finite-dimensional lie algebras and their representations ... · finite-dimensional lie algebras...

1851
arXiv:1511.08771v1 [hep-ph] 25 Nov 2015 Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building Naoki Yamatsu Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan November 30, 2015 Abstract We give information about finite-dimensional Lie algebras and their representations for model building in 4 and 5 dimensions; e.g., conjugacy classes, types of representations, Weyl dimensional formulas, Dynkin indices, quadratic Casimir invariants, anomaly coefficients, projection matrices, and branching rules of Lie algebras and their subalgebras up to rank-15 and D 16 . We show what kind of Lie algebras can be applied for grand unified theories in 4 and 5 dimensions. Contents 1 Introduction 16 2 Lie algebras and their subalgebras 17 2.1 (Extended) Dynkin diagrams and Cartan matrices ....... 21 2.2 Subalgebras ............ 25 3 Representations of algebras 34 3.1 Conjugacy class .......... 34 3.2 Complex, self-conjugate, real, and pseudo-real .......... 36 3.3 Weyl dimension formula ..... 41 3.4 Dynkin index and Casimir in- variant ............... 43 3.5 Anomaly coefficient ........ 47 3.6 Higher order Dynkin indices and Casimir invariants ........ 49 4 Representations of subalgebras 49 4.1 Branching rules and projection matrices .............. 50 4.2 Dynkin diagrams ......... 51 4.3 Recipe for calculating branching rules ................ 54 5 Tensor product 59 5.1 Dynkin’s theorem for second highest representation ...... 59 5.2 Conjugacy class .......... 59 5.3 Dynkin’s method of parts .... 60 5.4 Recipe for calculating tensor product .............. 62 6 Summary for representations of Lie algebras and their subalgebras 62 6.1 A n = su n+1 ............ 65 6.2 B n = so 2n+1 ............ 70 6.3 C n = usp 2n ............ 76 6.4 D n = so 2n ............. 81 6.5 E 6 ................. 89 6.6 E 7 ................. 91 6.7 E 8 ................. 93 6.8 F 4 ................. 95 6.9 G 2 ................. 96 7 Application for model building 98 7.1 Projection matrices of GUT gauge groups ........... 99 7.1.1 Rank 4 .......... 99 7.1.2 Rank 5 .......... 100 7.2 Branching rules of GUT gauge groups ............... 101 7.2.1 Rank 4 .......... 101 7.2.2 Rank 5 .......... 104 8 Summary and discussion 107 * Electronic address: [email protected] 1

Upload: others

Post on 28-Jun-2020

8 views

Category:

Documents


2 download

TRANSCRIPT

  • arX

    iv:1

    511.

    0877

    1v1

    [he

    p-ph

    ] 2

    5 N

    ov 2

    015

    Finite-Dimensional Lie Algebras and Their Representations for

    Unified Model Building

    Naoki Yamatsu ∗

    Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

    November 30, 2015

    Abstract

    We give information about finite-dimensional Lie algebras and their representations formodel building in 4 and 5 dimensions; e.g., conjugacy classes, types of representations, Weyldimensional formulas, Dynkin indices, quadratic Casimir invariants, anomaly coefficients,projection matrices, and branching rules of Lie algebras and their subalgebras up to rank-15and D16. We show what kind of Lie algebras can be applied for grand unified theories in 4and 5 dimensions.

    Contents

    1 Introduction 16

    2 Lie algebras and their subalgebras 17

    2.1 (Extended) Dynkin diagramsand Cartan matrices . . . . . . . 21

    2.2 Subalgebras . . . . . . . . . . . . 25

    3 Representations of algebras 34

    3.1 Conjugacy class . . . . . . . . . . 34

    3.2 Complex, self-conjugate, real,and pseudo-real . . . . . . . . . . 36

    3.3 Weyl dimension formula . . . . . 41

    3.4 Dynkin index and Casimir in-variant . . . . . . . . . . . . . . . 43

    3.5 Anomaly coefficient . . . . . . . . 47

    3.6 Higher order Dynkin indices andCasimir invariants . . . . . . . . 49

    4 Representations of subalgebras 49

    4.1 Branching rules and projectionmatrices . . . . . . . . . . . . . . 50

    4.2 Dynkin diagrams . . . . . . . . . 51

    4.3 Recipe for calculating branchingrules . . . . . . . . . . . . . . . . 54

    5 Tensor product 59

    5.1 Dynkin’s theorem for secondhighest representation . . . . . . 59

    5.2 Conjugacy class . . . . . . . . . . 59

    5.3 Dynkin’s method of parts . . . . 60

    5.4 Recipe for calculating tensorproduct . . . . . . . . . . . . . . 62

    6 Summary for representations of

    Lie algebras and their subalgebras 62

    6.1 An = sun+1 . . . . . . . . . . . . 65

    6.2 Bn = so2n+1 . . . . . . . . . . . . 70

    6.3 Cn = usp2n . . . . . . . . . . . . 76

    6.4 Dn = so2n . . . . . . . . . . . . . 81

    6.5 E6 . . . . . . . . . . . . . . . . . 89

    6.6 E7 . . . . . . . . . . . . . . . . . 91

    6.7 E8 . . . . . . . . . . . . . . . . . 93

    6.8 F4 . . . . . . . . . . . . . . . . . 95

    6.9 G2 . . . . . . . . . . . . . . . . . 96

    7 Application for model building 98

    7.1 Projection matrices of GUTgauge groups . . . . . . . . . . . 99

    7.1.1 Rank 4 . . . . . . . . . . 99

    7.1.2 Rank 5 . . . . . . . . . . 100

    7.2 Branching rules of GUT gaugegroups . . . . . . . . . . . . . . . 101

    7.2.1 Rank 4 . . . . . . . . . . 101

    7.2.2 Rank 5 . . . . . . . . . . 104

    8 Summary and discussion 107

    ∗Electronic address: [email protected]

    1

    http://arxiv.org/abs/1511.08771v1

  • A Representations 113

    A.1 An = sun+1 . . . . . . . . . . . . 113

    A.2 Bn = so2n+1 . . . . . . . . . . . . 353

    A.3 Cn = usp2n . . . . . . . . . . . . 457

    A.4 Dn = so2n . . . . . . . . . . . . . 569

    A.5 En . . . . . . . . . . . . . . . . . 681

    A.6 F4 . . . . . . . . . . . . . . . . . 705

    A.7 G2 . . . . . . . . . . . . . . . . . 713

    B Positive roots 722

    C Weight diagrams 729

    D Projection matrices 756

    D.1 An . . . . . . . . . . . . . . . . . 756

    D.2 Bn . . . . . . . . . . . . . . . . . 776

    D.3 Cn . . . . . . . . . . . . . . . . . 805

    D.4 Dn . . . . . . . . . . . . . . . . . 823

    D.5 En . . . . . . . . . . . . . . . . . 850

    D.6 F4 . . . . . . . . . . . . . . . . . 853

    D.7 G2 . . . . . . . . . . . . . . . . . 853

    E Branching rules 854

    E.1 An = sun+1 . . . . . . . . . . . . 854

    E.1.1 Rank 2 . . . . . . . . . . 854

    E.1.2 Rank 3 . . . . . . . . . . 857

    E.1.3 Rank 4 . . . . . . . . . . 862

    E.1.4 Rank 5 . . . . . . . . . . 867

    E.1.5 Rank 6 . . . . . . . . . . 876

    E.1.6 Rank 7 . . . . . . . . . . 882

    E.1.7 Rank 8 . . . . . . . . . . 893

    E.1.8 Rank 9 . . . . . . . . . . 902

    E.1.9 Rank 10 . . . . . . . . . . 920

    E.1.10 Rank 11 . . . . . . . . . . 930

    E.1.11 Rank 12 . . . . . . . . . . 947

    E.1.12 Rank 13 . . . . . . . . . . 958

    E.1.13 Rank 14 . . . . . . . . . . 974

    E.1.14 Rank 15 . . . . . . . . . . 996

    E.2 Bn = so2n+1 . . . . . . . . . . . . 1018

    E.2.1 Rank 3 . . . . . . . . . . 1018

    E.2.2 Rank 4 . . . . . . . . . . 1026

    E.2.3 Rank 5 . . . . . . . . . . 1043

    E.2.4 Rank 6 . . . . . . . . . . 1058

    E.2.5 Rank 7 . . . . . . . . . . 1071

    E.2.6 Rank 8 . . . . . . . . . . 1085

    E.2.7 Rank 9 . . . . . . . . . . 1092

    E.2.8 Rank 10 . . . . . . . . . . 1099

    E.2.9 Rank 11 . . . . . . . . . . 1107

    E.2.10 Rank 12 . . . . . . . . . . 1114E.2.11 Rank 13 . . . . . . . . . . 1121E.2.12 Rank 14 . . . . . . . . . . 1128E.2.13 Rank 15 . . . . . . . . . . 1134

    E.3 Cn = usp2n . . . . . . . . . . . . 1142E.3.1 Rank 2 . . . . . . . . . . 1142E.3.2 Rank 3 . . . . . . . . . . 1149E.3.3 Rank 4 . . . . . . . . . . 1159E.3.4 Rank 5 . . . . . . . . . . 1175E.3.5 Rank 6 . . . . . . . . . . 1190E.3.6 Rank 7 . . . . . . . . . . 1206E.3.7 Rank 8 . . . . . . . . . . 1213E.3.8 Rank 9 . . . . . . . . . . 1220E.3.9 Rank 10 . . . . . . . . . . 1227E.3.10 Rank 11 . . . . . . . . . . 1233E.3.11 Rank 12 . . . . . . . . . . 1237E.3.12 Rank 13 . . . . . . . . . . 1244E.3.13 Rank 14 . . . . . . . . . . 1247E.3.14 Rank 15 . . . . . . . . . . 1251

    E.4 Dn = so2n . . . . . . . . . . . . . 1256E.4.1 Rank 4 . . . . . . . . . . 1256E.4.2 Rank 5 . . . . . . . . . . 1269E.4.3 Rank 6 . . . . . . . . . . 1282E.4.4 Rank 7 . . . . . . . . . . 1303E.4.5 Rank 8 . . . . . . . . . . 1325E.4.6 Rank 9 . . . . . . . . . . 1340E.4.7 Rank 10 . . . . . . . . . . 1352E.4.8 Rank 11 . . . . . . . . . . 1362E.4.9 Rank 12 . . . . . . . . . . 1369E.4.10 Rank 13 . . . . . . . . . . 1379E.4.11 Rank 14 . . . . . . . . . . 1386E.4.12 Rank 15 . . . . . . . . . . 1392E.4.13 Rank 16 . . . . . . . . . . 1399

