john dighton: beneficial fungi in the forest and impacts of pollution

59
Beneficial fungi in the forest and impacts of pollution John Dighton Rutgers Pinelands Field Station, New Lisbon, NJ

Upload: vudung

Post on 05-Feb-2017

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: John Dighton: Beneficial fungi in the forest and impacts of pollution

Beneficial fungi in the forestand impacts of pollution

John Dighton

Rutgers Pinelands Field Station, New Lisbon, NJ

Page 2: John Dighton: Beneficial fungi in the forest and impacts of pollution

Fungal hyphae

Rhizomorphs

Page 3: John Dighton: Beneficial fungi in the forest and impacts of pollution

Penicilium

Serpula lachrymans(Wikipedia)

Fungal damage to an ancient manuscript

Fungal damage to aluminum structure Mir space station

Page 4: John Dighton: Beneficial fungi in the forest and impacts of pollution

Arbuscular mycorrhizae

• Associated mainly with herbaceous plants and some trees (particularly tropical)

• A limited range of zygomyete fungal species associated with a large range of host plant species

• Fungal component penetrates epidermis and cortex cell walls• Develops and arbuscule by invagination of the cortex cell 

plasmolemma• Limited hyphal network within the root.• Produces spores within or outside the root 

Page 5: John Dighton: Beneficial fungi in the forest and impacts of pollution

Spore

Colonization of a newroot from a previouslycolonized root

Page 6: John Dighton: Beneficial fungi in the forest and impacts of pollution

fAM structures in Rhynchospora knieskernii

Dighton et al. (2013) Bartonia

Page 7: John Dighton: Beneficial fungi in the forest and impacts of pollution

Arbuscular mycorrhizal spores

Page 8: John Dighton: Beneficial fungi in the forest and impacts of pollution

Ectomycorrhizae

• Associated with tree species and some shrubs• Large range of basidiomycete and ascomytete fungi in 

association with a small diversity of plant species• Fungal component does not penetrate host plant cells. 

Surface covering of fungal biomass = sheath and hyphal penetration between cortical cells to the endodermis = Hartig Net

• Extensive hyphal network within and on surface of root• Spores produced in specialized structures away from the root

Page 9: John Dighton: Beneficial fungi in the forest and impacts of pollution
Page 10: John Dighton: Beneficial fungi in the forest and impacts of pollution
Page 11: John Dighton: Beneficial fungi in the forest and impacts of pollution

Ectomycorrhizae

Extraradical hyphae

Sheath(mantle)

Hartig net

Page 12: John Dighton: Beneficial fungi in the forest and impacts of pollution

Ectomycorrhizal morphotypes

Page 13: John Dighton: Beneficial fungi in the forest and impacts of pollution

Mantle surface characteristics

Page 14: John Dighton: Beneficial fungi in the forest and impacts of pollution

Ectomycorrhizal mantle characteristics SEM

clamp connections

Page 15: John Dighton: Beneficial fungi in the forest and impacts of pollution

Function of Ectomycorrhizae

• Help host plant take up nutrients– Mineral nutrients– Organic nutrients via enzymes

• Help host plant access water• Protect host plant from pathogens and root grazers• Protect host plant from heavy metal and radionuclide pollutants

• Species composition on roots is influenced by changes in nutrient and water status and pollutants– Useful as bioindicators

Page 16: John Dighton: Beneficial fungi in the forest and impacts of pollution

Effect of N Addition on ECM Fungal Fruiting under Scots Pine

• Termorshuizen (1990) showed that application of ammonium or nitrate N:

• Reduced number of mycorrhizal fruitbodies• Reduced fruitbody biomass• Had different effects on different species

– Decreased Lactarius rufus– Increased Laccaria proxima

Page 17: John Dighton: Beneficial fungi in the forest and impacts of pollution

a.lo

g (1

+ s

peci

es ri

chne

ss)

Organic horizon mineral N (mg/kg soil)

