  of  doors  with  generators  was  quite  high,  the  average  seems  to  be  roughly  60  –  70%  of  doors  with  a  generator.  There  were  a  number  of  villages  such  as  Long  Liam  and  Long  Keluan  where   these  percentages  were  less  than  50%.    

Designing   more   cost   effective   ways   to   meet   current   electricity   demand   while   extending   electricity  availability   into   daytime   periods   will   relieve   an   economic   burden   while   simultaneously   creating  potential  for  new  economic  revenue  streams.  Especially  as  the  cash  economy  becomes  more  pervasive,  economically  secure  village  communities  are  likely  to  be  more  resilient  to  changes  in  markets,  costs  of  commodities   and   government   practice.   As   such   we   have   explored   optimal   system   designs   for  electricity   supply   in   villages   of   the   Baram.   We   have   determined   that   lower   cost,   higher   reliability  options  are  available  for  the  villages  given  current  resource  potential.      

 Figure  1  Mundung  Abun,  showing  Transmission  Lines  for  Bakun  Dam  running  overhead  while  village  has  no  grid  

connected  Electricity  

1.2.  RURAL  SARAWAK    The  Malaysian  economy  was  originally  very  dependent  on  the  rural  sector  for  early  development.   In  the   1970s   agricultural   exports   accounted   for   30%   national   GDP   and   roughly   70%   of   the   rural  population  was  engaged  in  agriculture.  Malaysia  is  transitioning  to  an  economy  dependent  on  industry  and   large-­‐scale   commercial   farming   of   crops   such   as   palm   oil,   with   significant   impact   on   the  livelihoods   of   the   still   dominant   rural   population.   The   Government   of   Malaysia   acknowledges   the  importance  of  stimulating  rural  economy  and  through  the  Ministry  of  Rural  and  Regional  Development  

Page 8: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

8    

has   launched   a   program   called   ‘the   Government   Transformation   Program’   to   increase   rural   energy  access,  clean  water  access  and  road  infrastructure  networks  across  the  country.8    Sarawak   is   the   fourth   most   populous   state   in   Malaysia   with   a   population   of   2.3   million   people.  Comprising   fully   a   third   of   Malaysian   land   mass,   it   also   has   the   lowest   population   density   in   the  country   at   22   people   per   km2.     Sarawak   also   has   one   of   the   lowest   population   growth   rates   in   the  country  at  1.2%  per  annum.9  It   is  difficult  to  estimate  rural  and  urban  populations  in  the  state  given  that   there   is   often   much   flux   between   them   however   rural   communities,   arranged   by   river   basin,  represent  47%  of  total  population  in  the  state.  This   is  one  of  the  lowest   levels  of  urbanization  in  the  country.10  Thus  Sarawak   is  a   largely  rural  state.  The  Government  Transformation  Program  seems  to  acknowledge   the   importance  of   the   rural   community   and   its   plan   in   Sarawak   calls   for  over  RM  500  million  to  be  spent  in  rural  electrification  in  2013  alone.11      The   success   of   top-­‐down   electrification   programs   has   been   challenged   by   experience   of   the   past.  General   energy  policy   studies   show   that   subsidies   can  distort  markets   and  encourage   the  uptake  of  fuels,  which  are  not  necessarily  least  cost,  or  even  best  suited  to  the  energy  services  needed.  It  is  often  difficult  to  encourage  utilities  to  invest  in  rural  electrification  schemes,  hence  the  usual  role  of  central  government   in   implementation.   However,   it   should   be   noted   that   community   involvement   and  investment  is  necessary  to  support  longevity  of  projects.12    

 

 

Figure  2  River  Basins  of  Sarawak                                                                                                                            8  Ministry  of  Rural  and  Regional  Development  (2012).  Improving  Rural  Development,  http://www.pemandu.gov.my/gtp/upload/GTP2_ENG_Cp8.pdf  9  Sarawak  Government  Facts  and  Figures  2012.  (2012)  http://www.spu.sarawak.gov.my/downloads/Facts%20&%20Figures/Sarawak%202011%20Facts%20&%20Figures.pdf  10  http://www.statistics.gov.my/portal/index.php?option=com_content&id=1215  11  http://kklw.bernama.com/en/news.php?id=496379  12  Natural  Resources  Management  and  the  Environment  Department,  Food  and  Agriculture  Organization  (2000).  The  Energy  and  Agriculture  Nexus.  Chapter  3:  Rural  Energy  Supply  (Experience  of  Rural  Energy  Programmes)  http://www.fao.org/docrep/003/x8054e/x8054e06.htm  

Page 9: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

9    

2. THE  VILLAGES  OF  THE  BARAM  RIVER    2.1. DESCRIPTION  OF  ENERGY  USE  IN  SELECTED  VILLAGES  

In   this  Report  we  model   the  energy   resource  potential   of   individual   villages  along   the  Baram  River.  The  Baram  Dam  seems  to  be  the  next  project  to  be  developed  under  the  SCORE  schedule  and  would  involve  the  displacement  of  over  thirteen  villages  and  thousands  of  families.  There  are  over  20  villages  in  the  Baram  region  that  would  be  lost  in  flooding  the  reservoir.  In  addition  to  traditional  indigenous  lands   and   primary   forest   cover   lost,   this   represents   the   displacement   of   some   20,000   people.   The  Baram   originates   in   the   Kelabit   Highlands,   a   watershed   demarcated   by   the   Mountains   of   East  Kalimantan,  which  form  a  natural  border  with  Sarawak.  The  Baram,  which  is  the  second  longest  river  in  Malaysia,  flows  westwards  through  tropical  rainforest  to  the  South  China  Sea  and  has  a  catchment  area   of   22,930   km2.   In   preparing   this   report   our   researchers   conducted   site   visits   to   a   number   of  villages   along   the   Baram   River.   Through   interviewing,   observation   and   data   measurement   and  recording  we  collected  information  on  energy  use  and  energy  resource  availability   in  various  Baram  villages.  There  are  over  20  villages  on  the  Baram  River.  Here  we  model  three  Kenyah  villages  along  the  Baram  River  –  Long  San,  Tanjung  Tepalit  and  Long  Anap.  These  three  villages  represent  high,  medium  and  low  energy  use  based  on  size  and  village  activity.      

 

Figure  3  Villages  Visited  along  Baram  River,  March  2013  (get  better  image  from  GW)    

2.1.1. GENERAL  DESCRIPTION    The   Kenyah   settlement   of   Long   San   is   one   of   the   largest   Baram   villages   and   is   one   of   the   villages  closest   to   the   site  proposed   for   the  Baram  Dam.   It   is   roughly  150  km  south  east  of  Miri   and   can  be  accessed  by  5  hours  driving  along  logging  tracks.  Long  San  is  comprised  of  160  families  representing  roughly  800  people.  The  Long  San  Long  House  was  destroyed  by  fire  in  2006  and  while  a  Long  House  is  being  rebuilt,  families  live  together  in  individual  houses.  There  are  80  such  houses  or  ‘doors’.  There  

Page 10: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

10    

is   also   a   community-­‐based   Guest   House   and   nearby   convenience   store,   a   landing   strip,   a   church,   a  clinic,   a   primary   school   of   about   400   students   built   by   St.   Paul   missionaries   in   the   1940s   and   a  secondary  school  built  by  the  federal  government.  The  government  is  also  building  a  community  hall.  Being  one  of  only  villages  with  a  primary  and  secondary  school  along  the  Baram,  children  from  many  neighbouring   villages   are   sent   to   board   in   Long   San   for   education.   Being   a   major   base   for   trading  goods  from  the  city,  Long  San  has  become  a  hub  of  the  Baram  community.  Long  San  would  be  the  first  village  flooded  and  destroyed  by  the  Baram  Dam  if  it  is  built.    