    E.5 En . . . . . . . . . . . . . . . . . 1407E.5.1 Rank 6 . . . . . . . . . . 1407E.5.2 Rank 7 . . . . . . . . . . 1423E.5.3 Rank 8 . . . . . . . . . . 1434

    E.6 F4 . . . . . . . . . . . . . . . . . 1442E.7 G2 . . . . . . . . . . . . . . . . . 1449

    F Tensor products 1461

    F.1 An = sun+1 . . . . . . . . . . . . 1461F.2 Bn = so2n+1 . . . . . . . . . . . . 1680F.3 Cn = usp2n . . . . . . . . . . . . 1708F.4 Dn = so2n . . . . . . . . . . . . . 1743F.5 En . . . . . . . . . . . . . . . . . 1831F.6 F4 . . . . . . . . . . . . . . . . . 1843F.7 G2 . . . . . . . . . . . . . . . . . 1847

    List of Tables

    1 Extended Dynkin diagrams . . . 212 Cartan matrices . . . . . . . . . . 22

    3 Inverse Cartan matrices . . . . . 24

    4 Maximal S-subalgebras of clas-sical algebras (1) . . . . . . . . . 27

    2

  • 5 Maximal S-subalgebras of clas-sical algebras (2) . . . . . . . . . 27

    6 Maximal S-subalgebras of ex-ceptional algebras . . . . . . . . . 28

    7 Maximal subalgebras . . . . . . . 28

    8 Conjugacy classes . . . . . . . . . 34

    9 Complex representations (1) . . . 37

    10 Complex representations (2) . . . 37

    11 Self-conjugate representations . . 37

    12 Examples of complex represen-tations . . . . . . . . . . . . . . . 40

    13 Examples of self-conjugate rep-resentations . . . . . . . . . . . . 40

    14 Higher order Casimir invariants . 49

    15 Lowest dimensional representa-tions . . . . . . . . . . . . . . . . 62

    16 Adjoint representations . . . . . 63

    17 Dimension of fundamental rep-resentations . . . . . . . . . . . . 63

    18 Dynkin indices of fundamentalrepresentations . . . . . . . . . . 64

    19 Types of representations of An . 65

    20 Representations of An−1 = sun . 66

    21 Maximal subalgebras of An . . . 67

    22 Types of representations of Bn . 70

    23 Representations of Bn = so2n+1 . 71

    24 Maximal subalgebras of Bn . . . 72

    25 Types of representations of Cn . 76

    26 Representations of Cn = usp2n . 77

    27 Maximal subalgebras of Cn . . . 77

    28 Types of representations of Dn . 81

    29 Representations of Dn = so2n . . 82

    30 Maximal subalgebras of Dn . . . 83

    31 Types of representations of E6 . 90

    32 Representations of E6 . . . . . . 91

    33 Maximal subalgebras of E6 . . . 91

    34 Types of representations of E7 . 92

    35 Representations of E7 . . . . . . 92

    36 Maximal subalgebras of E7 . . . 93

    37 Types of representations of E8 . 93

    38 Representations of E8 . . . . . . 94

    39 Maximal subalgebras of E8 . . . 94

    40 Types of representations of F4 . . 95

    41 Representations of F4 . . . . . . 95

    42 Maximal subalgebras of F4 . . . 96

    43 Types of representations of G2 . 96

    44 Representations of G2 . . . . . . 97

    45 Maximal subalgebras of G2 . . . 97

    46 Candidates for 4D GUT gaugegroup . . . . . . . . . . . . . . . 98

    47 Candidates for GUT gaugegroup in general . . . . . . . . . 98

    48 Candidates for gauge-HiggsGUT gauge group . . . . . . . . 99

    49 Branching rules of SU(5) ⊃SU(3)× SU(2)× U(1) . . . . . 101

    50 Branching rules of SO(9) ⊃SU(3)× SU(2)× U(1) . . . . . 102

    51 Branching rules of USp(8) ⊃SU(3)× SU(2)× U(1) . . . . . 102

    52 Branching rules of F4 ⊃ SU(3)×SU(2)× U(1)(1) . . . . . . . . . 103

    53 Branching rules of F4 ⊃ SU(3)×SU(2)× U(1)(2) . . . . . . . . . 103

    54 Branching rules of SU(6) ⊃SU(3)× SU(2)× U(1) × U(1) . 104

    55 Branching rules of SO(11) ⊃SU(3)× SU(2)× U(1) × U(1) . 105

    56 Branching rules of USp(10) ⊃SU(3)× SU(2)× U(1) × U(1)(1) 105

    57 Branching rules of USp(10) ⊃SU(3)× SU(2)× U(1) × U(1)(2) 106

    58 Branching rules of SO(10) ⊃SU(3)× SU(2)× U(1) × U(1) . 107

    59 Representations of A1 . . . . . . 113

    60 Representations of A2 . . . . . . 129

    61 Representations of A3 . . . . . . 145

    62 Representations of A4 . . . . . . 161

    63 Representations of A5 . . . . . . 177

    64 Representations of A6 . . . . . . 193

    65 Representations of A7 . . . . . . 209

    66 Representations of A8 . . . . . . 225

    67 Representations of A9 . . . . . . 241

    68 Representations of A10 . . . . . . 257

    69 Representations of A11 . . . . . . 273

    70 Representations of A12 . . . . . . 289

    71 Representations of A13 . . . . . . 305

    72 Representations of A14 . . . . . . 321

    73 Representations of A15 . . . . . . 337

    74 Representations of B3 . . . . . . 353

    75 Representations of B4 . . . . . . 361

    76 Representations of B5 . . . . . . 369

    77 Representations of B6 . . . . . . 377

    78 Representations of B7 . . . . . . 385

    79 Representations of B8 . . . . . . 393

    80 Representations of B9 . . . . . . 401

    81 Representations of B10 . . . . . . 409

    82 Representations of B11 . . . . . . 417

    83 Representations of B12 . . . . . . 425

    84 Representations of B13 . . . . . . 433

    85 Representations of B14 . . . . . . 441

    86 Representations of B15 . . . . . . 449

    87 Representations of C2 . . . . . . 457

    88 Representations of C3 . . . . . . 465

    3

  • 89 Representations of C4 . . . . . . 473

    90 Representations of C5 . . . . . . 481

    91 Representations of C6 . . . . . . 489

    92 Representations of C7 . . . . . . 497

    93 Representations of C8 . . . . . . 505

    94 Representations of C9 . . . . . . 513

    95 Representations of C10 . . . . . . 521

    96 Representations of C11 . . . . . . 529

    97 Representations of C12 . . . . . . 537

    98 Representations of C13 . . . . . . 545

    99 Representations of C14 . . . . . . 553

    100 Representations of C15 . . . . . . 561

    101 Representations of D4 . . . . . . 569

    102 Representations of D5 . . . . . . 585

    103 Representations of D6 . . . . . . 593

    104 Representations of D7 . . . . . . 601

    105 Representations of D8 . . . . . . 609

    106 Representations of D9 . . . . . . 617

    107 Representations of D10 . . . . . . 625

    108 Representations of D11 . . . . . . 633

    109 Representations of D12 . . . . . . 641

    110 Representations of D13 . . . . . . 649

    111 Representations of D14 . . . . . . 657

    112 Representations of D15 . . . . . . 665

    113 Representations of D16 . . . . . . 673

    114 Representations of E6 . . . . . . 681

    115 Representations of E7 . . . . . . 689

    116 Representations of E8 . . . . . . 697

    117 Representations of F4 . . . . . . 705

    118 Representations of G2 . . . . . . 713

    119 Positive roots of An . . . . . . . 722

    120 Positive roots of Bn . . . . . . . 722

    121 Positive roots of Cn . . . . . . . 723

    122 Positive roots of Dn . . . . . . . 724

    123 Positive roots of En . . . . . . . 725

    124 Positive roots of F4 . . . . . . . . 727

    125 Positive roots of G2 . . . . . . . 728

    126 Weight diagrams of A1 . . . . . . 729

    127 Weight diagrams of A2 . . . . . . 729

    128 Weight diagrams of A3 . . . . . . 731

    129 Weight diagrams of A4 . . . . . . 732

    130 Weight diagrams of A5 . . . . . . 733

    131 Weight diagrams of A6 . . . . . . 734

    132 Weight diagrams of A7 . . . . . . 734

    133 Weight diagrams of A8 . . . . . . 734

    134 Weight diagrams of A9 . . . . . . 735

    135 Weight diagrams of A10 . . . . . 736

    136 Weight diagrams of B2 . . . . . . 736

    137 Weight diagrams of B3 . . . . . . 737

    138 Weight diagrams of B4 . . . . . . 737

    139 Weight diagrams of B5 . . . . . . 738