J

J

JJ

J JJJJ

JJJ

J

JJ

0

0.5

1

1.5

2

r2 = 0.91Total

J

J

J

J

J JJJ

J

JJ JJ

J J

0 50 100 150 200 250

Other nitrophobicgenera r2 = 0.82

JJJ

JJ

J

J

J

J

JJ

JJ J

J

0

0.5

1

1.5

2

0 50 100 150 200 250

Hebelomar2 = 0.64

JJ

JJ J

JJJJ

JJJJ J J

0 50 100 150 200 250

Lactariusr2 = 0.84

J

JJJ J

JJJ

J

JJ JJJ

J

J

J

JJ

J

J

J

J

J

JJJ

J

JJ

r2 = 0.83RussulaCortinarius

r2 = 0.87

Soil extractable N effects on mycorrhizal sporocarp abundance

From Lilleskov et al. (2001) Ecol. App. 11: 397‐410

Page 18: John Dighton: Beneficial fungi in the forest and impacts of pollution

Change in abundance of ectomycorrhizae of white spruce in Alaska in relation to nitrification (N deposition rates from 1 to 14 kg N ha‐1 y‐1)

From Lilleskov et al. (2002) Ecology 83: 104‐115

Nitrophilic

Nitrophobic

Page 19: John Dighton: Beneficial fungi in the forest and impacts of pollution

Atmospheric N‐Deposition on NJ Pine Barrens Ectomycorrhizal Communities

Effects in an olgiotrophic sandy soil system

Page 20: John Dighton: Beneficial fungi in the forest and impacts of pollution

Collier’s Mills

Lebanon

Belleplain

New York City

Collier’s Mills7.8 kg ha-1 y-1

Lebanon5.3 kg ha-1 y-1

Belleplain3.6 kg ha-1 y-1

N‐dep gradient

4‐5 kg ha‐1 y‐1 difference

Chronic N deposition

Page 21: John Dighton: Beneficial fungi in the forest and impacts of pollution

Annual N Deposition at Each Site Measured in Bulk Precipitation

NO3-N NH4-N Inorg-N 0123456789

BelleplainLebanonCollier's Mills

a

bb

a a

ba

a

bN

Dep

ositi

on (k

g ha

-1 y

-1)

From Dighton et al. (2004) For. Ecol. Manage. 201: 131‐144

Page 22: John Dighton: Beneficial fungi in the forest and impacts of pollution

Belleplain Lebanon Collier's Mills0

250

500

750

1000A

A

B

Num

ber

of M

ycor

rhiz

alR

oot T

ips

Belleplain Lebanon Collier's Mills0.0

2.5

5.0

7.5

10.0

12.5 A

ABB

Num

ber

of E

CM

Mor

phot

ypesAbundance and

Richness of Ectomycorrhizal Root

Tips at Each Site

From Dighton et al. (2004) For. Ecol. Manage. 201: 131‐144

Page 23: John Dighton: Beneficial fungi in the forest and impacts of pollution

Abundance (tips per core) of potentially nitrophobic ectomycorrhizalmorphotypes from field sites in relation to N‐deposition (kg ha-1 y-1)

Belleplain3.7

Lebanon5.3

Colliers Mills7.8

Brown/white – DB (Russula) 672 232 179Green/ yellow 178 68 0Yellow (Lactarius) 509 10 0Brown, bristly pinnate 71 0 0Chartreuse 97 0 0Yellow- bulbous 123 0 0

Page 24: John Dighton: Beneficial fungi in the forest and impacts of pollution

Abundance (tips per core) of potentially nitrophilic ectomycorrhizalmorphotypes from field sites in relation to N‐deposition (kg ha-1 y-1)

Belleplain3.7

Lebanon5.3

Colliers Mills7.8

Coral 0 0 418Pumpkin (Suilloid) 11 24 49White/brown (Rhizopogon) 0 0 90Y/Br (Ascomycete) 693 1066 1391Yellow/white 0 0 49Yellow - tuber 4 8 79

Page 25: John Dighton: Beneficial fungi in the forest and impacts of pollution

Ectomycorrhizal community composition from ECM morphology (A) and molecular TRFLP (B) from NJ and Florida under 3 N additions (0, 35 and 70 kg ha‐1 above ambient) for 1 year.

No significant difference between sites or N level

No difference in richness between sites or between N levels at either site

From Krumins et al. (2009) For. Ecol. Manage. 258: 1383‐1390.