Tanjung   Tepalit   is   a  much   smaller   Kenyah   village   community   located   about   22   km   south   along   the  river  from  Long  San.  It  comprises  of  a  single  long  house  with  25  doors.  Currently  a  new  60  door  long  house   is   being   constructed   for   the   housing   of   extended   families.   This   is   being   entirely   financed   by  village   families.   In   addition   to   the   long   house   there   is   a   store   house   for   boat   engines,   a   padi   store  house,  a  generator  store  house,  a  church  building  and  a  community  hall  which  has  no  lights  or  fans  (no  generator).   There   is   no   school   in   this   village   so   children   are   sent   to   Long   San   for   primary   and  secondary  schooling  where  they  board  for  two  week  periods.  Produce  (fruit,  vegetables  and  meat)  are  also   taken   to   Long   San   along   the   river   for   trading.   Both   Long   Anap   and   Tanjung   Tepalit   are   rice  farming  based  villages  with  similar  farm  sizes  and  yields  per  family.    

Long   Anap   is   the   furthest   village   from   the   Baram  Dam   site   and   is   34.5km   from   Long   San.   Another  Kenyah  village,  Long  Anap  is  medium  sized  with  two  long  houses  comprised  of  54  doors  total.  Aside  from   the   long   houses   there   is   a   community   church   (with   generator)   and   a   primary   and   secondary  school.  There  is  no  clinic  in  this  village.  In  this  village  a  number  of  doors  do  not  have  generators.  Like  Long  San,  timber  companies  using  traditional  village  lands  for  logging  provide  two  barrels  of  oil  a  year  at  Christmas.  Once  these  are  used,  there  is  often  little  diesel   for  running  the  church  generator.  Many  villagers  explained  that  families  will  often  go  without  lights  in  the  evening  as  purchasing  diesel  can  be  prohibitive.  In  this  village  we  noted  that  on  a  monthly  basis  many  families  feel  they  use  just  as  much  diesel  for  electricity  as  they  do  for  fueling  boats  for  travel.    

 

 

2.1.2. ENERGY  USE  IN  THE  VILLAGES    Based  on  interviews  and  site  visits  we  were  able  to  record  the  number  and  type  of  generators  that  are  operational  within   each  village   to   estimate   current   energy   supply.  Before   this  discussion  we   should  note  that  the  local  state  department  supplies  diesel  to  meet  electricity  demand  for  public  buildings.  In  

From  left  to  right:  Goverment  Secondary  School,  a  rice  mill  house  and  view  of  Long  San  River  

Page 11: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

11    

Long   San,   for   instance,   there   are   a  number  of   20  KW  generators   for   the   school   buildings  which   are  maintained  and   fueled  by   the  government.  The  government  has   leased   the  primary   school   from   the  missionary   group   for   the   past   60   years.   Generators   are   used   to   provide   electricity   to   the   school  building  during  the  day  and  to  power  the  boarding  halls  and  teacher  dormitories  during  the  night.  The  clinics  also  have  their  own  generators.  We  do  not  include  these  loads  in  our  model  as  they  are  satisfied  by  government  funds.    

In   these   villages,   the   average   ‘door’,   which   houses   2-­‐3   families   operates   generators   from   ~6pm   –  11pm  or  midnight,  consuming  about  2  gallons  a  night.  Based  on  reports  of  daily  fuel  usage  it  appears  that   most   generators   are   operating   at   almost   half   of   maximum   load.   Electricity   is   used   mainly   for  lighting   and   for   fans.  Most   households   also   have   refrigerators   and  washing  machines  while  well   off  families   also   own   televisions,   DVD   players   and   other   electronic   devices.   In   some   of   the   villages  we  visited   televisions   are   housed   in   the   common   gallery   so   that   individual   households   do   not   need   to  purchase  sets.    

Of  the  80  doors   in  the  Long  San  village,  almost  all  of  them  have  a  small  diesel  generator  (small  3kW  Skandong  generators  imported  from  China  are  most  common).  However  we  estimate  85%  of  doors  in  Tanjung   Tepalit   and   70%   of   doors   in   Long   Anap   have   generators.   Our   assumptions   for   calculating  typical  electricity  use  during  evening  time  are  explained  in  Table  4  below.  Based  on  an  assessment  of  energy  use   in   typical  houses,  we  estimate   loads   in   the  hypothetical   case   that   all   doors   could  have  a  generator.   Long   San   has   a   load   of   45kW,   Long   Anap   28   kW   and   Tanjung   Tepalit   14kW.   Diesel  generators  have  a  high  maintenance  cost   since   this   involves   transporting   the  generator   to  Miri.  The  Chinese  generators  last  about  3  years  before  requiring  replacement  and  often  if  a  problem  cannot  be  fixed,  the  generator  is  quicker  retired  than  transported  to  Miri  for  maintenance.  

Table  1  Evening  Energy  Use  in  Long  San  Households  

 

These  villages  are  based  on  subsistence  agriculture,  with  each  family  owning  land  used  for  hill  paddy  planting.  A  large  family  might  own  6-­‐7  acres  of  land  within  the  village  bounds  while  a  smaller  family  might  own  2-­‐3  acres.  The  average  family  owns  roughly  5  acres  of  land.  This  report  is  consistent  across  the   villages   visited.   Fields   are   cleared   and   planted  with   rice   padi   starting   in   September   and   rice   is  harvested  in  February  and  March  of  the  following  year.  Rice  (including  husks)  is  stored  in  50kg  bags.  A  harvest  of  20  bags/acre  is  considered  a  successful  season,  while  10  bags/acre  would  be  a  poor  year.  After  harvest,  women  of  the  village  winnow  the  rice  to  separate  the  grain  from  the  stock.  The  grains  

Household  Loads Wattage  (W) Number Hours/Night Nights/mthFraction  of  Doors

Total  (kWh/mth)

Light  Bulb  (CFL) 18 6 5 30 1 1,296Light  Bulb  (Tube) 40 5 5 30 1 2,400Electric  Fan 40 2 5 30 1 960Television   50 1 4 20 0.2 64DVD  Player 30 1 2 5 0.2 5Ice  Box 115 1 5 30 0.7 966Washing  Machine 445 1 4 10 0.7 997

No.  Doors   80 Total   6,688Average  kW 45

Page 12: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

12    

are  left  to  dry  and  are  stored  in  rice  huts.  They  are  pounded  by  hand  and  foot  to  separate  rice  from  the  husk  of  the  grain  every  month  for  domestic  rice  needs.    

