international conference on representations of algebras · 2012-08-23 · international conference...

37
International Conference on Representations of Algebras Bielefeld, August 3-17, 2012 . . . 1 ′′ 2 ′′ 2 3 3 4 . . . . . . . . . . . . 2 3 3 4 1 ′′ 2 ′′ . . . . . . 1 ′′ 2 ′′ 2 3 3 4 . . . . . . . . . . . . 4 3 3 2 2 ′′ 1 ′′ . . . . . . 1 ′′ 2 ′′ 2 3 3 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ′′ 1 ′′ 1 2 2 3 . . . . . . . . . . . . . . . . . . . . . Markus Schmidmeier (Florida Atlantic University): ADE Posets

Upload: others

Post on 04-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

International Conference on Representations of Algebras

Bielefeld, August 3-17, 2012

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

................................................................................................................

................................................................................................................

...................................

...................................

..................................................

..................................................

..................................................

2′

3′

3

4

1′′

2′′

...................................................................................................................

..........................................................................

..........................................................................

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

..................................................................

.................................................................. .....................................

..................... ................

..................................................

..................................................

..................................................

4

3

3′

2′

2′′

1′′

...................................................................................................................

..........................................................................

..........................................................................

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

......

...

......

.................................................................

..............................................................

..............................................................

.................... ..........

..................................................

..................................................

..................................................

0′′

1′′

1′

2′

2

3

...................................................................................................................

..........................................................................

..........................................................................

......

...

......

...

Markus Schmidmeier (Florida Atlantic University):

ADE Posets

Page 2: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Contents

ADE posetsDilworth’s TheoremNoether’s TheoremRelated categories

SymmetriesReflection at the centerRotationShift

InvariantsSlopeDriftCurvature

Summary

Page 3: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

Page 4: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

Page 5: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

..........................................................

.........................................................

3′′

2′′

1′′

0′′

Page 6: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

..........................................................

.........................................................

3′′

2′′

1′′

0′′

..........................................................

.................................................................................................

...........................................................................

4′

3′

2′

1′

Page 7: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

..........................................................

.........................................................

3′′

2′′

1′′

0′′

..........................................................

.................................................................................................

...........................................................................

4′

3′

2′

1′

..........................................................

.................................................................................................

...................................................................................................................

...........................................................................

5

4

3

2

Page 8: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

..........................................................

.........................................................

3′′

2′′

1′′

0′′

..........................................................

.................................................................................................

...........................................................................

4′

3′

2′

1′

..........................................................

.................................................................................................

...................................................................................................................

...........................................................................

5

4

3

2

................................................................................................................

................................................

......................................

.......... ................................................................................................................

................................................

......................................

.......... ................................................................................................................

................................................

......................................

..........

Page 9: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

..........................................................

.........................................................

3′′

2′′

1′′

0′′

..........................................................

.................................................................................................

...........................................................................

4′

3′

2′

1′

..........................................................

.................................................................................................

...................................................................................................................

...........................................................................

5

4

3

2

................................................................................................................

................................................

......................................

.......... ................................................................................................................

................................................

......................................

.......... ................................................................................................................

................................................

......................................

..........

................................................................................................................

................................................

......................................

...........................................................

...........................................................................

..................................................

........................................................

↑||n

||↓

Page 10: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ADE Posets

Dilworth’s Theorem. For P a finite poset,

max{

|A| : A ⊆ P antichain}

= min{

|C| : C partition of P by chains}

Recall: A poset of width at most 2 has finite representation type.

In this talk, we consider posets of width at most 3 with lots ofsymmetries.

P(n) :

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

...

...

...

...

...

...

..........................................................

.........................................................

3′′

2′′

1′′

0′′

..........................................................

.................................................................................................

...........................................................................

4′

3′

2′

1′

..........................................................

.................................................................................................

...................................................................................................................

...........................................................................

5

4

3

2

................................................................................................................

................................................