Morphotype

TRFLP

Acute N deposition

Page 26: John Dighton: Beneficial fungi in the forest and impacts of pollution

Bacterial community composition from colony morphology (A) and molecular TRFLP (B) from NJ and Florida under 3 N additions (0, 35 and 70 kg ha‐1 above ambient) for 1 year.

Significant difference between sites and between N levels within NJ by morphotyping only

Bacterial richness significantly higher in FL than NJ and increasing with N addition

From Krumins et al. (2009) For. Ecol. Manage. 258: 1383‐1390.

Morphotype

TRFLP

Page 27: John Dighton: Beneficial fungi in the forest and impacts of pollution

But …..

About 1/3rd of N deposition is from organic N (Tamm et al. 2002 Biogeochem 57/58: 99‐136)

Most studies have been on inorganic N deposition

Page 28: John Dighton: Beneficial fungi in the forest and impacts of pollution

Ectomycorrhizal root colonization of pitch pine and black oak seedlings in NJ pine barrens soil amended with inorganic or organic N (227.5 kg ha‐1 y‐1 equivalent over 10 weeks)

From Avolio et al. (2009) Mycol. Res. 113: 897‐907.

Page 29: John Dighton: Beneficial fungi in the forest and impacts of pollution

From Avolio et al. (2009) Mycol. Res. 113: 897‐907

Mycorrhizal colonization by pine is correlated only to plant mass.

Colonization of oak is related to both plant mass and shoot N concentration

r2=0.383 P=0.001r2=0.085 P=0.0402

r2=0.5002 P=0.0001 Pine

OakOak

Page 30: John Dighton: Beneficial fungi in the forest and impacts of pollution

From Knecht & Goransson (2004) Tree Physiol. 24: 447‐460

So …. are trees selecting mycorrhizal associates and root colonization rate in relation to their growth and nutrient status differentially in order to optimize their nutrient ratios?

Page 31: John Dighton: Beneficial fungi in the forest and impacts of pollution

Effect of N deposition on N, P and K demand by Sitka spruce forests in Wales

Data reworked from Harrison et al. (1995) For. Ecol. Manage. 76: 139‐148

N dep = 20‐30 kg ha‐1 y‐1N demand = 56 kg ha‐1 y‐1

Page 32: John Dighton: Beneficial fungi in the forest and impacts of pollution

Critical Loads

• Critical loads for ecosystem are based on the N saturation point of soil – N leaching

• For ectomycorrhizae, Wallander & Kottke (1998) cite examples where 35 kg N ha‐1 y‐1 cause changes in sporophore communities

• Suggested setting critical load at 15‐20 kg N ha‐1y‐1 for sporophores

• They suggest that mycorrhizal roots are less sensitive to N changes, so critical load at 40‐60 kg N ha‐1 y‐1

Page 33: John Dighton: Beneficial fungi in the forest and impacts of pollution

Pine Barrens Oligotrophic Ecosystem

• We have demonstrated changes in ectomycorrhizal root communities  over a range of ~5 kg N ha‐1 y‐1 with max of 8 kg N ha‐1 y‐1 chronic N deposition

• So should critical loads for mycorrhizae be adjusted according to soil type 

• We have not been able to cause a change in ECM community structure on pine with acute N deposition, but have with oak.

• So, are we forest species dependent in response

Page 34: John Dighton: Beneficial fungi in the forest and impacts of pollution

The Balance of Nutrients

• Lessons from Control Burning – Effects on soil nutrients – Effects on ectomycorrhizae– Root bioassays – what the tree thinks

Page 35: John Dighton: Beneficial fungi in the forest and impacts of pollution

Effect of prescribed burning on ectomycorrhizae and changes in nutrient demand by trees

From Tuininga & Dighton (2004) Can. J. For. Res. 34: 1755‐1765

Page 36: John Dighton: Beneficial fungi in the forest and impacts of pollution

Root/arbuscular‐mycorrhizal phosphatase production with N and P addition to soils of contrasting fertility in evergreen forest in Hawaii

From Treseder & Vitousek (2001) Ecology 82: 946‐954

N & P added at 100 kg ha‐1 y‐1

Page 37: John Dighton: Beneficial fungi in the forest and impacts of pollution

420 370

270

100

192

Phosphatase activity(ng p‐nitrophenol mm‐2)