    140 Weight diagrams of B6 . . . . . . 739

    141 Weight diagrams of B7 . . . . . . 739

    142 Weight diagrams of B8 . . . . . . 740

    143 Weight diagrams of B9 . . . . . . 740

    144 Weight diagrams of B10 . . . . . 741

    145 Weight diagrams of C2 . . . . . . 741

    146 Weight diagrams of C3 . . . . . . 742

    147 Weight diagrams of C4 . . . . . . 743

    148 Weight diagrams of C5 . . . . . . 743

    149 Weight diagrams of C6 . . . . . . 744

    150 Weight diagrams of C7 . . . . . . 744

    151 Weight diagrams of C8 . . . . . . 744

    152 Weight diagrams of C9 . . . . . . 745

    153 Weight diagrams of C10 . . . . . 745

    154 Weight diagrams of D3 . . . . . . 746

    155 Weight diagrams of D4 . . . . . . 746

    156 Weight diagrams of D5 . . . . . . 747

    157 Weight diagrams of D6 . . . . . . 748

    158 Weight diagrams of D7 . . . . . . 748

    159 Weight diagrams of D8 . . . . . . 748

    160 Weight diagrams of D9 . . . . . . 749

    161 Weight diagrams of D10 . . . . . 749

    162 Weight diagrams of E6 . . . . . . 750

    163 Weight diagrams of E7 . . . . . . 751

    164 Weight diagrams of E8 . . . . . . 752

    165 Weight diagrams of F4 . . . . . . 754

    166 Weight diagrams of G2 . . . . . . 754

    167 Projection matrices of A1 . . . . 756

    168 Projection matrices of A2 . . . . 756

    169 Projection matrices of A3 . . . . 756

    170 Projection matrices of A4 . . . . 756

    171 Projection matrices of A5 . . . . 757

    172 Projection matrices of A6 . . . . 757

    173 Projection matrices of A7 . . . . 758

    174 Projection matrices of A8 . . . . 759

    175 Projection matrices of A9 . . . . 760

    176 Projection matrices of A10 . . . . 762

    177 Projection matrices of A11 . . . . 763

    178 Projection matrices of A12 . . . . 765

    179 Projection matrices of A13 . . . . 767

    180 Projection matrices of A14 . . . . 769

    181 Projection matrices of A15 . . . . 772

    182 Projection matrices of B3 . . . . 776

    183 Projection matrices of B4 . . . . 776

    184 Projection matrices of B5 . . . . 777

    185 Projection matrices of B6 . . . . 777

    186 Projection matrices of B7 . . . . 778

    187 Projection matrices of B8 . . . . 780

    188 Projection matrices of B9 . . . . 781

    189 Projection matrices of B10 . . . . 783

    190 Projection matrices of B11 . . . . 785

    191 Projection matrices of B12 . . . . 788

    192 Projection matrices of B13 . . . . 792

    4

  • 193 Projection matrices of B14 . . . . 795

    194 Projection matrices of B15 . . . . 799

    195 Projection matrices of C2 . . . . 805

    196 Projection matrices of C3 . . . . 805

    197 Projection matrices of C4 . . . . 805

    198 Projection matrices of C5 . . . . 806

    199 Projection matrices of C6 . . . . 806

    200 Projection matrices of C7 . . . . 807

    201 Projection matrices of C8 . . . . 808

    202 Projection matrices of C9 . . . . 809

    203 Projection matrices of C10 . . . . 810

    204 Projection matrices of C11 . . . . 812

    205 Projection matrices of C12 . . . . 813

    206 Projection matrices of C13 . . . . 816

    207 Projection matrices of C14 . . . . 818

    208 Projection matrices of C15 . . . . 820

    209 Projection matrices of D4 . . . . 823

    210 Projection matrices of D5 . . . . 823

    211 Projection matrices of D6 . . . . 824

    212 Projection matrices of D7 . . . . 825

    213 Projection matrices of D8 . . . . 826

    214 Projection matrices of D9 . . . . 828

    215 Projection matrices of D10 . . . . 830

    216 Projection matrices of D11 . . . . 833

    217 Projection matrices of D12 . . . . 836

    218 Projection matrices of D13 . . . . 839

    219 Projection matrices of D14 . . . . 841

    220 Projection matrices of D15 . . . . 844

    221 Projection matrices of D16 . . . . 846

    222 Projection matrices of E6 . . . . 850

    223 Projection matrices of E7 . . . . 850

    224 Projection matrices of E8 . . . . 852

    225 Projection matrices of F4 . . . . 853

    226 Projection matrices of G2 . . . . 853

    227 Branching rules of su3 ⊃ su2 ⊕u1(R) . . . . . . . . . . . . . . . 854

    228 Branching rules of su3 ⊃ su2(S) 855

    229 Branching rules of su4 ⊃ su3 ⊕u1(R) . . . . . . . . . . . . . . . 857

    230 Branching rules of su4 ⊃ su2 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 858

    231 Branching rules of su4 ⊃ usp4(S) 860

    232 Branching rules of su4 ⊃ su2 ⊕su2(S) . . . . . . . . . . . . . . . 861

    233 Branching rules of su5 ⊃ su4 ⊕u1(R) . . . . . . . . . . . . . . . 862

    234 Branching rules of su5 ⊃ su3 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 864

    235 Branching rules of su5 ⊃ usp4(S) 866

    236 Branching rules of su6 ⊃ su5 ⊕u1(R) . . . . . . . . . . . . . . . 867

    237 Branching rules of su6 ⊃ su4 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 868

    238 Branching rules of su6 ⊃ su3 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 870

    239 Branching rules of su6 ⊃ su3(S) 872

    240 Branching rules of su6 ⊃ su4(S) 873

    241 Branching rules of su6 ⊃ usp6(S) 874

    242 Branching rules of su6 ⊃ su3 ⊕su2(S) . . . . . . . . . . . . . . . 875

    243 Branching rules of su7 ⊃ su6 ⊕u1(R) . . . . . . . . . . . . . . . 876

    244 Branching rules of su7 ⊃ su5 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 877

    245 Branching rules of su7 ⊃ su4 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 879

    246 Branching rules of su7 ⊃ so7(S) 881

    247 Branching rules of su8 ⊃ su7 ⊕u1(R) . . . . . . . . . . . . . . . 882

    248 Branching rules of su8 ⊃ su6 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 883

    249 Branching rules of su8 ⊃ su5 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 885

    250 Branching rules of su8 ⊃ su4 ⊕su4 ⊕ u1(R) . . . . . . . . . . . . 887

    251 Branching rules of su8 ⊃ so8(S) 889

    252 Branching rules of su8 ⊃ usp8(S) 890

    253 Branching rules of su8 ⊃ su4 ⊕su2(S) . . . . . . . . . . . . . . . 892

    254 Branching rules of su9 ⊃ su8 ⊕u1(R) . . . . . . . . . . . . . . . 893

    255 Branching rules of su9 ⊃ su7 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 894

    256 Branching rules of su9 ⊃ su6 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 896

    257 Branching rules of su9 ⊃ su5 ⊕su4 ⊕ u1(R) . . . . . . . . . . . . 898

    258 Branching rules of su9 ⊃ so9(S) 900

    259 Branching rules of su9 ⊃ su3 ⊕su3(S) . . . . . . . . . . . . . . . 901

    260 Branching rules of su10 ⊃ su9 ⊕u1(R) . . . . . . . . . . . . . . . 902

    261 Branching rules of su10 ⊃ su8 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 904

    262 Branching rules of su10 ⊃ su7 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 905

    263 Branching rules of su10 ⊃ su6 ⊕su4 ⊕ u1(R) . . . . . . . . . . . . 907

    264 Branching rules of su10 ⊃ su5 ⊕su5 ⊕ u1(R) . . . . . . . . . . . . 909

    265 Branching rules of su10 ⊃ su3(S) 911

    266 Branching rules of su10 ⊃ su4(S) 913

    267 Branching rules of su10 ⊃ su5(S) 914

    5

  • 268 Branching rules of su10 ⊃usp4(S) . . . . . . . . . . . . . . 915

    269 Branching rules of su10 ⊃so10(S) . . . . . . . . . . . . . . 916

    270 Branching rules of su10 ⊃usp10(S) . . . . . . . . . . . . . . 918

    271 Branching rules of su10 ⊃ su5 ⊕su2(S) . . . . . . . . . . . . . . . 919

    272 Branching rules of su11 ⊃ su10⊕u1(R) . . . . . . . . . . . . . . . 920