......................................

.......... ................................................................................................................

................................................

......................................

.......... ................................................................................................................

................................................

......................................

..........

..........................................................

.........................................................

........................................................

...........................................................

............................................................................................................

..................................................

.......................................

...........

........

........

........

........

........

........

..

........

........

........

........

........

........

..

........

........

........

........

........

........

..

Page 11: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Poset representations

Let P be one of the above posets.

Poset representations: By repK P we denote the category of allsystems

(

V∗, (Vx)x∈P)

which satisfy:

◮ V∗ is a finite dimensional K -vector space,

◮ Vx ⊂ V∗ is a subspace for each x ∈ P,

◮ Vx ⊂ Vy holds whenever x < y in P, and

◮ there exist x , y ∈ P with Vx = 0 and Vy = V∗ (finitesupport).

Page 12: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Poset representations

Let P be one of the above posets.

Poset representations: By repK P we denote the category of allsystems

(

V∗, (Vx)x∈P)

which satisfy:

◮ V∗ is a finite dimensional K -vector space,

◮ Vx ⊂ V∗ is a subspace for each x ∈ P,

◮ Vx ⊂ Vy holds whenever x < y in P, and

◮ there exist x , y ∈ P with Vx = 0 and Vy = V∗ (finitesupport).

A chain of categories: The relations for P(n + 1) are satisfied inP(n), hence the categories repK P(n), n ∈ N, form a chain:

repK P(1) ⊂ repK P(2) ⊂ repK P(3) ⊂ · · ·

Page 13: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Symmetries of the poset

We consider three symmetry operations of the posets, picturedhere for the poset P(3), and the endofunctors which they induceon its category of representations.

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

................................................................................................................................................................

................................................................................................................................................................

....................................

....................................

..................................................

..................................................

..................................................

2′

3′

3

4

1′′

2′′

...................................................................................................................

..........................................................................

..........................................................................

“rotation”

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

..............................................................................................

.............................................................................................. ........................................

........................ ................

..................................................

..................................................

..................................................

4

3

3′

2′

2′′

1′′

...................................................................................................................

..........................................................................

..........................................................................

“reflection”

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

......

...

......

..............................................................................

...........................................................................

...........................................................................

.............................. ...............

..................................................

..................................................

..................................................

0′′

1′′

1′

2′

2

3

...................................................................................................................

..........................................................................

..........................................................................

......

...

......

...

“shift”

Page 14: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

AimNoether’s Theorem: Any symmetry of the action of a physical

system has a corresponding conservation law.

Page 15: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

AimNoether’s Theorem: Any symmetry of the action of a physical

system has a corresponding conservation law.

◮ Symmetries of the posets emphasize the role of operations:

reflection dualityrotation AR-translation τ

shift graded shift

Page 16: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

AimNoether’s Theorem: Any symmetry of the action of a physical

system has a corresponding conservation law.

◮ Symmetries of the posets emphasize the role of operations:

reflection dualityrotation AR-translation τ

shift graded shift

◮ In turn, the operations on repP(n) motivate invariants:

graded shift slope σ

duality drift δ = d σ

d n

AR-translation curvature κ = d σ

d τ

Page 17: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

AimNoether’s Theorem: Any symmetry of the action of a physical

system has a corresponding conservation law.

◮ Symmetries of the posets emphasize the role of operations:

reflection dualityrotation AR-translation τ

shift graded shift

◮ In turn, the operations on repP(n) motivate invariants:

graded shift slope σ

duality drift δ = d σ

d n

AR-translation curvature κ = d σ

d τ

◮ Using the invariants we study the chain of categories:

repK P(1) ⊂ repK P(2) ⊂ repK P(3) ⊂ · · ·

Page 18: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Related categoriesThe category S(n) of invariant subspaces (C.M. Ringel, D. Simson,P. Zhang e.a.) occurs as a factor (M. Kleiner):

Proposition. The functor G : repK P(n) → S(n) given by the

picture

V ′′1

V ′′2

V ′2

V ′3

V3

V4

V∗

........