Effect of leaf litters on ectomycorrhizal community composition and acid phosphatase actvity

From Conn & Dighton (2000) Soil Biol. Biochem. 32: 489‐496

301 226 194

Page 38: John Dighton: Beneficial fungi in the forest and impacts of pollution

Relationship between organism growth rate and RNA content, which is highly dependent on C:N:P stoichiometry – particularly important for rubisco production in autotrophs (Vrede et al. (2004) Ecology 85: 1217‐1229)

But in pine, rubisco production is better correlated to P availability than N availability (Warren & Adams (2004) Tree Physiol. 22: 11‐19)

Page 39: John Dighton: Beneficial fungi in the forest and impacts of pollution

Effect of mycorrhizal diversity on host plant P content  No effect on N content

From Baxter & Dighton (2001) New Phytol. 152: 139‐149

Page 40: John Dighton: Beneficial fungi in the forest and impacts of pollution

Effect of N and N:P ratio supply on P and N content of woody plants in experimental and field conditions

N:P ratio influences P acquisition, not N

From Guswell (2004) New Phytol. 164: 243‐266

Page 41: John Dighton: Beneficial fungi in the forest and impacts of pollution

N : P : K 

Pant MassN : P : K : C

BacteriaSoil Fauna

BiomassSpecies composition

MycorrhizalabundanceSpecies compositionDiversity

N

Page 42: John Dighton: Beneficial fungi in the forest and impacts of pollution

Mycorrhizal responses to N or P addition and elevated CO2 from a meta‐analysis of data from the literature

From Treseder (2004) New Phytol. 164: 347‐355

Relative importance of N as regulator of mycorrhizae

‐15% ‐32%

+47%

Page 43: John Dighton: Beneficial fungi in the forest and impacts of pollution

Conclusions• N deposition affects both mycorrhizal colonization of roots 

(abundance and richness) and fruiting structures (sporocarps) – differential levels

• The level of N dep to have an effect differs between soil types – oligotrophic soils are more sensitive

• The impact of N dep may be more important to other groups of soil organisms by direct and indirect effects

• Stoichiometric considerations are probably more important than concentrating on a single nutrient element

• There may be stoichiometric interactions that influence attainment of optimum plant nutrient stoichiometry and plant fitness – may be important in competition and invasiveness

Page 44: John Dighton: Beneficial fungi in the forest and impacts of pollution

Hg pollution

• Interactions with mycorrhizae• Interactions in phylloplane

Page 45: John Dighton: Beneficial fungi in the forest and impacts of pollution

Effects of Hg concentration in soil on pitch pine seedling growth and mycorrhizalcolonization of roots

Possible threshold response of mycorrhizae

From Crane et al. (2012) Fungal Ecol. 5: 245‐251

Page 46: John Dighton: Beneficial fungi in the forest and impacts of pollution

From Crane et al. (2010) Fungal Biol. 114: 873‐880

Growth trajectories of ECMF at different Hg levels and effects on plant growth

Page 47: John Dighton: Beneficial fungi in the forest and impacts of pollution

Hg and phylloplane fungi

See next seminarKatie Malcolm

Page 48: John Dighton: Beneficial fungi in the forest and impacts of pollution

The Chernobyl Accident

• Was a world‐wide experiment• The fate of Cs in the environment could be tracked as:

• 137Cs:134Cs ratio was 2:1• 137Cs half life = 28 yrs• 134Cs half life = 2.2 yrs• Thus able to identify source of 137Cs in the environment

Page 49: John Dighton: Beneficial fungi in the forest and impacts of pollution

Radiocaesium in Ecosystem Components in Swedish Boreal Forest at Deposition of 220 kBq m‐2

(Guillette et al., 1994)

Ecological component 137Cs content (kBq kg-1)Leaf litter and A horizon 40Total organic soil horizon 19Facultative mycorrhizae 230Obligate mycorrhizae 120Saprotrophic fungi 140Lichens 36Mosses 19Ferns 16Angiosperms 8

Page 50: John Dighton: Beneficial fungi in the forest and impacts of pollution

Percentage of 137Cs in Mushrooms, not Derived from Chernobyl

(Dighton & Horrill, 1988)