    273 Branching rules of su11 ⊃ su9 ⊕su2 ⊕ u1(R) . . . . . . . . . . . . 921

    274 Branching rules of su11 ⊃ su8 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 923

    275 Branching rules of su11 ⊃ su7 ⊕su4 ⊕ u1(R) . . . . . . . . . . . . 925

    276 Branching rules of su11 ⊃ su6 ⊕su5 ⊕ u1(R) . . . . . . . . . . . . 927

    277 Branching rules of su11 ⊃so11(S) . . . . . . . . . . . . . . 929

    278 Branching rules of su12 ⊃ su11⊕u1(R) . . . . . . . . . . . . . . . 930

    279 Branching rules of su12 ⊃ su10⊕su2 ⊕ u1(R) . . . . . . . . . . . . 931

    280 Branching rules of su12 ⊃ su9 ⊕su3 ⊕ u1(R) . . . . . . . . . . . . 933

    281 Branching rules of su12 ⊃ su8 ⊕su4 ⊕ u1(R) . . . . . . . . . . . . 935

    282 Branching rules of su12 ⊃ su7 ⊕su5 ⊕ u1(R) . . . . . . . . . . . . 937

    283 Branching rules of su12 ⊃ su6 ⊕su6 ⊕ u1(R) . . . . . . . . . . . . 939

    284 Branching rules of su12 ⊃so12(S) . . . . . . . . . . . . . . 941

    285 Branching rules of su12 ⊃usp12(S) . . . . . . . . . . . . . . 942

    286 Branching rules of su12 ⊃ su6 ⊕su2(S) . . . . . . . . . . . . . . . 943

    287 Branching rules of su12 ⊃ su4 ⊕su3(S) . . . . . . . . . . . . . . . 945

    288 Branching rules of su13 ⊃ su12⊕u1(R) . . . . . . . . . . . . . . . 947

    289 Branching rules of su13 ⊃ su11⊕su2 ⊕ u1(R) . . . . . . . . . . . . 948

    290 Branching rules of su13 ⊃ su10⊕su3 ⊕ u1(R) . . . . . . . . . . . . 950

    291 Branching rules of su13 ⊃ su9 ⊕su4 ⊕ u1(R) . . . . . . . . . . . . 951

    292 Branching rules of su13 ⊃ su8 ⊕su5 ⊕ u1(R) . . . . . . . . . . . . 953

    293 Branching rules of su13 ⊃ su7 ⊕su6 ⊕ u1(R) . . . . . . . . . . . . 955

    294 Branching rules of su13 ⊃so13(S) . . . . . . . . . . . . . . 957

    295 Branching rules of su14 ⊃ su13⊕u1(R) . . . . . . . . . . . . . . . 958

    296 Branching rules of su14 ⊃ su12⊕su2 ⊕ u1(R) . . . . . . . . . . . . 960

    297 Branching rules of su14 ⊃ su11⊕su3 ⊕ u1(R) . . . . . . . . . . . . 961

    298 Branching rules of su14 ⊃ su10⊕su4 ⊕ u1(R) . . . . . . . . . . . . 963

    299 Branching rules of su14 ⊃ su9 ⊕su5 ⊕ u1(R) . . . . . . . . . . . . 965

    300 Branching rules of su14 ⊃ su8 ⊕su6 ⊕ u1(R) . . . . . . . . . . . . 967

    301 Branching rules of su14 ⊃ su7 ⊕su7 ⊕ u1(R) . . . . . . . . . . . . 969

    302 Branching rules of su14 ⊃so14(S) . . . . . . . . . . . . . . 971

    303 Branching rules of su14 ⊃usp14(S) . . . . . . . . . . . . . . 972

    304 Branching rules of su14 ⊃ su7 ⊕su2(S) . . . . . . . . . . . . . . . 973

    305 Branching rules of su15 ⊃ su14⊕u1(R) . . . . . . . . . . . . . . . 975

    306 Branching rules of su15 ⊃ su13⊕su2 ⊕ u1(R) . . . . . . . . . . . . 976

    307 Branching rules of su15 ⊃ su12⊕su3 ⊕ u1(R) . . . . . . . . . . . . 977

    308 Branching rules of su15 ⊃ su11⊕su4 ⊕ u1(R) . . . . . . . . . . . . 979

    309 Branching rules of su15 ⊃ su10⊕su5 ⊕ u1(R) . . . . . . . . . . . . 981

    310 Branching rules of su15 ⊃ su9 ⊕su6 ⊕ u1(R) . . . . . . . . . . . . 983

    311 Branching rules of su15 ⊃ su8 ⊕su7 ⊕ u1(R) . . . . . . . . . . . . 985

    312 Branching rules of su15 ⊃so15(S) . . . . . . . . . . . . . . 987

    313 Branching rules of su15 ⊃ su5 ⊕su3(S) . . . . . . . . . . . . . . . 988

    314 Branching rules of su15 ⊃ su3(S) 989

    315 Branching rules of su15 ⊃ su3(S) 992

    316 Branching rules of su15 ⊃ su5(S) 994

    317 Branching rules of su15 ⊃ su6(S) 995

    318 Branching rules of su16 ⊃ su15⊕u1(R) . . . . . . . . . . . . . . . 997

    319 Branching rules of su16 ⊃ su14⊕su2 ⊕ u1(R) . . . . . . . . . . . . 998

    320 Branching rules of su16 ⊃ su13⊕su3 ⊕ u1(R) . . . . . . . . . . . . 999

    321 Branching rules of su16 ⊃ su12⊕su4 ⊕ u1(R) . . . . . . . . . . . . 1001

    6

  • 322 Branching rules of su16 ⊃ su11⊕su5 ⊕ u1(R) . . . . . . . . . . . . 1003

    323 Branching rules of su16 ⊃ su10⊕su6 ⊕ u1(R) . . . . . . . . . . . . 1005

    324 Branching rules of su16 ⊃ su9 ⊕su7 ⊕ u1(R) . . . . . . . . . . . . 1007

    325 Branching rules of su16 ⊃ su8 ⊕su8 ⊕ u1(R) . . . . . . . . . . . . 1009

    326 Branching rules of su16 ⊃so16(S) . . . . . . . . . . . . . . 1011

    327 Branching rules of su16 ⊃usp16(S) . . . . . . . . . . . . . . 1012

    328 Branching rules of su16 ⊃so10(S) . . . . . . . . . . . . . . 1013

    329 Branching rules of su16 ⊃ su8 ⊕su2(S) . . . . . . . . . . . . . . . 1014

    330 Branching rules of su16 ⊃ su4 ⊕su4(S) . . . . . . . . . . . . . . . 1016

    331 Branching rules of so7 ⊃ su4(R) 1018

    332 Branching rules of so7 ⊃ su2 ⊕su2 ⊕ su2(R) . . . . . . . . . . . 1019

    333 Branching rules of so7 ⊃ usp4 ⊕u1(R) . . . . . . . . . . . . . . . 1022

    334 Branching rules of so7 ⊃ G2(S) . 1025

    335 Branching rules of so9 ⊃ so8(R) 1026

    336 Branching rules of so9 ⊃ su2 ⊕su2 ⊕ usp4(R) . . . . . . . . . . 1028

    337 Branching rules of so9 ⊃ su4 ⊕su2(R) . . . . . . . . . . . . . . 1031

    338 Branching rules of so9 ⊃ so7 ⊕u1(R) . . . . . . . . . . . . . . . 1034

    339 Branching rules of so9 ⊃ su2(S) 1037

    340 Branching rules of so9 ⊃ su2 ⊕su2(S) . . . . . . . . . . . . . . . 1039

    341 Branching rules of so11 ⊃so10(R) . . . . . . . . . . . . . . 1043

    342 Branching rules of so11 ⊃ so8 ⊕su2(R) . . . . . . . . . . . . . . 1044

    343 Branching rules of so11 ⊃ su4 ⊕usp4(R) . . . . . . . . . . . . . . 1046

    344 Branching rules of so11 ⊃ su2 ⊕su2 ⊕ so7(R) . . . . . . . . . . . 1049

    345 Branching rules of so11 ⊃ so9 ⊕u1(R) . . . . . . . . . . . . . . . 1053

    346 Branching rules of so11 ⊃ su2(S) 1056

    347 Branching rules of so13 ⊃so12(R) . . . . . . . . . . . . . . 1058

    348 Branching rules of so13 ⊃ so10⊕su2(R) . . . . . . . . . . . . . . 1059

    349 Branching rules of so13 ⊃ so8 ⊕usp4(R) . . . . . . . . . . . . . . 1061

    350 Branching rules of so13 ⊃ su4 ⊕so7(R) . . . . . . . . . . . . . . 1063

    351 Branching rules of so13 ⊃ su2 ⊕su2 ⊕ so9(R) . . . . . . . . . . . 1065

    352 Branching rules of so13 ⊃ so11⊕u1(R) . . . . . . . . . . . . . . . 1067

    353 Branching rules of so13 ⊃ su2(S) 1069

    354 Branching rules of so15 ⊃so14(R) . . . . . . . . . . . . . . 1071

    355 Branching rules of so15 ⊃ so12⊕su2(R) . . . . . . . . . . . . . . 1072

    356 Branching rules of so15 ⊃ so10⊕usp4(R) . . . . . . . . . . . . . . 1073

    357 Branching rules of so15 ⊃ so8 ⊕so7(R) . . . . . . . . . . . . . . 1074

    358 Branching rules of so15 ⊃ su4 ⊕so9(R) . . . . . . . . . . . . . . 1076

    359 Branching rules of so15 ⊃ su2 ⊕su2 ⊕ so11(R) . . . . . . . . . . . 1077

    360 Branching rules of so15 ⊃ so13⊕u1(R) . . . . . . . . . . . . . . . 1078

    361 Branching rules of so15 ⊃ su2(S) 1079

    362 Branching rules of so15 ⊃ su4(S) 1081

    363 Branching rules of so15 ⊃ su2 ⊕usp4(S) . . . . . . . . . . . . . . 1082

    364 Branching rules of so17 ⊃so16(R) . . . . . . . . . . . . . . 1085

    365 Branching rules of so17 ⊃ so14⊕su2(R) . . . . . . . . . . . . . . 1085

    366 Branching rules of so17 ⊃ so12⊕usp4(R) . . . . . . . . . . . . . . 1086

    367 Branching rules of so17 ⊃ so10⊕so7(R) . . . . . . . . . . . . . . 1087

    368 Branching rules of so17 ⊃ so8 ⊕so9(R) . . . . . . . . . . . . . . 1088

    369 Branching rules of so17 ⊃ su4 ⊕so11(R) . . . . . . . . . . . . . . 1088

    370 Branching rules of so17 ⊃ su2 ⊕su2 ⊕ so13(R) . . . . . . . . . . . 1089

    371 Branching rules of so17 ⊃ so15⊕u1(R) . . . . . . . . . . . . . . . 1090

    372 Branching rules of so17 ⊃ su2(S) 1091

    373 Branching rules of so19 ⊃so18(R) . . . . . . . . . . . . . . 1092