........

....................

................ .................................................... ........

........

....................

................

..............................................................................

........

........

....................

...........................

......................

.............................................

..............................................................................

..............................................................................

..................................

..................................

..........................................................

..................... ..................... .....................

.................... ..................... ....................

.................... .................

..........................

7→

V4

V3

V∗

V∗

V ′3

V ′2

V∗

V ′′2

V ′′1

..........................

..........................

..........................

..........................

..........................

..........................

.............

.............

.............

.............

.............

7→

V4

V3

V∗/V′′2

V∗/V′′1

V ′3

V ′2/V

′′2

V∗/V′′1

..........................................................

..........................................................

..........................................................

..........................................................

..........................................................

............................................................. ................

............................................................. ................

............................................................. ................

.....................

.....................

.....................

Page 19: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Related categoriesThe category S(n) of invariant subspaces (C.M. Ringel, D. Simson,P. Zhang e.a.) occurs as a factor (M. Kleiner):

Proposition. The functor G : repK P(n) → S(n) given by the

picture

V ′′1

V ′′2

V ′2

V ′3

V3

V4

V∗

........

........

....................

................ .................................................... ........

........

....................

................

..............................................................................

........

........

....................

...........................

......................

.............................................

..............................................................................

..............................................................................

..................................

..................................

..........................................................

..................... ..................... .....................

.................... ..................... ....................

.................... .................

..........................

7→

V4

V3

V∗

V∗

V ′3

V ′2

V∗

V ′′2

V ′′1

..........................

..........................

..........................

..........................

..........................

..........................

.............

.............

.............

.............

.............

7→

V4

V3

V∗/V′′2

V∗/V′′1

V ′3

V ′2/V

′′2

V∗/V′′1

..........................................................

..........................................................

..........................................................

..........................................................

..........................................................

............................................................. ................

............................................................. ................

............................................................. ................

.....................

.....................

.....................

...........................................................................................................................................................................................................

...........

.....................................

is full and has kernel the ideal Z consisting of all maps which factor

through a sum of projective poset representations of type P ′′i .

Page 20: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Related categoriesThe category S(n) of invariant subspaces (C.M. Ringel, D. Simson,P. Zhang e.a.) occurs as a factor (M. Kleiner):

Proposition. The functor G : repK P(n) → S(n) given by the

picture

V ′′1

V ′′2

V ′2

V ′3

V3

V4

V∗

........

........

....................

................ .................................................... ........

........

....................

................

..............................................................................

........

........

....................

...........................

......................

.............................................

..............................................................................

..............................................................................

..................................

..................................

..........................................................

..................... ..................... .....................

.................... ..................... ....................

.................... .................

..........................

7→

V4

V3

V∗

V∗

V ′3

V ′2

V∗

V ′′2

V ′′1

..........................

..........................

..........................

..........................

..........................

..........................

.............

.............

.............

.............

.............

7→

V4

V3

V∗/V′′2

V∗/V′′1

V ′3

V ′2/V

′′2

V∗/V′′1

..........................................................

..........................................................

..........................................................

..........................................................

..........................................................

............................................................. ................

............................................................. ................

............................................................. ................

.....................

.....................

.....................

...........................................................................................................................................................................................................

...........

.....................................

is full and has kernel the ideal Z consisting of all maps which factor

through a sum of projective poset representations of type P ′′i .

Corollary. The stable category repKP(n) is equivalent to the

stable category of vector bundles over weighted projective linesX(2, 3, n) (X.-W. Chen, D. Kussin, H. Lenzing, H. Meltzer).Moreover, repK P(n) is equivalent to the category of gradedlattices over tiled orders (W. Rump).

Page 21: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The reflectionEach of the posets P(n) is symmetric with respect to reflection atone of the centers. On the module category, this operation inducesthe reflection duality:

V1′′

V2′′

V2′

V3′

V3

V4

V∗

........