Fungal Species Location % of 137CsLactarius rufus MH86 92

MH87 81St 74S2 67SB 73B 25

Inocybe longicystis SB 75S4 83

Page 51: John Dighton: Beneficial fungi in the forest and impacts of pollution

Adaptive Properties of Fungi

• When previously exposed to radiation, we have found that fungi appear to adopt properties that fungi from non‐radioactive area do not possess. These adaptive properties include:– Enhanced spore germination– Enhanced hyphal growth– Directional growth towards sources of radiation (radiotropism)

Page 52: John Dighton: Beneficial fungi in the forest and impacts of pollution

A. ver 432

Cont Sn Cs0

10

20

30A

B

B

Radionuclide

Hyp

hal L

engt

h (m

m)

A. ver 43

Cont Sn Cs0

5

10

15

A

A A

Radionuclide

Hyp

hal L

engt

h (m

m)

A. ver 57

Cont Sn Cs0

5

10

15

20

25

AAB

BC

Radionuclide

Hyp

ahl L

engt

h (m

m)

Response of hyphal growth to applied radiation in relation to exposure at site of isolation

No exposure

55 mR h‐1

500 mR h‐1

Aspergillus versicolorTugay et al. (2006) Mycologia 98:521‐527

Page 53: John Dighton: Beneficial fungi in the forest and impacts of pollution

A. ver 432

Cont Sn Cs0.0

2.5

5.0

7.5

10.0

Rdaionuclide

% S

pore

Ger

min

atio

n

A. ver 43

Cont Sn Cs0

10

20

30

40

50

60

Radionuclide

% S

pore

Ger

min

atio

n

A. ver 57

Cont Sn Cs0

5

10

15

20

Radionuclide

% S

pore

Ger

min

atio

n

55 mR h‐1

500 mR h‐1

No exposure

Response of spore germination to applied radiation in relation to exposure at site of isolation

Aspergillus versicolor

Tugay et al. (2006) Mycologia 98:521‐527

Page 54: John Dighton: Beneficial fungi in the forest and impacts of pollution

Summary

• Exposure to radiation has contrasting effects on spore germination and hyphal extension– Prior exposure to radiation can stimulate responses

– Responses are dose related– We can see hormetic responses– Responses are genus and species specific

Page 55: John Dighton: Beneficial fungi in the forest and impacts of pollution

Radiotropism

• Or directed growth of hyphae towards radiation

Page 56: John Dighton: Beneficial fungi in the forest and impacts of pollution

Petri plate over upper port

Slide at side port

1mm diameter ports to generate collimated beam of radiactivity

Lead wall of irradiator

Radioactive isotope placed equidistant from all ports

Calculation of ‘return angle’

Assembly for delivering a collimated beam of ionizing radiation to fungi

Page 57: John Dighton: Beneficial fungi in the forest and impacts of pollution

P. lil 1941

Control Cd P0

25

50

75

100A

BB

Mea

n Re

turn

Ang

le (

o )

P. hirz 3

Control Cd P0

25

50

75

100

Mea

n Re

turn

Ang

le (

o )

A

BB

P. hirz 1

Control Cd P0

25

50

75

100

Mea

n Re

turn

Ang

le (

o )

A

A A

Cl. cl 4

Control Cd P0

50

100

Mea

n Re

turn

Ang

le (

o )

A

BB

Chernobyl soil 3.2 x 104 Bq kg‐1 Hot particle 1.5 x 106 Bq

Hot particle 6 x 104 Bq Chernobyl soil 4 x 107 Bq kg‐1

Hyphal Return Angle When Exposed to 109Cd ( γ) or 32P (β) Collimated Beam of Radiation

Zhdanova et al. (2004) Mycol. Res. 108:1089‐1096

Page 58: John Dighton: Beneficial fungi in the forest and impacts of pollution

Dark Light0

5

10

15

20

25

% S

trai

ns w

ith

Rad

iotr

opis

mFrequency of Occurrence of Radiotropism in Fungal 

Isolates Containing Melanin (dark) or Not

Page 59: John Dighton: Beneficial fungi in the forest and impacts of pollution

Summary

• Prior exposure to radiation elicited a directional growth of hyphae

• No prior exposure generally resulted in no response

• Magnitude of responses were species dependent

• Directional growth is more prevalent in melanized fungal isolates