    374 Branching rules of so19 ⊃ so16⊕su2(R) . . . . . . . . . . . . . . 1093

    375 Branching rules of so19 ⊃ so14⊕usp4(R) . . . . . . . . . . . . . . 1093

    376 Branching rules of so19 ⊃ so12⊕so7(R) . . . . . . . . . . . . . . 1094

    377 Branching rules of so19 ⊃ so10⊕so9(R) . . . . . . . . . . . . . . 1095

    7

  • 378 Branching rules of so19 ⊃ so8 ⊕so11(R) . . . . . . . . . . . . . . 1095

    379 Branching rules of so19 ⊃ su4 ⊕so13(R) . . . . . . . . . . . . . . 1096

    380 Branching rules of so19 ⊃ su2 ⊕su2 ⊕ so15(R) . . . . . . . . . . . 1096

    381 Branching rules of so19 ⊃ so17⊕u1(R) . . . . . . . . . . . . . . . 1097

    382 Branching rules of so19 ⊃ su2(S) 1098

    383 Branching rules of so21 ⊃so20(R) . . . . . . . . . . . . . . 1099

    384 Branching rules of so21 ⊃ so18⊕su2(R) . . . . . . . . . . . . . . 1099

    385 Branching rules of so21 ⊃ so16⊕usp4(R) . . . . . . . . . . . . . . 1100

    386 Branching rules of so21 ⊃ so14⊕so7(R) . . . . . . . . . . . . . . 1100

    387 Branching rules of so21 ⊃ so12⊕so9(R) . . . . . . . . . . . . . . 1101

    388 Branching rules of so21 ⊃ so10⊕so11(R) . . . . . . . . . . . . . . 1101

    389 Branching rules of so21 ⊃ so8 ⊕so13(R) . . . . . . . . . . . . . . 1102

    390 Branching rules of so21 ⊃ su4 ⊕so15(R) . . . . . . . . . . . . . . 1102

    391 Branching rules of so21 ⊃ su2 ⊕su2 ⊕ so17(R) . . . . . . . . . . . 1103

    392 Branching rules of so21 ⊃ so19⊕u1(R) . . . . . . . . . . . . . . . 1103

    393 Branching rules of so21 ⊃ su2(S) 1104

    394 Branching rules of so21 ⊃ su2 ⊕so7(S) . . . . . . . . . . . . . . . 1105

    395 Branching rules of so21 ⊃ so7(S) 1106

    396 Branching rules of so21 ⊃usp6(S) . . . . . . . . . . . . . . 1107

    397 Branching rules of so23 ⊃so22(R) . . . . . . . . . . . . . . 1107

    398 Branching rules of so23 ⊃ so20⊕su2(R) . . . . . . . . . . . . . . 1108

    399 Branching rules of so23 ⊃ so18⊕usp4(R) . . . . . . . . . . . . . . 1108

    400 Branching rules of so23 ⊃ so16⊕so7(R) . . . . . . . . . . . . . . 1109

    401 Branching rules of so23 ⊃ so14⊕so9(R) . . . . . . . . . . . . . . 1109

    402 Branching rules of so23 ⊃ so12⊕so11(R) . . . . . . . . . . . . . . 1110

    403 Branching rules of so23 ⊃ so10⊕so13(R) . . . . . . . . . . . . . . 1110

    404 Branching rules of so23 ⊃ so8 ⊕so15(R) . . . . . . . . . . . . . . 1111

    405 Branching rules of so23 ⊃ su4 ⊕so17(R) . . . . . . . . . . . . . . 1111

    406 Branching rules of so23 ⊃ su2 ⊕su2 ⊕ so19(R) . . . . . . . . . . . 1112

    407 Branching rules of so23 ⊃ so21⊕u1(R) . . . . . . . . . . . . . . . 1112

    408 Branching rules of so23 ⊃ su2(S) 1113

    409 Branching rules of so25 ⊃so24(R) . . . . . . . . . . . . . . 1114

    410 Branching rules of so25 ⊃ so22⊕su2(R) . . . . . . . . . . . . . . 1114

    411 Branching rules of so25 ⊃ so20⊕usp4(R) . . . . . . . . . . . . . . 1115

    412 Branching rules of so25 ⊃ so18⊕so7(R) . . . . . . . . . . . . . . 1115

    413 Branching rules of so25 ⊃ so16⊕so9(R) . . . . . . . . . . . . . . 1116

    414 Branching rules of so25 ⊃ so14⊕so11(R) . . . . . . . . . . . . . . 1116

    415 Branching rules of so25 ⊃ so12⊕so13(R) . . . . . . . . . . . . . . 1116

    416 Branching rules of so25 ⊃ so10⊕so15(R) . . . . . . . . . . . . . . 1117

    417 Branching rules of so25 ⊃ so8 ⊕so17(R) . . . . . . . . . . . . . . 1117

    418 Branching rules of so25 ⊃ su4 ⊕so19(R) . . . . . . . . . . . . . . 1118

    419 Branching rules of so25 ⊃ su2 ⊕su2 ⊕ so21(R) . . . . . . . . . . . 1118

    420 Branching rules of so25 ⊃ so23⊕u1(R) . . . . . . . . . . . . . . . 1119

    421 Branching rules of so25 ⊃ su2(S) 1119

    422 Branching rules of so25 ⊃ usp4⊕usp4(S) . . . . . . . . . . . . . . 1120

    423 Branching rules of so27 ⊃so26(R) . . . . . . . . . . . . . . 1121

    424 Branching rules of so27 ⊃ so24⊕su2(R) . . . . . . . . . . . . . . 1121

    425 Branching rules of so27 ⊃ so22⊕usp4(R) . . . . . . . . . . . . . . 1122

    426 Branching rules of so27 ⊃ so20⊕so7(R) . . . . . . . . . . . . . . 1122

    427 Branching rules of so27 ⊃ so18⊕so9(R) . . . . . . . . . . . . . . 1122

    428 Branching rules of so27 ⊃ so16⊕so11(R) . . . . . . . . . . . . . . 1123

    429 Branching rules of so27 ⊃ so14⊕so13(R) . . . . . . . . . . . . . . 1123

    430 Branching rules of so27 ⊃ so12⊕so15(R) . . . . . . . . . . . . . . 1124

    431 Branching rules of so27 ⊃ so10⊕so17(R) . . . . . . . . . . . . . . 1124

    8

  • 432 Branching rules of so27 ⊃ so8 ⊕so19(R) . . . . . . . . . . . . . . 1124

    433 Branching rules of so27 ⊃ su4 ⊕so21(R) . . . . . . . . . . . . . . 1125

    434 Branching rules of so27 ⊃ su2 ⊕su2 ⊕ so23(R) . . . . . . . . . . . 1125

    435 Branching rules of so27 ⊃ so25⊕u1(R) . . . . . . . . . . . . . . . 1126

    436 Branching rules of so27 ⊃ su2(S) 1126

    437 Branching rules of so27 ⊃ su3(S) 1127

    438 Branching rules of so27 ⊃ so7(S) 1128

    439 Branching rules of so27 ⊃ su2 ⊕so9(S) . . . . . . . . . . . . . . . 1128

    440 Branching rules of so29 ⊃so28(R) . . . . . . . . . . . . . . 1129

    441 Branching rules of so29 ⊃ so26⊕su2(R) . . . . . . . . . . . . . . 1129

    442 Branching rules of so29 ⊃ so24⊕usp4(R) . . . . . . . . . . . . . . 1129

    443 Branching rules of so29 ⊃ so22⊕so7(R) . . . . . . . . . . . . . . 1130

    444 Branching rules of so29 ⊃ so20⊕so9(R) . . . . . . . . . . . . . . 1130

    445 Branching rules of so29 ⊃ so18⊕so11(R) . . . . . . . . . . . . . . 1130

    446 Branching rules of so29 ⊃ so16⊕so13(R) . . . . . . . . . . . . . . 1131

    447 Branching rules of so29 ⊃ so14⊕so15(R) . . . . . . . . . . . . . . 1131

    448 Branching rules of so29 ⊃ so12⊕so17(R) . . . . . . . . . . . . . . 1131

    449 Branching rules of so29 ⊃ so10⊕so19(R) . . . . . . . . . . . . . . 1132

    450 Branching rules of so29 ⊃ so8 ⊕so21(R) . . . . . . . . . . . . . . 1132

    451 Branching rules of so29 ⊃ su4 ⊕so23(R) . . . . . . . . . . . . . . 1132

    452 Branching rules of so29 ⊃ su2 ⊕su2 ⊕ so25(R) . . . . . . . . . . . 1133

    453 Branching rules of so29 ⊃ so27⊕u1(R) . . . . . . . . . . . . . . . 1133

    454 Branching rules of so29 ⊃ su2(S) 1133

    455 Branching rules of so31 ⊃so30(R) . . . . . . . . . . . . . . 1134

    456 Branching rules of so31 ⊃ so28⊕su2(R) . . . . . . . . . . . . . . 1135

    457 Branching rules of so31 ⊃ so26⊕usp4(R) . . . . . . . . . . . . . . 1135

    458 Branching rules of so31 ⊃ so24⊕so7(R) . . . . . . . . . . . . . . 1135

    459 Branching rules of so31 ⊃ so22⊕so9(R) . . . . . . . . . . . . . . 1136

    460 Branching rules of so31 ⊃ so20⊕so11(R) . . . . . . . . . . . . . . 1136

    461 Branching rules of so31 ⊃ so18⊕so13(R) . . . . . . . . . . . . . . 1136

    462 Branching rules of so31 ⊃ so16⊕so15(R) . . . . . . . . . . . . . . 1137

    463 Branching rules of so31 ⊃ so14⊕so17(R) . . . . . . . . . . . . . . 1137

    464 Branching rules of so31 ⊃ so12⊕so19(R) . . . . . . . . . . . . . . 1138

    465 Branching rules of so31 ⊃ so10⊕so21(R) . . . . . . . . . . . . . . 1138

    466 Branching rules of so31 ⊃ so8 ⊕so23(R) . . . . . . . . . . . . . . 1138

    467 Branching rules of so31 ⊃ su4 ⊕so25(R) . . . . . . . . . . . . . . 1139

    468 Branching rules of so31 ⊃ su2 ⊕su2 ⊕ so27(R) . . . . . . . . . . . 1139

    469 Branching rules of so31 ⊃ so29⊕u1(R) . . . . . . . . . . . . . . . 1139

    470 Branching rules of so31 ⊃ su2(S) 1140

    471 Branching rules of usp4 ⊃ su2 ⊕su2(R) . . . . . . . . . . . . . . 1142