Alternatively,  a  rice  mill  will  be  used  if  it  can  be  afforded.  There  are  10  family  owned  rice  mills  in  Long  San   village.   There   are   about   five   family   rice   mills   each   in   Tanjung   Tepalit   and   Long   Anap.   Other  families  will  pay  the  owners  to  use  the  mill  at  a  rate  of  RM  2/tin.  The  8.8  kW  Yenmar  Rice  Mill   from  China   is   common.   Along   These   rice   mills   are   primarily   run   during   the   two   months   of   the   harvest  season   but   also   through   the   year   as   rice   is   needed.   We   do   not   model   this   load   given   its   irregular  pattern  of  use  through  the  year.  Other  loads  might  include  the  village  convenience  store,  if  applicable,  on  weekdays  and  a  5  kW  load  on  Sunday  mornings  for  four  hours  at  the  community  church.  Long  San  also  has  a  guest  house  though  it   is  not  used  frequently  and  is  not  factored  directly   into  the  model.  A  standard   3   kW   generator   costs   US$1,100   (or   US   $400/kWinstalled)   and   diesel   fuel   costs   12RM/gal  (US$3.96/gal).  This  is  a  standard  retail  price  based  on  a  government  subsidy.    

 

 

 

Figure   showing   villager   with   Fire   wood  for   cooking.   They   do   not   use   LPG   cook  stoves   but   rather   fuel   wood   collected  from  within  the  village,  which  is  cheaper  and   which   also   adds   to   the   taste   of   the  food.    

Picture  of  old  dam  and  potential  new  Microhydro  intake  and  Community  Guest  House  in  Long  San  

Page 13: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

13    

     

 

 

 

 

 

 

 

With   this   diesel   price   the   average   electricity   price   in   the   Baram   villages   is   2.24RM/month   ($0.67  US/gal).   The   current   domestic   rate   in   Sarawak   is   0.31   RM/kWh   ($0.09   US/kWh).   This   is   more  expensive   than   TNB   and   SESB   but   much   lower   than   other   ASEAN   countries13.   Also,   the   average  Sarawakian   domestic   demand   was   205   kWh/month/household   in   201014,   much   lower   than   the  national  average.  Thus  the  average  Sarawakian  household  is  spending  63  RM/month  ($19  US/month)  on  electricity,  emphasizing  how  much  more  rural  village  communities  pay  for  energy  access.    

                                                                                                                         13  (Suruhanjaya  Tenaga  (Energy  Commission)  (2012)  Electricity  Supply  Industry  in  Malaysia:  Performance  and  Statistical  Information  2010  14  Calculated  from  SESCO  Annual  Performance  Statistics  (2010)  and  Sarawak  Govt  Facts  and  Figures  (2011)  

From  Left:  (a)  Tanjung  Tepalit  new  Long  House,  (b)  interviewing  villagers,  (c)  Long  Anap  villager  with  standard  rice  mill,  (d)  Long  Anap  Secondary  School  

Page 14: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

14    

2.1.3. DESCRIPTION  OF  ENERGY  RESOURCES    Hydro   Potential:   Our   team   visited   potential  microhydro   sites   near   to   each   of   the   Baram   villages.   In  Long  San  for   instance,   the  most  appropriate  site   is  an  old  dam  that  was  constructed  in  the  1940s  by  the  missionaries.  A  major  storm  destroyed  the  power  house  and  it  has  been  non-­‐operational  since.  It  is  25m  net  head  above  the  village  intake,  which  is  equivalent  to  the  gross  head  minus  the  friction  loss  in  the   penstock,   valves,   and   fittings.  We   also  measured   stream   flow   at   each   site.   These  measurements  were   correlated  with   precipitation   data   to   estimate  monthly   average   flow   rates   (see   figure   below).  Based  on  previous  Tonibung  and  Green  Empowerment  installations  in  other  villages  we  estimate  the  complete  capital  cost  of  microhydro  infrastructure  to  be  US$  1,300/kWinstalled  with  minimal  operation  costs.  Assumptions  on  hydro  turbine  specifics  are  in  Appendix  2.  

 

Figure  4  Monthly  Averaged  Stream  Flow    

Solar   Resource:   Using   NASA   Surface   Solar   Energy   data   and   the   coordinates   of   the   villages   we  determine  solar  potential  for  the  region.  Given  their  proximity  to  each  other  they  fall  under  the  same  resolution  pixel  and  data  is  the  same  for  each  village.  That  annual  averaged  insolation  is  5.34  kWh/m2-­‐day,  peaking  at  6  kWh/m2-­‐day  in  March.  Average  annual  radiation  is  0.4W/m2.  The  clearness  index  is  a  measure   of   the   clearness   of   the   atmosphere   and   is   the   fraction   of   the   solar   radiation   that   is  transmitted   through   the   atmosphere   to   strike   the   surface   of   the   Earth.   The   clearness   index   for   the  region   is   fairly   high  with   a   0.53   average.   Assuming   an   area   of   100m2   (panels   placed   on   the   newly  constructed   long   house   comprising   a   50m   by   2m   area)   and   a   23%   efficiency,   the   long   house   could  support  a  15kW  solar   installation  which  could  generate  about  45  MWh/year   for  day  time  use.  From  surveying  we  find  that  villagers  can  purchase  individual  solar  panel  systems  at  a  rate  of  $8.25/Winstalled.  However  for   larger  scale  systems  we  estimate  cost  at  US$  3.85/Winstalled.  Photovoltaic  technology  has  been   introduced   into   some   village   communities   through   telecommunication   companies   that   run  satelittes  using  solar  cells  (see  picture  below).    

Page 15: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

15    

 

Figure  5  Monthly  averaged  Daily  Insolation  Levels  in  Baram  Region  

 

Figure  6  Averaged  Radiation  in  Baram  Region  

 

Figure  7  Solar  System  for  Cellular  Communication  Satelite  in  Tanjung  Tepalit  

0.0

0.2

0.4

0.6

0.8

1.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0

1

2

3

4

5

6

Dai

ly R

adia

tion

(kW

h/m²/d

)

Global Horizontal Radiation

Cle

arne

ss In

dex

Daily Radiation Clearness Index

Page 16: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

16    

Biomass   Resource:  We   also   estimate   the   potential   for   biogasification   using   rice   husk   as   a   feedstock.  Assuming  that  the  average  family  plants  5  acres  of  hill  paddi  rice  a  year  with  a  conservative  average  yield  of  10  bags  of  rice  per  acre  every  year  and  a  residual  ratio   for  rice  straw  of  1:0.3   for  rice  husk,  there  are  at  least  20  tonnes  of  husk  residue  every  harvest  season  in  each  village.  We  can  approximate  how  this  rice  husk  is  distributed  throughout  the  year  based  on  monthly  rice  consumption  (see  figure  below).   The   higher   heating   value   (HHV)   of   rice   straw   and   husk   are   15.09   and   15.84   MJ/kg  respectively,  while  the  LHV  of  their  produced  gas  is  approximately  7  MJ/kg15,16.  Literature  shows  gas  yield   rate   is   between   1.63~1.84m3/kg   and   gasification   efficiency   is   between   80.8%~84.6%17.  Assuming  30%  electrical  conversion  efficiency,  a  standard  biogas  generator  would  require  1.2kg/hr-­‐KWoutput.  This  depends  strongly  on  the  gasification  ratio  assumed.  The  gasification  ratio  is  the  amount  of   biogas   produced   for   a   given   amount   of   biomass   residue   (m3   biogas/kg   biomass   residue).   To   be  conservative  we  assume  1.7m3/kg  biomass  residue  but  experiment  with  this  value  through  sensitivity  analysis.  We  assume  a  biomass  gasifier  and  generator  cost  US$3,000/kWinstalled  with  maintenance  costs  similar  to  diesel  generators.    