........

......................

................ ...................................................... ........

........

......................

................

...................................................................................

........

........

......................

...........................

......................

..................................................

...................................................................................

...................................................................................

..................................

..................................

..................................

..................................

....................... ....................... .......................

....................... ....................... .......................

....................... ..................

..............................

D1′′

D2′′

D2′

D3′

D3

D4

D∗

...................................................................................................................

...................................................................................................................

...................................................................................................................

.............................................................................................

......................................................................................

................................................................................................................................................................................................ .........

.......

...................................................................... ................

.............................................................................................

......................................................................................

.............................................................................................

......................................................................................

................................................................................................................................ ................

........................................................................................................................ ................

K1′′

K2′′

K2′

K3′

K3

K4

K∗

......................................................

......................................................

......................................................

................................................................... ................

......................................................

...................................................................................

...................................................................................

...................................................................................

........................................................................................................................ ................

....................... ....................... .......................

.......................

....................... .......................

..............................................

.........................

Page 22: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The reflectionEach of the posets P(n) is symmetric with respect to reflection atone of the centers. On the module category, this operation inducesthe reflection duality:

V1′′

V2′′

V2′

V3′

V3

V4

V∗

........

........

......................

................ ...................................................... ........

........

......................

................

...................................................................................

........

........

......................

...........................

......................

..................................................

...................................................................................

...................................................................................

..................................

..................................

..................................

..................................

....................... ....................... .......................

....................... ....................... .......................

....................... ..................

..............................

D1′′

D2′′

D2′

D3′

D3

D4

D∗

...................................................................................................................

...................................................................................................................

...................................................................................................................

.............................................................................................

......................................................................................

................................................................................................................................................................................................ .........

.......

...................................................................... ................

.............................................................................................

......................................................................................

.............................................................................................

......................................................................................

................................................................................................................................ ................

........................................................................................................................ ................

K1′′

K2′′

K2′

K3′

K3

K4

K∗

......................................................

......................................................

......................................................

................................................................... ................

......................................................

...................................................................................

...................................................................................

...................................................................................

........................................................................................................................ ................

....................... ....................... .......................

.......................

....................... .......................

..............................................

.........................

Lemma. The reflection duality D : repK P(n) → repK P(n)preserves the ideal Z and induces the duality on the quotient

S(n) = repK P(n)/Z given by

D(

U ⊂ V)

=(

D(V /U) ⊂ DV)

.

Page 23: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The rotationThe rotation of the poset gives rise to a autoequivalence R oforder three on its category of representations.

We pick the orientation such that V 7→ V ′ 7→ V ′′ 7→ V .

Page 24: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The rotationThe rotation of the poset gives rise to a autoequivalence R oforder three on its category of representations.

We pick the orientation such that V 7→ V ′ 7→ V ′′ 7→ V .

Remark: For a representation M = (M ′i ⊂ Mi )i∈Z ∈ S(n), the

corresponding poset representation encodes the subspaces M ′i , the

ambient spaces Mi and the factor spaces Mi/M′i in the following

subposets of P(n).

poset P

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

subspace

• ◦

◦....................................

....................................

1′′

2′′

2′

3′.....................................................

ambient space

•◦

◦....................................

....................................

1′′

2′′

3

4..........................................

...........................

.............

factor space

•◦

◦ ....................................

....................................

2′

3′

3

4.....................................................

Page 25: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The rotationThe rotation of the poset gives rise to a autoequivalence R oforder three on its category of representations.

We pick the orientation such that V 7→ V ′ 7→ V ′′ 7→ V .

Remark: For a representation M = (M ′i ⊂ Mi )i∈Z ∈ S(n), the

corresponding poset representation encodes the subspaces M ′i , the

ambient spaces Mi and the factor spaces Mi/M′i in the following

subposets of P(n).

poset P

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

subspace

• ◦

◦....................................