    472 Branching rules of usp4 ⊃ su2 ⊕u1(R) . . . . . . . . . . . . . . . 1143

    473 Branching rules of usp4 ⊃ su2(S) 1147

    474 Branching rules of usp6 ⊃ su3 ⊕u1(R) . . . . . . . . . . . . . . . 1149

    475 Branching rules of usp6 ⊃ su2 ⊕usp4(R) . . . . . . . . . . . . . . 1153

    476 Branching rules of usp6 ⊃ su2(S) 1155

    477 Branching rules of usp6 ⊃ su2 ⊕su2(S) . . . . . . . . . . . . . . . 1156

    478 Branching rules of usp8 ⊃ su4 ⊕u1(R) . . . . . . . . . . . . . . . 1159

    479 Branching rules of usp8 ⊃ su2 ⊕usp6(R) . . . . . . . . . . . . . . 1163

    480 Branching rules of usp8 ⊃ usp4⊕usp4(R) . . . . . . . . . . . . . . 1165

    481 Branching rules of usp8 ⊃ su2(S) 1167

    482 Branching rules of usp8 ⊃ su2 ⊕su2 ⊕ su2(S) . . . . . . . . . . . 1170

    483 Branching rules of usp10 ⊃ su5⊕u1(R) . . . . . . . . . . . . . . . 1175

    484 Branching rules of usp10 ⊃ su2⊕usp8(R) . . . . . . . . . . . . . . 1179

    485 Branching rules of usp10 ⊃usp4 ⊕ usp6(R) . . . . . . . . . . 1181

    486 Branching rules of usp10 ⊃su2(S) . . . . . . . . . . . . . . . 1183

    487 Branching rules of usp10 ⊃ su2⊕usp4(S) . . . . . . . . . . . . . . 1186

    9

  • 488 Branching rules of usp12 ⊃ su6⊕u1(R) . . . . . . . . . . . . . . . 1190

    489 Branching rules of usp12 ⊃ su2⊕usp10(R) . . . . . . . . . . . . . 1192

    490 Branching rules of usp12 ⊃usp4 ⊕ usp8(R) . . . . . . . . . . 1193

    491 Branching rules of usp12 ⊃usp6 ⊕ usp6(R) . . . . . . . . . . 1195

    492 Branching rules of usp12 ⊃su2(S) . . . . . . . . . . . . . . . 1197

    493 Branching rules of usp12 ⊃ su2⊕su4(S) . . . . . . . . . . . . . . . 1199

    494 Branching rules of usp12 ⊃ su2⊕usp4(S) . . . . . . . . . . . . . . 1202

    495 Branching rules of usp14 ⊃ su7⊕u1(R) . . . . . . . . . . . . . . . 1206

    496 Branching rules of usp14 ⊃ su2⊕usp12(R) . . . . . . . . . . . . . 1207

    497 Branching rules of usp14 ⊃usp4 ⊕ usp10(R) . . . . . . . . . 1208

    498 Branching rules of usp14 ⊃usp6 ⊕ usp8(R) . . . . . . . . . . 1209

    499 Branching rules of usp14 ⊃su2(S) . . . . . . . . . . . . . . . 1210

    500 Branching rules of usp14 ⊃ su2⊕so7(S) . . . . . . . . . . . . . . . 1212

    501 Branching rules of usp16 ⊃ su8⊕u1(R) . . . . . . . . . . . . . . . 1213

    502 Branching rules of usp16 ⊃ su2⊕usp14(R) . . . . . . . . . . . . . 1214

    503 Branching rules of usp16 ⊃usp4 ⊕ usp12(R) . . . . . . . . . 1214

    504 Branching rules of usp16 ⊃usp6 ⊕ usp10(R) . . . . . . . . . 1215

    505 Branching rules of usp16 ⊃usp8 ⊕ usp8(R) . . . . . . . . . . 1216

    506 Branching rules of usp16 ⊃su2(S) . . . . . . . . . . . . . . . 1217

    507 Branching rules of usp16 ⊃usp4(S) . . . . . . . . . . . . . . 1218

    508 Branching rules of usp16 ⊃ su2⊕so8(S) . . . . . . . . . . . . . . . 1219

    509 Branching rules of usp18 ⊃ su9⊕u1(R) . . . . . . . . . . . . . . . 1220

    510 Branching rules of usp18 ⊃ su2⊕usp16(R) . . . . . . . . . . . . . 1221

    511 Branching rules of usp18 ⊃usp4 ⊕ usp14(R) . . . . . . . . . 1221

    512 Branching rules of usp18 ⊃usp6 ⊕ usp12(R) . . . . . . . . . 1222

    513 Branching rules of usp18 ⊃usp8 ⊕ usp10(R) . . . . . . . . . 1223

    514 Branching rules of usp18 ⊃su2(S) . . . . . . . . . . . . . . . 1223

    515 Branching rules of usp18 ⊃ su2⊕so9(S) . . . . . . . . . . . . . . . 1225

    516 Branching rules of usp18 ⊃ su2⊕usp6(S) . . . . . . . . . . . . . . 1225

    517 Branching rules of usp20 ⊃su10 ⊕ u1(R) . . . . . . . . . . . 1227

    518 Branching rules of usp20 ⊃ su2⊕usp18(R) . . . . . . . . . . . . . 1227

    519 Branching rules of usp20 ⊃usp4 ⊕ usp16(R) . . . . . . . . . 1228

    520 Branching rules of usp20 ⊃usp6 ⊕ usp14(R) . . . . . . . . . 1228

    521 Branching rules of usp20 ⊃usp8 ⊕ usp12(R) . . . . . . . . . 1229

    522 Branching rules of usp20 ⊃usp10 ⊕ usp10(R) . . . . . . . . . 1229

    523 Branching rules of usp20 ⊃su2(S) . . . . . . . . . . . . . . . 1230

    524 Branching rules of usp20 ⊃usp4 ⊕ usp4(S) . . . . . . . . . . 1231

    525 Branching rules of usp20 ⊃ su2⊕so10(S) . . . . . . . . . . . . . . 1232

    526 Branching rules of usp20 ⊃su6(S) . . . . . . . . . . . . . . . 1232

    527 Branching rules of usp22 ⊃su11 ⊕ u1(R) . . . . . . . . . . . 1233

    528 Branching rules of usp22 ⊃ su2⊕usp20(R) . . . . . . . . . . . . . 1233

    529 Branching rules of usp22 ⊃usp4 ⊕ usp18(R) . . . . . . . . . 1234

    530 Branching rules of usp22 ⊃usp6 ⊕ usp16(R) . . . . . . . . . 1234

    531 Branching rules of usp22 ⊃usp8 ⊕ usp14(R) . . . . . . . . . 1235

    532 Branching rules of usp22 ⊃usp10 ⊕ usp12(R) . . . . . . . . . 1235

    533 Branching rules of usp22 ⊃su2(S) . . . . . . . . . . . . . . . 1236

    534 Branching rules of usp24 ⊃su12 ⊕ u1(R) . . . . . . . . . . . 1237

    535 Branching rules of usp24 ⊃ su2⊕usp22(R) . . . . . . . . . . . . . 1237

    536 Branching rules of usp24 ⊃usp4 ⊕ usp20(R) . . . . . . . . . 1238

    537 Branching rules of usp24 ⊃usp6 ⊕ usp18(R) . . . . . . . . . 1238

    538 Branching rules of usp24 ⊃usp8 ⊕ usp16(R) . . . . . . . . . 1239

    539 Branching rules of usp24 ⊃usp10 ⊕ usp14(R) . . . . . . . . . 1239

    10

  • 540 Branching rules of usp24 ⊃usp12 ⊕ usp12(R) . . . . . . . . . 1240

    541 Branching rules of usp24 ⊃su2(S) . . . . . . . . . . . . . . . 1240

    542 Branching rules of usp24 ⊃ su2⊕su2 ⊕ usp6(S) . . . . . . . . . . . 1241

    543 Branching rules of usp24 ⊃ su2⊕usp8(S) . . . . . . . . . . . . . . 1242

    544 Branching rules of usp24 ⊃ su4⊕usp4(S) . . . . . . . . . . . . . . 1243

    545 Branching rules of usp26 ⊃su13 ⊕ u1(R) . . . . . . . . . . . 1244

    546 Branching rules of usp26 ⊃ su2⊕usp24(R) . . . . . . . . . . . . . 1244

    547 Branching rules of usp26 ⊃usp4 ⊕ usp22(R) . . . . . . . . . 1245

    548 Branching rules of usp26 ⊃usp6 ⊕ usp20(R) . . . . . . . . . 1245

    549 Branching rules of usp26 ⊃usp8 ⊕ usp18(R) . . . . . . . . . 1245

    550 Branching rules of usp26 ⊃usp10 ⊕ usp16(R) . . . . . . . . . 1246

    551 Branching rules of usp26 ⊃usp12 ⊕ usp14(R) . . . . . . . . . 1246

    552 Branching rules of usp26 ⊃su2(S) . . . . . . . . . . . . . . . 1247

    553 Branching rules of usp28 ⊃su14 ⊕ u1(R) . . . . . . . . . . . 1247

    554 Branching rules of usp28 ⊃ su2⊕usp26(R) . . . . . . . . . . . . . 1248

    555 Branching rules of usp28 ⊃usp4 ⊕ usp24(R) . . . . . . . . . 1248

    556 Branching rules of usp28 ⊃usp6 ⊕ usp22(R) . . . . . . . . . 1248

    557 Branching rules of usp28 ⊃usp8 ⊕ usp20(R) . . . . . . . . . 1249

    558 Branching rules of usp28 ⊃usp10 ⊕ usp18(R) . . . . . . . . . 1249

    559 Branching rules of usp28 ⊃usp12 ⊕ usp16(R) . . . . . . . . . 1249

    560 Branching rules of usp28 ⊃usp14 ⊕ usp14(R) . . . . . . . . . 1250

    561 Branching rules of usp28 ⊃su2(S) . . . . . . . . . . . . . . . 1250

    562 Branching rules of usp28 ⊃ so7⊕usp4(S) . . . . . . . . . . . . . . 1251

    563 Branching rules of usp30 ⊃su15 ⊕ u1(R) . . . . . . . . . . . 1251

    564 Branching rules of usp30 ⊃ su2⊕usp28(R) . . . . . . . . . . . . . 1251

    565 Branching rules of usp30 ⊃usp4 ⊕ usp26(R) . . . . . . . . . 1252

    566 Branching rules of usp30 ⊃usp6 ⊕ usp24(R) . . . . . . . . . 1252

    567 Branching rules of usp30 ⊃usp8 ⊕ usp22(R) . . . . . . . . . 1252

    568 Branching rules of usp30 ⊃usp10 ⊕ usp20(R) . . . . . . . . . 1253

    569 Branching rules of usp30 ⊃usp12 ⊕ usp18(R) . . . . . . . . . 1253

    570 Branching rules of usp30 ⊃usp14 ⊕ usp16(R) . . . . . . . . . 1253