 

Figure  8    Village  women  of  Tanjung  Tepalit  standing  with  a  typical  family’s  padi  yield  in  a  good  harvest    

                                                                                                                         15  Yi  and  Yonghao,  “Experiment  on  Rice  Straw  Gasification  in  a  Two-­‐Stage  Gasifier.”  16  Lim  et  al.,  “A  Review  on  Utilisation  of  Biomass  from  Rice  Industry  as  a  Source  of  Renewable  Energy.”  17  Yi  and  Yonghao,  “Experiment  on  Rice  Straw  Gasification  in  a  Two-­‐Stage  Gasifier.”  

Page 17: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

17    

 

Figure  9  Monthly  Averaged  Daily  Rice  Husk  Available  

Wind  Resource:  Roughly  50%  of  the  year  wind  speeds  are  below  2m/s  because  of  the  interior  location  and  rugged  geography  of  the  region.    Given  the  low  wind  speed  patterns  in  the  region  we  assume  that  wind   turbine   are   not   a   feasible   energy   option   and   they   are   not   considered   in   the   study   (see   Figure  below).    

 

Figure  10  Monthly  Averaged  Percent  Of  Time  The  Wind  Speed  At  50  m  Is  Within  The  Indicated  Range  

   

Page 18: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

18    

3. ENERGY  MODELING  OF  THE  BARAM  VILLAGES    3.1. OPTIMIZATION  MODEL  FRAMEWORK    

Our   project   used  NREL’s  HOMER   resource   optimization  model   to   determine   the  most   economically  feasible   electricity   fuel  mix   for  Long  San.   In  order   to   find   the   least   cost   combination  of   components  that   meet   electrical   and   thermal   loads,   HOMER   simulates   thousands   of   system   configurations,  optimizes  for  lifecycle  costs,  and  generates  results  of  sensitivity  analyses  on  most  inputs.    

HOMER   simulates   the   operation   of   each   technology   being   examined   by   making   energy   balance  calculations   for  each  of   the  8,760  hours   in  a  year.  For  each  hour,  HOMER  compares   the  electric  and  thermal   load   in   the   hour   to   the   energy   that   the   system   can   supply   in   that   hour.   For   systems   that  include  batteries  or  fuel-­‐powered  generators,  HOMER  also  decides  for  each  hour  how  to  operate  the  generators   and  whether   to   charge   or   discharge   the   batteries.   If   the   system  meets   the   loads   for   the  entire  year,  HOMER  estimates  the  lifecycle  cost  of  the  system,  accounting  for  the  capital,  replacement,  operation  and  maintenance,  fuel,  and  interest  costs18.  

Thus,   the   HOMER  model   uses   a   number   of   inputs,   along  with   optimization   and   sensitivity   analysis  algorithms,  to  simulate  different  system  configurations,  or  combinations  of  components,  and  generate  a   list  of   feasible  configurations  sorted  by  net  present  cost   in   terms  of  cost  of  electricity  per  kilowatt  hour.  HOMER’s  Cost  of  Electricity  output  is  synonymous  with  LCOE  and  provides  us  with  information  needed  to  analyze  the  potential  for  adoption  of  renewable  energy  generation  in  the  Baram  region.    

We  have  developed  a  set  of  inputs  to  HOMER  that  cover  a  number  of  resource  and  technology  inputs  for  each  village.  We  provide  monthly  biomass  residue  availability,  daily  solar  insolation  and  monthly  averaged  flow  rates  as  described  in  the  section  above.  We  also  provide  data  on  hydro  turbine  design  flow  rate,  expected  PV  efficiencies,  biomass  gasification  ratio  and  feed  rates  for  the  biogas  generator.  We  provide  data  on  converter  size  and  give  the  model  a  number  of  battery  options.  Finally,  we  input  capital,   replacement   and   operation/maintenance   costs   for   each   technology.   These   cost   figures   are  based   on   data   directly   from   groups   such   as   Green   Power   and   Sungevity,   which   specialize   in  installations   for   small   scale   and   remote   applications.   In   HOMER   we   assume   a   maximum   annual  capacity  shortage  of  10%,  an  interest  rate  of  7%  and  a  system  lifetime  of  25  years.  All  assumptions  and  data  inputs  can  be  seen  in  Appendix  4.1.    

                                                                                                                         18  Renne,  David.  "Decision  Support  System  for  Assessing  Hybrid  Renewable  Energy  Systems."  U.S.  Climate  Change  Science  Program,  2008.    

Page 19: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

19    

Table  2  Energy  Demand  and  Resource  Characteristics  of  the  Baram  Villages  modeled  

   

3.2. GENERAL  MODEL  RESULTS    HOMER  delivers   results  which   show   the   optimal   system   for   each   possible   technology   configuration  ranked  according   to  Total  Net  Present  Cost   (NPC).     For  our   analysis  of   all   three  villages   there  are   a  number  of  major  conclusions.  Here  we  discuss   the   least  cost  options   in   terms  of  NPC  and  LCOE.  We  describe  the  least  cost  system  configuration  given  each  village’s  resource  availability.  We  also  describe  the   results   of   sensitivity   analysis   on   stream   flow,   biomass   resource   and   diesel   cost.   Summaries   of  simulation  results  can  be  found  in  Appendix  2.    

3.2.1. TANJUNG  TEPALIT  Tanjung  Tepalit  has  a   low   level  of  demand  but  a   large  hydro  potential   given   the  head  available  and  steady  annual  stream  flow  patterns.  The  least  cost  system  for  the  village  is  a  single  7KW  Hydro  plant,  a  90  12V  battery  pack  and  a  complementary  10kW  inverter.  The  battery  maintains  more  than  80%  state  of  charge  all  year  except  for  July,  when  the  stream  flow  is  lowest.  The  system’s  NPC  would  be  $57,228,  the  major  cost  being  the  battery.  The  LCOE  is  $0.196/kWh.  Above  $0.5/L  diesel  is  too  expensive  and  does  not  figure  into  any  optimal  systems.  Diesel  consumption  declines  gradually  as  the  average  stream  flow  available  increases.  Once  diesel  costs  more  than  $1.00/L  then  total  diesel  consumption  can  drop  to  less  than  800L/year.      