....................................

1′′

2′′

2′

3′.....................................................

ambient space

•◦

◦....................................

....................................

1′′

2′′

3

4..........................................

...........................

.............

factor space

•◦

◦ ....................................

....................................

2′

3′

3

4.....................................................

Proposition. For the unbounded posets of discrete representation

type, the rotation is just the square of the Auslander-Reiten

translation, up to a shift.

R = τ2[

6− n

3

]

Page 26: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The shiftThe shift in the poset in vertical direction gives rise to the gradedshift on the category of representations.

The position with respect to the shift is measured by the slope.

Roughly, the slope is just the barycenter of the generators in thealigned poset, where generators for multiple columns are averagedout.

Page 27: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The shiftThe shift in the poset in vertical direction gives rise to the gradedshift on the category of representations.

The position with respect to the shift is measured by the slope.

Roughly, the slope is just the barycenter of the generators in thealigned poset, where generators for multiple columns are averagedout.

Slope formula: σ(V ) =1

g

x∈P(n)

µ(x)σx(V ) for V ∈ repK P(n),

where g is the number of generators,

µ(x) =

y + n3 if x = y ′′

y if x = y ′

y − n3 if x = y

and

σx(V ) = dim Vx

Vx+1− 1

2

(

dim Vx+1+V ′

x

Vx+1+ dim

V−

x+1+Vx

V−

x+1

)

−16

(

dim Vx+1+V ′′

x

Vx+1+ dim

V−

x+1+V ′

x

V−

x+1

+ dimV=x+1+Vx

V=x+1

)

.

Page 28: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ExampleThe category repk P(3) for P(3) =

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

has the following

partial Auslander-Reiten quiver:

1000000

1100000

1010000

1001000

2111000

1011000

1101000

1110000

1011010

1111000

1101001

1110100

1111010

1111001

1111100

2222111

1111101

1111110

1111011

1111111

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

.........................................................................

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

.........................................................................

.............................................................

....................................... ................

....................................................................

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

....................................................................

............................................. ................

.......................................................

.........................................................................

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

.........................................................................

..............

..............

..............

..............

..............

..............

Page 29: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

ExampleThe category repk P(3) for P(3) =

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

has the following

partial Auslander-Reiten quiver:

1000000

1100000

1010000

1001000

2111000

1011000

1101000

1110000

1011010

1111000

1101001

1110100

1111010

1111001

1111100

2222111

1111101

1111110

1111011

1111111

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

.........................................................................

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

.........................................................................

.............................................................

....................................... ................

....................................................................

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

....................................................................

............................................. ................

.......................................................

.........................................................................

.............................................................

....................................... ................

.........................................................................

............................................. ................

.......................................................

.........................................................................

..............

..............

..............

..............

..............

..............

1 114 11

2 134 2 21

4 212 23

4 3

...................

........................

.........

...

.........

...................

........................

.........

...

.........

........

........

.........

...

.........

...................

........................

.........

...

.........

...................

........................

◮ The slope increases with the graded shift.

◮ It is invariant under rotation.

◮ There is constant d such that σ(DX ) = d − σ(X ) holds.

Page 30: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The drift

For X ∈ repK P(n0), we consider the sequence σn(X ) of slopeswhen X is considered an object in repK P(n) for n ≥ n0.

Four Examples: Consider the poset P(3) =•

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

.

dimX σn(X ) for n > 3 σ3(X ) drift

1

1

1

1

1

0 0©©© 1

2

(

1 + n3 + 1

2(3 + 3− n3 ))

= 2 + n12 21

4112

Page 31: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The drift

For X ∈ repK P(n0), we consider the sequence σn(X ) of slopeswhen X is considered an object in repK P(n) for n ≥ n0.