    571 Branching rules of usp30 ⊃su2(S) . . . . . . . . . . . . . . . 1254

    572 Branching rules of usp30 ⊃ su2⊕usp10(S) . . . . . . . . . . . . . . 1254

    573 Branching rules of usp30 ⊃usp4 ⊕ usp6(S) . . . . . . . . . . 1255

    574 Branching rules of so8 ⊃ su2 ⊕su2 ⊕ su2 ⊕ su2(R) . . . . . . . . 1256

    575 Branching rules of so8 ⊃ su4 ⊕u1(R) . . . . . . . . . . . . . . . 1260

    576 Branching rules of so8 ⊃ su3(S) 1263

    577 Branching rules of so8 ⊃ so7(S) . 1265

    578 Branching rules of so8 ⊃ su2 ⊕usp4(S) . . . . . . . . . . . . . . 1267

    579 Branching rules of so10 ⊃ su5 ⊕u1(R) . . . . . . . . . . . . . . . 1269

    580 Branching rules of so10 ⊃ su2 ⊕su2 ⊕ su4(R) . . . . . . . . . . . 1271

    581 Branching rules of so10 ⊃ so8 ⊕u1(R) . . . . . . . . . . . . . . . 1274

    582 Branching rules of so10 ⊃usp4(S) . . . . . . . . . . . . . . 1276

    583 Branching rules of so10 ⊃ so9(S) 1278

    584 Branching rules of so10 ⊃ su2 ⊕so7(S) . . . . . . . . . . . . . . . 1279

    585 Branching rules of so10 ⊃ usp4⊕usp4(S) . . . . . . . . . . . . . . 1280

    586 Branching rules of so12 ⊃ su6 ⊕u1(R) . . . . . . . . . . . . . . . 1282

    587 Branching rules of so12 ⊃ su2 ⊕su2 ⊕ so8(R) . . . . . . . . . . . 1285

    588 Branching rules of so12 ⊃ su4 ⊕su4(R) . . . . . . . . . . . . . . 1287

    589 Branching rules of so12 ⊃ so10⊕u1(R) . . . . . . . . . . . . . . . 1289

    590 Branching rules of so12 ⊃ su2 ⊕usp6(S) . . . . . . . . . . . . . . 1292

    591 Branching rules of so12 ⊃ su2 ⊕su2 ⊕ su2(S) . . . . . . . . . . . 1294

    592 Branching rules of so12 ⊃so11(S) . . . . . . . . . . . . . . 1299

    11

  • 593 Branching rules of so12 ⊃ su2 ⊕so9(S) . . . . . . . . . . . . . . . 1300

    594 Branching rules of so12 ⊃ usp4⊕so7(R) . . . . . . . . . . . . . . 1302

    595 Branching rules of so14 ⊃ su7 ⊕u1(R) . . . . . . . . . . . . . . . 1303

    596 Branching rules of so14 ⊃ su2 ⊕su2 ⊕ so10(R) . . . . . . . . . . . 1306

    597 Branching rules of so14 ⊃ su4 ⊕so8(R) . . . . . . . . . . . . . . 1309

    598 Branching rules of so14 ⊃ so12⊕u1(R) . . . . . . . . . . . . . . . 1311

    599 Branching rules of so14 ⊃usp4(S) . . . . . . . . . . . . . . 1313

    600 Branching rules of so14 ⊃usp6(S) . . . . . . . . . . . . . . 1316

    601 Branching rules of so14 ⊃ G2(S) 1317

    602 Branching rules of so14 ⊃so13(S) . . . . . . . . . . . . . . 1319

    603 Branching rules of so14 ⊃ su2 ⊕so11(S) . . . . . . . . . . . . . . 1320

    604 Branching rules of so14 ⊃ usp4⊕so9(S) . . . . . . . . . . . . . . . 1322

    605 Branching rules of so14 ⊃ so7 ⊕so7(S) . . . . . . . . . . . . . . . 1323

    606 Branching rules of so16 ⊃ su8 ⊕u1(R) . . . . . . . . . . . . . . . 1325

    607 Branching rules of so16 ⊃ su2 ⊕su2 ⊕ so12(R) . . . . . . . . . . . 1327

    608 Branching rules of so16 ⊃ su4 ⊕so10(R) . . . . . . . . . . . . . . 1328

    609 Branching rules of so16 ⊃ so8 ⊕so8(R) . . . . . . . . . . . . . . 1329

    610 Branching rules of so16 ⊃ so14⊕u1(R) . . . . . . . . . . . . . . . 1331

    611 Branching rules of so16 ⊃ so9(S) 1332

    612 Branching rules of so16 ⊃ su2 ⊕usp8(S) . . . . . . . . . . . . . . 1333

    613 Branching rules of so16 ⊃ usp4⊕usp4(S) . . . . . . . . . . . . . . 1334

    614 Branching rules of so16 ⊃so15(S) . . . . . . . . . . . . . . 1336

    615 Branching rules of so16 ⊃ su2 ⊕so13(S) . . . . . . . . . . . . . . 1337

    616 Branching rules of so16 ⊃ usp4⊕so11(S) . . . . . . . . . . . . . . 1338

    617 Branching rules of so16 ⊃ so7 ⊕so9(S) . . . . . . . . . . . . . . . 1339

    618 Branching rules of so18 ⊃ su9 ⊕u1(R) . . . . . . . . . . . . . . . 1340

    619 Branching rules of so18 ⊃ su2 ⊕su2 ⊕ so14(R) . . . . . . . . . . . 1341

    620 Branching rules of so18 ⊃ su4 ⊕so12(R) . . . . . . . . . . . . . . 1342

    621 Branching rules of so18 ⊃ so8 ⊕so10(R) . . . . . . . . . . . . . . 1343

    622 Branching rules of so18 ⊃ so16⊕u1(R) . . . . . . . . . . . . . . . 1344

    623 Branching rules of so18 ⊃ su2 ⊕su4(S) . . . . . . . . . . . . . . . 1345

    624 Branching rules of so18 ⊃so17(S) . . . . . . . . . . . . . . 1348

    625 Branching rules of so18 ⊃ su2 ⊕so15(S) . . . . . . . . . . . . . . 1348

    626 Branching rules of so18 ⊃ usp4⊕so13(S) . . . . . . . . . . . . . . 1349

    627 Branching rules of so18 ⊃ so7 ⊕so11(S) . . . . . . . . . . . . . . 1350

    628 Branching rules of so18 ⊃ so9 ⊕so9(S) . . . . . . . . . . . . . . . 1351

    629 Branching rules of so20 ⊃ su10⊕u1(R) . . . . . . . . . . . . . . . 1352

    630 Branching rules of so20 ⊃ su2 ⊕su2 ⊕ so16(R) . . . . . . . . . . . 1353

    631 Branching rules of so20 ⊃ su4 ⊕so14(R) . . . . . . . . . . . . . . 1353

    632 Branching rules of so20 ⊃ so8 ⊕so12(R) . . . . . . . . . . . . . . 1354

    633 Branching rules of so20 ⊃ so10⊕so10(R) . . . . . . . . . . . . . . 1355

    634 Branching rules of so20 ⊃ so18⊕u1(R) . . . . . . . . . . . . . . . 1355

    635 Branching rules of so20 ⊃ su2 ⊕usp10(S) . . . . . . . . . . . . . . 1356

    636 Branching rules of so20 ⊃so19(S) . . . . . . . . . . . . . . 1357

    637 Branching rules of so20 ⊃ su2 ⊕so17(S) . . . . . . . . . . . . . . 1357

    638 Branching rules of so20 ⊃ usp4⊕so15(S) . . . . . . . . . . . . . . 1358

    639 Branching rules of so20 ⊃ so7 ⊕so13(S) . . . . . . . . . . . . . . 1358

    640 Branching rules of so20 ⊃ so9 ⊕so11(S) . . . . . . . . . . . . . . 1359

    641 Branching rules of so20 ⊃ su2 ⊕su2 ⊕ usp4(S) . . . . . . . . . . . 1359

    642 Branching rules of so20 ⊃ su4(S) 1361

    643 Branching rules of so22 ⊃ su11⊕u1(R) . . . . . . . . . . . . . . . 1362

    644 Branching rules of so22 ⊃ su2 ⊕su2 ⊕ so18(R) . . . . . . . . . . . 1363

    645 Branching rules of so22 ⊃ su4 ⊕so16(R) . . . . . . . . . . . . . . 1364

    12

  • 646 Branching rules of so22 ⊃ so8 ⊕so14(R) . . . . . . . . . . . . . . 1364

    647 Branching rules of so22 ⊃ so10⊕so12(R) . . . . . . . . . . . . . . 1365

    648 Branching rules of so22 ⊃ so20⊕u1(R) . . . . . . . . . . . . . . . 1365

    649 Branching rules of so22 ⊃so21(S) . . . . . . . . . . . . . . 1366

    650 Branching rules of so22 ⊃ su2 ⊕so19(S) . . . . . . . . . . . . . . 1367

    651 Branching rules of so22 ⊃ usp4⊕so17(S) . . . . . . . . . . . . . . 1367

    652 Branching rules of so22 ⊃ so7 ⊕so15(S) . . . . . . . . . . . . . . 1368

    653 Branching rules of so22 ⊃ so9 ⊕so13(S) . . . . . . . . . . . . . . 1368

    654 Branching rules of so22 ⊃ so11⊕so11(S) . . . . . . . . . . . . . . 1369

    655 Branching rules of so24 ⊃ su12⊕u1(R) . . . . . . . . . . . . . . . 1369

    656 Branching rules of so24 ⊃ su2 ⊕su2 ⊕ so20(R) . . . . . . . . . . . 1370

    657 Branching rules of so24 ⊃ su4 ⊕so18(R) . . . . . . . . . . . . . . 1371

    658 Branching rules of so24 ⊃ so8 ⊕so16(R) . . . . . . . . . . . . . . 1371

    659 Branching rules of so24 ⊃ so10⊕so14(R) . . . . . . . . . . . . . . 1372

    660 Branching rules of so24 ⊃ so12⊕so12(R) . . . . . . . . . . . . . . 1372

    661 Branching rules of so24 ⊃ so22⊕u1(R) . . . . . . . . . . . . . . . 1373

    662 Branching rules of so24 ⊃so23(S) . . . . . . . . . . . . . . 1373

    663 Branching rules of so24 ⊃ su2 ⊕so21(S) . . . . . . . . . . . . . . 1374

    664 Branching rules of so24 ⊃ usp4⊕so19(S) . . . . . . . . . . . . . . 1374

    665 Branching rules of so24 ⊃ so7 ⊕so17(S) . . . . . . . . . . . . . . 1375

    666 Branching rules of so24 ⊃ so9 ⊕so15(S) . . . . . . . . . . . . . . 1376