Biomass  Resource  (averaged  at  0.0275tonnes  Rice  Husk  per  day)  is  the  lowest  in  this  village,  given  its  population.   Above   0.05   tonnes   rice   husk   per   day   (double   the   assumed   current   capacity)   biogas  becomes  viable.  The  optimal  system  then  changes  to  7kW  hydro  and  10kW  biogas  generator.   In  this  system  no  battery  is  required.  The  hydro  provides  84%  and  the  biogas  16%  of  annual  generation.  This  system  has  NPC  of   $49,358  and  has   a  LCOE  of   $0.167/kWh.  We  also  note   that  photovoltaics  do  not  figure   into   any   optimal   systems   at   the   current   cost   of   $2300/kW.   Batteries,   biogas   generators   and  diesel  generators  are  all  selected  before  photovoltaic  (PV)  panels.  The   lowest  cost  PV  hybrid  system  costs  $85,240.    

N  Lat.   E  Long.Long  San Kenyah 3  17  888 114  46  855 80 160 800 45 6,688 80,256 13,777 54,557 Yes Yes Yes Yes  Long  Anap Kenyah 3  03  747 114  49  140 54 108 540 28 4,180 50,160 8,610 34,096 No Yes   Yes No  Tanjung  Tepalit Kenyah 3  14  396   114  48  975   25 50 250 14 2,090 25,080 4,305 17,048 No No   Yes No  

Location

N  Lat.   E  Long. Max Min Avg Max MinLong  San Kenyah 3  17  888 114  46  855 320 33.6 32,552 25 98 31 65 13.3 5.34 0.43 0.37Long  Anap Kenyah 3  03  747 114  49  140 216 15.5 15,016 70 23 11 17 8 5.34 0.43 0.37Tanjung  Tepalit Kenyah 3  14  396   114  48  975   100 10.5 10,172 20 103 25 62 5.8 5.34 0.43 0.37a.  assumes  Residue  Ratio  Rice:Husk  is  1:1.3b.  Assumes  Diesel  Generator  Efficiency  is  16%  in  the  villagesc.  Assumes  Hydro  Turbine  Efficiency  is  60%d.  Assumes  roughly  2  families  living  per  door  of  a  long  housee.  Solar  data  available  from  NASA  Surface  meteorology  and  Solar  Energy  groups  all  three  villages  within  the  same  resolution  pixel

Average  Radiation  (W/m2)Mthly  Avg  

Insolation  (kWh/m2-­‐day)

Padi  Acreage  

Rice  Husk  (tonnes/yr)

Monthly  Averaged  Flow  Rates  (L/s) Annual  Potential  (kWh)

Annual  Potential  (kWh) Head  (m)

Capacity  (KW)

Non-­‐Household  Loads

Hydro  Resource Solar  Resource

Coordinates Community  HallkWh/year School   Church  

Location Size  

Clinic  Diesel  Expense  Gen  Cap  (KW) kWh/month

Estimated  Household  Demand  Indigenous  Group

Diesel  Consumption  

Village  NameIndigenous  Group

Coordinates

Village  Name No.  DoorsNo.  Families   No.  People

Biomass  Resource

Page 20: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

20    

 

Figure  11  Tanjung  Aru  Optimal  System  Types  

 

Figure  12  Changes  in  Diesel  Consumption  with  Stream  Flow  

 

Figure  13  Least  Cost  System  Design  for  Tanjung  Aru  (7kW  Hydro  and  Battery  System)  

Page 21: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

21    

3.2.2. LONG  ANAP    Long  Anap  has  54  doors  and  an  estimated  demand  of  28kW.  However  the  annual  average  stream  flow  is  17L/s.  However  with  a  large  head  the  village  can  still  have  a  6kW  Hydro  system.  Note  that  we  do  not  have  access   to  many  stream   flow  data  points   for   the   region.  However  sensitivity  analysis  on  stream  flow   shows   that   as   average   stream   flow   increases,   the   hydro   production   increases   steadily   from  62,000  kWh/yr  at  17L/s   to  80,000  kWh/yr  at  30  L/s.  Since  biomass  resource   is  higher   in  Long  San,  biogas   generators   factor   in   to   optimal   design   at   lower   cost   than   in  Tanjung  Tepalit.   Unlike  Tanjung  Tepalit,   biogas   is   selected   in   the   least   cost   option,  which   is   a  6.2kW  Hydro,  20kW  biogas   generator,  converter  and  a  90  piece  12V  battery  pack  system.  This  system  has  a  NPC  of  $129,386  and  a  LCOE  of  $0.225/kWh.   The   Hydro   turbine   and   biogas   generator   are   72%   and   28%   of   annual   production  (kWh/yr)  respectively.    

Diesel  generators  drop  out  of  optimal  system  types  at  a  diesel  price  of  $0.33/L.  After  this  price  point  the  Hydro,  Biogas  generator  and  Battery  system  described  above  dominates.  In  this  configuration  the  biogas  generator  capital  cost  is  the  biggest  cost  over  the  lifetime  of  the  project.  Long  Anap  is  the  only  of  the  three  villages  where  PV  can  be  factored  into  an  optimal  system  design.  Only  where  diesel  is  less  than  $0.15/L  (a  tenth  of   its  current  price)  a  hydro  and  PV  hybrid   is  cost  effective.  These  PV  systems  cost  much  more  because  of  the  additional  price  of  the  battery  packs  that  would  be  needed.  At  $1.5/L  a  30  kW,  a  system  of  diesel  generators  only  costs  $53,332  NPC  and  has  an  LCOE  of  $0.995/kWh.  A  hydro  and   diesel   system   (without   battery)   would   have   a   LCOE   of   $0.84/kWh   and   an   operating   cost   of  $44,743/year  due  to  diesel  fuel  costs.    

 

Figure  14  Optimal  System  Types  for  Long  Anap  

Page 22: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

22    

 

Figure  15  Optimal  System  Type  given  PV  Capital  Costs,  Long  Anap  

 

Figure  16  Least  Cost  System  Design  for  Long  Anap  

3.2.3. LONG  SAN  Long  San  has  the  largest  population  with  80  doors  and  an  estimated  demand  of  45kW.  Like  Tanjung  Tepalit,   Long   San   has   high   average   stream   flow.   Like   the   other   two   villages   assessed,   the   least   cost  system   includes   a   hydroturbine   (of   8.83   kW)   and   like   Long  Anap,   because   of   the   biomass   resource  available  to  the  village,  the  least  cost  system  also  includes  a  20  kW  biogas  generator  and  battery  pack.  The  NPC  is  $193,423  and  the  LCOE  is  $0.225.  In  fact,  above  stream  flow  of  75  L/s  and  above  a  rice  husk  availability   of   0.18   tonnes/day,   the   optimal   system   is   a   hydro   turbine   and   biogas   generator   system  without  the  need  for  battery.  This  system  has  a  NPC  of  $145,463.  A  biogas  generator  is  selected  along  with  a  hydro  turbine  for  the  ten  least  cost  systems  for  Long  San.    

At   a   price   of   $0.4/L   a   hydro,   biogas,   battery   and   diesel   system   is   optimal.   However   beyond   a   price  point  of  $0.8/L,  diesel   fuel  drops  out  and   the  optimal  system   is   the  Hydro   turbine,  biogas  generator  and  battery   system  described  above.  The  PV  panels   are  not   selected   in  any   least   cost   systems  at   its  current   cost.  A  hydro   turbine  and  diesel   system  (without  battery)  would  have  a  NPC  of  $783,057,   a  LCOE  of  $0.819/kWh  and  a  operating  cost  of  $65,573/year  due  to  the  expense  of  diesel.    