Four Examples: Consider the poset P(3) =•

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

.

dimX σn(X ) for n > 3 σ3(X ) drift

1

1

1

1

1

0 0©©© 1

2

(

1 + n3 + 1

2(3 + 3− n3 ))

= 2 + n12 21

4112

1

1 1

1

1

00©©© 1

2

(

3− n3 + 1

2(2 +n3 + 2)

)

= 212 − n

12 214 − 1

12

Page 32: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The drift

For X ∈ repK P(n0), we consider the sequence σn(X ) of slopeswhen X is considered an object in repK P(n) for n ≥ n0.

Four Examples: Consider the poset P(3) =•

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

.

dimX σn(X ) for n > 3 σ3(X ) drift

1

1

1

1

1

0 0©©© 1

2

(

1 + n3 + 1

2(3 + 3− n3 ))

= 2 + n12 21

4112

1

1 1

1

1

00©©© 1

2

(

3− n3 + 1

2(2 +n3 + 2)

)

= 212 − n

12 214 − 1

12

1 1

1

1

1

0 0©©© 1

3

(

2 + 4− n3 + 1 + n

3

)

= 213 21

4 0

Page 33: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The drift

For X ∈ repK P(n0), we consider the sequence σn(X ) of slopeswhen X is considered an object in repK P(n) for n ≥ n0.

Four Examples: Consider the poset P(3) =•

..................................................

..................................................

..................................................

1′′

2′′

2′

3′

3

4

...................................................................................................................

..........................................................................

..........................................................................

.

dimX σn(X ) for n > 3 σ3(X ) drift

1

1

1

1

1

0 0©©© 1

2

(

1 + n3 + 1

2(3 + 3− n3 ))

= 2 + n12 21

4112

1

1 1

1

1

00©©© 1

2

(

3− n3 + 1

2(2 +n3 + 2)

)

= 212 − n

12 214 − 1

12

1 1

1

1

1

0 0©©© 1

3

(

2 + 4− n3 + 1 + n

3

)

= 213 21

4 0

1 1 1

2 2 2

2

©©©

©©© 1

4

(

12(3 + 3− n

3 ) +12(2 +

n3 + 2) + 4 + 1

)

= 212 21

2 0

Page 34: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The curvatureTheorem. If X → Y is an irreducible morphism in repK P(n) then

σ(Y ) = σ(X ) +6− n

12

Page 35: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

The curvatureTheorem. If X → Y is an irreducible morphism in repK P(n) then

σ(Y ) = σ(X ) +6− n

12

Definition: The curvature in repK P(n) is defined as

κ(n) =d σ

d τ=

6− n

6

n 1 2 3 4 5 6 7 8 9 · · · 12

Γ ∅ ZA2 ZD4 ZE6 ZE8 E8..................................................................................... ZA∞ · · ·

[

1]

− τ32ϕ τ2ρ τ3ϕ τ6 − τ−6

κ(n) ∅ 23

12

13

16 0 −1

6 −13 −1

2 · · · −1

Page 36: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Summary

Symmetry properties of the posets P(n) lead to invariants for thestudy of repK P(n).

◮ For each object, the slope determines its position withinrepK P(n).

◮ The drift is the change of the slope as the object moves alongthe chain

repK P(1) ⊂ repK P(2) ⊂ repK P(3) ⊂ · · ·

◮ The curvature is positive, zero or negative, depending onwhether repK P(n) is of discrete, tame or wild representationtype.

Page 37: International Conference on Representations of Algebras · 2012-08-23 · International Conference on Representations of Algebras ... We consider three symmetry operations of the

Summary

Symmetry properties of the posets P(n) lead to invariants for thestudy of repK P(n).

◮ For each object, the slope determines its position withinrepK P(n).

◮ The drift is the change of the slope as the object moves alongthe chain

repK P(1) ⊂ repK P(2) ⊂ repK P(3) ⊂ · · ·

◮ The curvature is positive, zero or negative, depending onwhether repK P(n) is of discrete, tame or wild representationtype.

Thank You!