Page 23: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

23    

 

Figure  17  Optimal  System  Type  for  Long  San  

 

Figure  18  Diesel  Consumption  for  Long  San  

 

Figure  19  Least  Cost  System  for  Long  San  

Page 24: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

24    

3.3. RESULTS  ANALYSIS:  DESIGNING  SYSTEMS  FOR  VILLAGE  COMMUNITIES      The   study   shows   that   there   are   significant   savings   which   could   come   from   using  renewable   technologies   for  electricity  generation.   In  each  village  modeled   the   least   cost  option  was  some  combination  of  hydro,  biogas  generators  and  accompanying  batteries.  In  each  case   this   least   cost  option  was  20%  or   less  of  base   case   (diesel)  NPC.  The  LCOE  of  these   renewable  options  were  also   all   less   than  20%  of   their  diesel  base   case   scenarios  (see  figures  below).  The  biggest  percentage  difference  is  in  Long  Anap,        

 Figure  20  Differences  in  NPC  and  LCOE  for  Least  Cost  Options  and  Base  Case  (Diesel)  

• Hydroelectricity  is  selected  in  every  simulation,  meaning  that  it  is  the  lowest  cost  means  of  electricity  production  available  to  each  village.  Based  on  its  low  upfront  and  O&M  costs  the   hydro   search   space   is   actually   insufficient   in   the   models,   meaning   that   villages   would  benefit   from   even   more   hydro   capacity   than   our   head   and   flow   measurements   show   is  available.   In   each   village   and   under   almost   every   scenario  modeled,   hydro   provides   at   least  50%  of  the  total  electricity  supply.  Thus  the  benefit  of  cheap  and  dispatchable  electricity  will  exceed  the  upfront  cost  of  expanding  existing  systems,  designing  larger  (or  multiple)  systems.      

• Small  scale  biogasification  is  financially  feasible  and  profitable  for  village  communities.  Even  in  Tanjung  Tepalit  where  rice  husk  availability  is  the  lowest,  biogas  substitutes  for  diesel  during  the  three  months  that  biomass  is  available.  This  is  because  the  cost  of  installation  and  maintenance  of  the  biogasification  unit  is  similar  to  that  of  a  diesel  generator  however  the  fuel  is  virtually  free.  It  should  be  noted  that  this  does  not  include  the  devaluation  of  systems  over  time.  Given  low  usage,  it  would  seem  that  the  biogasifier  would  devalue  more  quickly  and  have  to  be  replaced  more  often.  We  approach  this  by  performing  sensitivity  analysis  on  the  lifetime  (number  of  operating  hours)  of  a  biogasifer  which  affects  how  often  it  has  to  be  replaced.  Even  when  the  number  of  operating  hours  is  reduced  to  one  third,  which  is  significantly  lower  than  a  diesel  engine,  the  gasifier  is  chosen  in  the  least  cost  scenario.  There  are  a  number  of  technical  barriers  to  the  deployment  of  small  scale  biomass  technologies  as  described  above  and  these  need  to  be  considered  alongside  cost.    

Page 25: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

25    

 • Despite   the   cost  of  diesel   fuel,  photovoltaic   systems   (PV)  are  not   cost  effective   for   the  

village   communities.   In   every   village  modeled   the   cheapest   PV   scenario   is   at   least   12%%  more   expensive   than   the   lowest   NPC   scenario.   In   Tanjung   Tepalit,   after   hydro   and   biogas  resources   are  maximized,   it   is  more   actually   cost   effective   to   add   additional   diesel   capacity  than  to  add  solar.  Even  when  a  10  kW  PV  system  is  introduced  it  does  not  produce  more  than  15%  of  total  electricity  supplied.  This  trend  only  changes  under  sensitivity  analysis  when  the  cost  of  diesel   is   very  high  and  we   select  prices   for  PV   that   are  below  current  market  prices.  Nevertheless  in  each  village  PV  scenarios  are  still  cheaper  than  100%  diesel  only  scenarios.      

• Capital  and  replacement  costs  of  battery  packs  are  often  the  major  cost  component  for  Least   Cost   systems.  Battery   packs   of   90-­‐180  12V  batteries   are   often   selected   in   the   lowest  cost  options  but   represent  most  of   the   cost.   For   each  of   the  villages  modeled  a  battery  pack  was   selected   for   the   least   NPC   and   least   LCOE   scenario   and   cost   at   least   40%   of   total   net  present  cost.   In  Tanjung  Tepalit  where  there  the  most  optimal  system  is  a  hydro  turbine  and  battery  pack  alone,  the  battery  is  90%  of  the  total  system  cost.  This  is  due  to  high  upfront  cost  and  the  replacement  cost  of  batteries.      

• Diesel,  even  at   the  subsidized  government  price,   is   the  most  expensive   form  of  energy  for  Baram  Villages,   given   the  recurrent  annual   fuel   costs   that   it   implies.  A  100%  diesel  generator   system   in  Long   San,   the   largest   village  demand  modeled,  would   require  60  kW  of  diesel  capacity  and  though  having  one  of  the  lowest  capital  costs  (US  $26,400),  the  annual  fuel  cost   cause   it   to   be   one   of   the   most   expensive   NPC   scenarios.   To   meet   smaller   loads   the  generators   will   often   be   under   capacity   leading   to   increased   fuel   consumption   and   a   lower  overall  mean  electrical  efficiency.  In  every  village  modeled  the  diesel  only  scenario  was  at  least  five  times  more  expensive  than  the  least  NPC  scenario.  This  means  that  the  current  system  of  100%  diesel  generation  is  the  most  expensive  option  that  village  communities  could  design.    

• The  Payback  Period  on  Hydro  and  Biogas  systems  can  be  two  years  or  less  compared  to  100%  Diesel  base  case  scenarios.   In  Long  San,  which  requires   the   largest  system  capacity,  the  8.8  kW  Hydro  and  20  kW  Biogas  Scenario  has  a  year  simple  pay  back  and  beyond  a  year  the  cash   flow  from  this  system  is  positive  relative   to  a  100%  diesel  scenario.   In  Tanjung  Tepalit,  the  simple  pay  back  on  the  7kW  Hydro  system  is  1.30  years.  The  simple  payback  on  a  system  with   PV  would   be   2.5   years.   In   Long   Anap,   the   6kW  Hydro   and   20kW   biogas   system   has   a  simple  pay  back  of  1.35  years.  See  the  economics  comparison  figures  in  Appendix  4.3  for  more  detail.    

 

 

 

Page 26: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

26    

4. CONCLUSIONS  There  are  14  villages  along  the  main  Baram  river  that  have  been  identified  to  be  directly   flooded  by  the  reservoir.  This  excludes  the  villages  in  the  tributaries  of  Baram  which  will  also  be  flooded.  There  are   19   villages   along   the   main   Baram   river   upstream   of   the   dam   and   more   than   20   villages  downstream  ranging  from  40  to  200  plus  doors  each.  In  this  report  we  analyse  the  potential  for  these  communities  to  provide  local  energy  service  using  available  resources.  This  report  produces  a  number  of  findings  on  both  the  current  electricity  situation  and  potential  system  configurations  in  the  Baram  kampong.    

• Average   village   door   (2-­‐3   families)   in   the   Baram   uses   ~   3   kWh/night   or   ~83   kWh/month.  Entire  villages  can  use  ~130  kWh/night  or  ~4,000  kWh/month    

o In   the   villages,   generators   run   at   lower   efficiencies.   We   assume   16%   efficiency   for  generators   (usually   3kW   gensets)   or   9-­‐10   kWh/gal   (where   generators   can   normally  achieve  25%  or  higher)  

o The   average   electricity   use   per   household   in   Sarawak   is   205   kWh/month   (biggest  loads:  air  conditioner,  ceiling  fans,  refrigerators,  lights,  water  heater)  

• A  single  village  door  currently  spends  ~  50  US$/month  and  thus  over  600  US$/year  on  diesel  

o Entire   Long   Houses   are   spending   on   order   of   10,000   US$/year   (larger   villages   like  Long  San:  $50,000/year)    

o Average  urban  household  in  Sarawak  spends  ~19  US$/month  on  electricity.      

• Diesel   electricity   use   in   the   Baram   represents   a   US$0.67/kWh   (2.24   RM/kWh)   cost   of  electricity,  given  a  subsidized  diesel  cost  of  12  RM/gal  

o Residential  rate  from  SESCO  is  0.31sen/kWh,  SESB  is  0.22  sen/kWh  

• Modeling  shows  designs  with  microhydro  and  biomass  that  can  cost  as  little  as  US$0.25/kWh  (0.82   sen/kWh).   This   is   not   as   cheap   as   SESCO   rates,  which   are   heavily   subsidized,   but   still  represents  a  88%  reduction  from  the  current  effective  rate  village  households  pay.    

o From  flow  rate  and  head  measurements,  river  systems  can  usually  provide  5-­‐10KW    

o Villages  generate  on  the  order  of  100  tonnes/year  of  waste  rice  husk  from  milling  

o Small   biomass   gasification   can   give   ~   900   kWh/tonne   (but   there   are   a   number   of  issues  with  operating  biomass  systems)  

Optimization  modeling  provides  insight  into  the  comparative  economics  of  various  rural  electrification  systems.    We  observe  that  hydroelectricity  is  the  lowest  cost  means  of  electricity  production  available  to  each  village.    Small  scale  biogasification  is  financially  feasible  and  profitable  for  village  communities  however  the  technical  feasibility  of  maintaining  a  biogas  system  must  be  considered.  Despite  the  cost  of   diesel   fuel,   photovoltaic   systems   (PV)   are   not   cost   effective   for   the   village   communities.   When  

Page 27: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

27    

employed  they  do  not  act  as  dominant  energy  sources.  Capital  and  replacement  costs  of  battery  packs  are   often   the   major   cost   component   for   most   least   cost   systems.   Despite   this,   diesel,   even   at   the  subsidized   government   price,   is   the   most   expensive   form   of   energy   for   Baram   villages,   given   the  recurrent  annual  fuel  costs  that  it  implies.  In  fact,  we  find  that  the  Payback  Period  on  Hydro  and  Biogas  systems   can   be   two   years   or   less   compared   to   100%   Diesel   base   case   scenarios.   These   findings  highlight  the  potential  of  villages  in  rural  Sarawak  to  satisfy  their  own  energy  access  needs  with  local  and   sustainable   resources.   This   conclusion   supports   a   state-­‐wide   energy   development   strategy   that  considers  small  scale  energy  solutions  and  technologies  as  an  important  part  of  providing  rural  energy  access  and  rural  development  opportunity.  

 

   

Page 28: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

28    

5. APPENDICIES  

5.1. HOMER  DEFAULT  INPUT/ASSUMPTION  SUMMARY    

Hydro Turbine System

 

Photovoltaic Panel System

Capital cost: $1,300

 

Size (kW) Capital ($)

Replacement ($)

O&M ($/yr)

Replacement cost: $1,300

 

1 2,300 2,300 0

O&M cost: $ 0/yr

 Lifetime: 25 yr

   Lifetime: 30 yr

 

Derating factor: 80%

   Available head: 25 m

 

Tracking system:

No Tracking

   Design flow rate: 60 L/s

 

Slope: 3.28 deg

   Min. flow ratio: 25%

 Azimuth: 0 deg

   Max. flow ratio: 150%

 

Ground reflectance: 20%

   Turbine efficiency: 60%

         Pipe head loss: 0%

                       

Diesel Generators

     Size (kW) Capital ($) Replacement

($) O&M ($/hr)

 

Fuel: Diesel

1 440 440 0.1

 Price: $ 1.5/L

Lifetime:  5,000 hrs  

     

Lower heating value:

43.2 MJ/kg

Min. load ratio: 15%

     Density: 820 kg/m3

Heat recovery ratio: 0%

     

Carbon content: 88.00%

Fuel used: Diesel

     

Sulfur content: 0.33%

Fuel curve intercept:

0.08 L/hr/kW

         Fuel curve slope:

0.45 L/hr/kW

                         

 

Page 29: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

29    

Rice Husk Biogas Generator

         Size (kW) Capital ($)

Replacement ($)

O&M ($/hr)

         1 1,400 1,400 0.1

         Sizes to consider:

0, 5, 10, 20, 30 kW

 

     Lifetime: 15,000 hrs

     Min. load ratio: 30%

     Heat recovery ratio:

0%

     Fuel used: Biomass

     Fuel curve intercept:

0.0253 L/hr/kW

     Fuel curve slope:

1.2 L/hr/kW

                       

Battery: Hoppecke 6 OPzS 600

 

Converter

Quantity Capital ($)

Replacement ($)

O&M ($/yr)

 

Size (kW) Capital ($)

Replacement ($)

O&M ($/yr)

1 415 415 0

 1 297 297 0

Voltage: 2 V

     Lifetime: 15 yr

   Nominal capacity: 600 Ah

     

Inverter efficiency: 90%

   Lifetime throughput:

2,083 kWh

     

Inverter can parallel with AC generator:

Yes

   

     

Rectifier relative capacity:

100%

   

         

Rectifier efficiency: 85%

                 Economics

 Generator control

 Annual real interest rate: 7% Check cycle charging: Yes

 Project lifetime: 25 yr Setpoint state of charge: 80%

 Capacity shortage penalty: $ 0/kWh Allow systems with multiple generators: Yes

 System fixed capital cost: $0 Allow multiple generators to operate simultaneously: Yes

 System fixed O&M cost: $ 0/yr Allow systems with generator capacity less than peak load: Yes

   

Page 30: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

30    

5.2. SIMULATION  RESULTS    

Table  3  Simulation  Results  for  Tanjung  Tepalit  

 

Table  4  Simulation  Results  for  Long  Anap  

 

Variables:  Stream  Flow:  62  L/s      Biomass  Resource:  0.025  t/day      Diesel  Cost:  $1.5L/day

PV Hydro Diesel Biogas 12V  Battery

No. kW kW kW kW

1 0 7.06 0 0 90 41,620 57,228 4,911 0 0.196 1

2 0 7.06 0 5 90 47,135 66,353 5,694 0 0.224 1

3 0 7.06 10 10 90 60,020 72,030 6,181 0 0.242 1

4 0 7.06 10 0 90 47,505 72,940 6,259 683 0.245 0.97

5 10 7.06 0 0 90 64,620 81,017 6,952 0 0.274 1

6 0 7.06 10 10 0 19,700 81,782 7,018 2,384 0.275 0.89

7 10 7.06 10 0 90 70,505 86,916 7,458 0 0.292 1

8 10 7.06 0 5 90 70,135 89,353 7,667 0 0.302 1

9 10 7.06 10 10 90 83,020 95,030 8,155 0 0.319 1

10 10 7.06 10 10 0 44,185 106,551 9,143 2,370 0.358 0.89

11 20 0 0 5 90 93,320 140,972 12,097 0 0.490 1

12 20 0 0 0 180 125,155 155,377 13,333 0 0.564 1

13 0 7.06 10 0 0 5,700 166,087 14,252 10,498 0.561 0.52

14 20 0 10 10 180 143,555 179,475 15,401 719 0.603 0.97

15 10 7.06 10 0 0 30,185 190,929 16,384 10,490 0.645 0.52

16 30 0 10 0 180 152,555 197,559 16,953 814 0.664 0.96

17 0 0 10 5 0 11,400 221,247 18,985 13,277 0.743 0.36

18 10 0 10 5 0 35,885 246,071 21,116 13,268 0.826 0.36

19 0 0 10 5 90 50,235 265,094 22,748 13,279 0.890 0.36

20 0 0 20 0 0 8,800 337,006 28,919 21,627 1.132 0

Renewable  Fraction

Total  Capital  Cost  ($)

Total  NPC  ($)

Total  Annual  Cost  

($)Total  Fuel  Cost  ($/yr)

LCOE  ($/kWh)

Variables:  Stream  Flow:  17  L/s      Biomass  Resource:  0.063  t/day      Diesel  Cost:  $1.5L/day

PV Hydro Diesel Biogas 12V  Battery

No. kW kW kW kW

1 0 6.18 0 20 90 71,105 129,386 11,103 0 0.225 1

2 10 6.18 0 20 90 94,105 152,343 13,073 0 0.265 1

3 10 6.18 0 0 180 107,910 180,056 15,451 0 0.302 1

4 0 6.18 30 20 120 101,210 203,649 17,475 2,851 0.319 0.94

5 10 6.18 20 20 120 119,810 207,458 17,802 1,485 0.325 0.97

6 30 0 0 20 120 155,710 248,759 21,346 0 0.420 1

7 20 6.18 20 0 180 139,710 253,543 21,757 2,457 0.398 0.94

8 0 6.18 20 30 0 52,100 280,812 24,097 12,784 0.463 0.69

9 10 6.18 20 30 0 78,070 307,508 26,387 12,768 0.507 0.69

10 0 6.18 20 0 180 93,710 358,094 30,728 13,325 0.565 0.7

11 30 0 30 30 180 207,810 376,722 32,327 6,832 0.590 0.84

12 0 0 30 30 0 55,200 440,992 37,842 24,900 0.691 0.43

13 10 6.18 20 0 0 36,070 451,254 38,722 29,017 0.787 0.26

14 10 0 30 30 0 81,170 467,578 40,123 24,876 0.733 0.43

15 0 0 30 30 90 95,520 486,977 41,788 24,901 0.763 0.43

16 0 6.18 30 0 0 14,500 535,918 45,987 34,941 0.840 0.23

17 0 0 30 0 0 13,200 634,713 54,465 43,527 0.995 0

18 10 0 30 0 0 39,170 661,467 56,761 43,518 1.037 0

19 30 0 20 0 180 155,470 671,355 57,609 34,332 1.052 0.22

20 0 0 30 0 90 53,520 680,585 58,401 43,530 1.067 0

Total  Capital  Cost  ($)

Total  NPC  ($)

Total  Annual  Cost  

($)Total  Fuel  Cost  ($/yr)

LCOE  ($/kWh)

Renewable  Fraction

Page 31: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

31    

Table  5  Simulation  Results  for  Long  San  

 

 

   

Variables:  Stream  Flow:  65  L/s      Biomass  Resource:  0.09  t/day      Diesel  Cost:  $1.5L/day

PV Hydro Diesel Biogas 12V  Battery

No. kW kW kW kW

1 0 8.83 0 20 90 72,590 193,423 16,598 0 0.225 1

2 10 8.83 0 20 90 95,590 218,260 18,729 0 0.251 1

3 0 8.83 20 30 180 129,770 367,779 31,559 12,013 0.406 0.81

4 10 8.83 20 30 180 152,770 390,779 33,533 12,013 0.431 0.81

5 0 8.83 20 20 0 38,100 451,698 38,760 23,876 0.493 0.63

6 10 8.83 20 20 0 64,070 478,452 41,056 23,867 0.523 0.63

7 20 0 20 20 180 160,470 652,228 55,968 27,291 0.732 0.57

8 0 0 40 30 0 59,600 723,649 62,097 39,202 0.790 0.43

9 0 0 20 20 90 77,120 750,183 64,374 39,698 0.851 0.36

10 10 0 40 30 0 85,570 750,403 64,392 39,193 0.819 0.43

11 0 8.83 20 0 180 90,740 773,367 66,363 40,828 0.809 0.41

12 0 8.83 40 0 0 18,900 783,057 67,195 52,502 0.819 0.21

13 10 8.83 20 0 180 113,740 796,333 68,334 40,828 0.833 0.41

14 10 8.83 40 0 0 44,870 809,811 69,490 52,493 0.847 0.21

15 0 0 60 0 0 26,400 1,054,087 90,452 68,576 1.101 0

16 30 0 40 0 180 164,270 1,059,949 90,955 58,423 1.108 0.15

17 10 0 60 0 0 52,370 1,080,841 92,747 68,566 1.129 0

18 0 0 40 0 120 76,310 1,087,795 93,344 69,549 1.137 0

Total  Capital  Cost  ($)

Total  NPC  ($)

Total  Annual  Cost  

($)Total  Fuel  Cost  ($/yr)

LCOE  ($/kWh)

Renewable  Fraction

Page 32: Kampung Capacity 21.09.2013 - University of California ......Shirley(&(Kammen(–(Kampung(Clean(Energy(Capacity(August&20,&2013& 6" (1. RURAL"ENERGYACCESS" 1.1.THE"VALUE"OF"ENERGY"ACCESS"

Shirley  &  Kammen  –  Kampung  Clean  Energy  Capacity  August  20,  2013  

32    

5.3. SCENARIO  COMPARISON  RESULTS    

 Figure  21  Comparing  Economics  of  Least  NPC  Scenario  and  Diesel  Scenario  for  Long  San  

 

Figure  22  Comparing  Economics  of  Least  NPC  Scenario  and  Diesel  Scenario  for  Tanjung  Tepalit  

 

Figure  23  Comparing  Economics  of  Least  NPC  Scenario  and  Diesel  Scenario  for  Long  Anap