    667 Branching rules of so24 ⊃ so11⊕so13(S) . . . . . . . . . . . . . . 1376

    668 Branching rules of so24 ⊃ usp6⊕usp4(S) . . . . . . . . . . . . . . 1377

    669 Branching rules of so24 ⊃ su2 ⊕so8(S) . . . . . . . . . . . . . . . 1378

    670 Branching rules of so24 ⊃ su5(S) 1379

    671 Branching rules of so26 ⊃ su13⊕u1(R) . . . . . . . . . . . . . . . 1379

    672 Branching rules of so26 ⊃ su2 ⊕su2 ⊕ so22(R) . . . . . . . . . . . 1380

    673 Branching rules of so26 ⊃ su4 ⊕so20(R) . . . . . . . . . . . . . . 1380

    674 Branching rules of so26 ⊃ so8 ⊕so18(R) . . . . . . . . . . . . . . 1381

    675 Branching rules of so26 ⊃ so10⊕so16(R) . . . . . . . . . . . . . . 1381

    676 Branching rules of so26 ⊃ so12⊕so14(R) . . . . . . . . . . . . . . 1382

    677 Branching rules of so26 ⊃ so24⊕u1(R) . . . . . . . . . . . . . . . 1382

    678 Branching rules of so26 ⊃so25(S) . . . . . . . . . . . . . . 1382

    679 Branching rules of so26 ⊃ su2 ⊕so23(S) . . . . . . . . . . . . . . 1383

    680 Branching rules of so26 ⊃ usp4⊕so21(S) . . . . . . . . . . . . . . 1383

    681 Branching rules of so26 ⊃ so7 ⊕so19(S) . . . . . . . . . . . . . . 1384

    682 Branching rules of so26 ⊃ so9 ⊕so17(S) . . . . . . . . . . . . . . 1384

    683 Branching rules of so26 ⊃ so11⊕so15(S) . . . . . . . . . . . . . . 1384

    684 Branching rules of so26 ⊃ so13⊕so13(S) . . . . . . . . . . . . . . 1385

    685 Branching rules of so26 ⊃ F4(S) 1385

    686 Branching rules of so28 ⊃ su14⊕u1(R) . . . . . . . . . . . . . . . 1386

    687 Branching rules of so28 ⊃ su2 ⊕su2 ⊕ so24(R) . . . . . . . . . . . 1386

    688 Branching rules of so28 ⊃ su4 ⊕so22(R) . . . . . . . . . . . . . . 1386

    689 Branching rules of so28 ⊃ so8 ⊕so20(R) . . . . . . . . . . . . . . 1387

    690 Branching rules of so28 ⊃ so10⊕so18(R) . . . . . . . . . . . . . . 1387

    691 Branching rules of so28 ⊃ so12⊕so16(R) . . . . . . . . . . . . . . 1388

    692 Branching rules of so28 ⊃ so14⊕so14(R) . . . . . . . . . . . . . . 1388

    693 Branching rules of so28 ⊃ so26⊕u1(R) . . . . . . . . . . . . . . . 1388

    694 Branching rules of so28 ⊃so27(S) . . . . . . . . . . . . . . 1389

    695 Branching rules of so28 ⊃ su2 ⊕so25(S) . . . . . . . . . . . . . . 1389

    696 Branching rules of so28 ⊃ usp4⊕so23(S) . . . . . . . . . . . . . . 1389

    697 Branching rules of so28 ⊃ so7 ⊕so21(S) . . . . . . . . . . . . . . 1390

    13

  • 698 Branching rules of so28 ⊃ so9 ⊕so19(S) . . . . . . . . . . . . . . 1390

    699 Branching rules of so28 ⊃ so11⊕so17(S) . . . . . . . . . . . . . . 1391

    700 Branching rules of so28 ⊃ so13⊕so15(S) . . . . . . . . . . . . . . 1391

    701 Branching rules of so28 ⊃ su2 ⊕su2 ⊕ so7(S) . . . . . . . . . . . 1391

    702 Branching rules of so30 ⊃ su15⊕u1(R) . . . . . . . . . . . . . . . 1392

    703 Branching rules of so30 ⊃ su2 ⊕su2 ⊕ so26(R) . . . . . . . . . . . 1392

    704 Branching rules of so30 ⊃ su4 ⊕so24(R) . . . . . . . . . . . . . . 1393

    705 Branching rules of so30 ⊃ so8 ⊕so22(R) . . . . . . . . . . . . . . 1393

    706 Branching rules of so30 ⊃ so10⊕so20(R) . . . . . . . . . . . . . . 1394

    707 Branching rules of so30 ⊃ so12⊕so18(R) . . . . . . . . . . . . . . 1394

    708 Branching rules of so30 ⊃ so14⊕so16(R) . . . . . . . . . . . . . . 1394

    709 Branching rules of so30 ⊃ so28⊕u1(R) . . . . . . . . . . . . . . . 1395

    710 Branching rules of so30 ⊃so29(S) . . . . . . . . . . . . . . 1395

    711 Branching rules of so30 ⊃ su2 ⊕so27(S) . . . . . . . . . . . . . . 1396

    712 Branching rules of so30 ⊃ usp4⊕so25(S) . . . . . . . . . . . . . . 1396

    713 Branching rules of so30 ⊃ so7 ⊕so23(S) . . . . . . . . . . . . . . 1396

    714 Branching rules of so30 ⊃ so9 ⊕so21(S) . . . . . . . . . . . . . . 1397

    715 Branching rules of so30 ⊃ so11⊕so19(S) . . . . . . . . . . . . . . 1397

    716 Branching rules of so30 ⊃ so13⊕so17(S) . . . . . . . . . . . . . . 1397

    717 Branching rules of so30 ⊃ so15⊕so15(S) . . . . . . . . . . . . . . 1398

    718 Branching rules of so30 ⊃ su2 ⊕so10(S) . . . . . . . . . . . . . . 1398

    719 Branching rules of so30 ⊃ usp4⊕su4(S) . . . . . . . . . . . . . . . 1399

    720 Branching rules of so32 ⊃ su16⊕u1(R) . . . . . . . . . . . . . . . 1399

    721 Branching rules of so32 ⊃ su2 ⊕su2 ⊕ so28(R) . . . . . . . . . . . 1400

    722 Branching rules of so32 ⊃ su4 ⊕so26(R) . . . . . . . . . . . . . . 1400

    723 Branching rules of so32 ⊃ so8 ⊕so24(R) . . . . . . . . . . . . . . 1400

    724 Branching rules of so32 ⊃ so10⊕so22(R) . . . . . . . . . . . . . . 1401

    725 Branching rules of so32 ⊃ so12⊕so20(R) . . . . . . . . . . . . . . 1401

    726 Branching rules of so32 ⊃ so14⊕so18(R) . . . . . . . . . . . . . . 1401

    727 Branching rules of so32 ⊃ so16⊕so16(R) . . . . . . . . . . . . . . 1402

    728 Branching rules of so32 ⊃ so30⊕u1(R) . . . . . . . . . . . . . . . 1402

    729 Branching rules of so32 ⊃so31(S) . . . . . . . . . . . . . . 1402

    730 Branching rules of so32 ⊃ su2 ⊕so29(S) . . . . . . . . . . . . . . 1403

    731 Branching rules of so32 ⊃ usp4⊕so27(S) . . . . . . . . . . . . . . 1403

    732 Branching rules of so32 ⊃ so7 ⊕so25(S) . . . . . . . . . . . . . . 1403

    733 Branching rules of so32 ⊃ so9 ⊕so23(S) . . . . . . . . . . . . . . 1404

    734 Branching rules of so32 ⊃ so11⊕so21(S) . . . . . . . . . . . . . . 1404

    735 Branching rules of so32 ⊃ so13⊕so19(S) . . . . . . . . . . . . . . 1404

    736 Branching rules of so32 ⊃ so15⊕so17(S) . . . . . . . . . . . . . . 1405

    737 Branching rules of so32 ⊃ su2 ⊕su2 ⊕ so8(S) . . . . . . . . . . . 1405

    738 Branching rules of so32 ⊃ usp4⊕usp8(S) . . . . . . . . . . . . . . 1405

    739 Branching rules of E6 ⊃ so10 ⊕u1(R) . . . . . . . . . . . . . . . 1407

    740 Branching rules of E6 ⊃ su6 ⊕su2(R) . . . . . . . . . . . . . . 1409

    741 Branching rules of E6 ⊃ su3 ⊕su3 ⊕ su3(R) . . . . . . . . . . . 1410

    742 Branching rules of E6 ⊃ F4(S) . 1416

    743 Branching rules of E6 ⊃ su3 ⊕G2(S) . . . . . . . . . . . . . . . 1416

    744 Branching rules of E6 ⊃ usp8(S) 1419

    745 Branching rules of E6 ⊃ G2(S) . 1420

    746 Branching rules of E6 ⊃ su3(S) . 1421

    747 Branching rules of E7 ⊃ E6 ⊕u1(R) . . . . . . . . . . . . . . . 1423

    748 Branching rules of E7 ⊃ su8(R) . 1424

    749 Branching rules of E7 ⊃ so12 ⊕su2(R) . . . . . . . . . . . . . . 1424

    750 Branching rules of E7 ⊃ su6 ⊕su3(R) . . . . . . . . . . . . . . 1425

    751 Branching rules of E7 ⊃ su2 ⊕F4(S) . . . . . . . . . . . . . . . 1426

    14

  • 752 Branching rules of E7 ⊃ G2 ⊕usp6(S) . . . . . . . . . . . . . . 1427

    753 Branching rules of E7 ⊃ su2 ⊕G2(S) . . . . . . . . . . . . . . . 1428

    754 Branching rules of E7 ⊃ su3(S) . 1429755 Branching rules of E7 ⊃ su2 ⊕

    su2(S) . . . . . . . . . . . . . . . 1430756 Branching rules of E7 ⊃ su2(S) . 1432757 Branching rules of E7 ⊃ su2(S) . 1433758 Branching rules of E8 ⊃ so16(R) 1434759 Branching rules of E8 ⊃ su5 ⊕

    su5(R) . . . . . . . . . . . . . . 1434760 Branching rules of E8 ⊃ E6 ⊕

    su3(R) . . . . . . . . . . . . . . 1436761 Branching rules of E8 ⊃ E7 ⊕

    su2(R) . . . . . . . . . . . . . . 1436762 Branching rules of E8 ⊃ su9(R) . 1437763 Branching rules of E8 ⊃ G2 ⊕

    F4(S) . . . . . . . . . . . . . . . 1437764 Branching rules of E8 ⊃ su2 ⊕

    su3(S) . . . . . . . . . . . . . . . 1438765 Branching rules of E8 ⊃ usp4(S) 1439766 Branching rules of E8 ⊃ su2(S) . 1440767 Branching rules of E8 ⊃ su2(S) . 1440768 Branching rules of E8 ⊃ su2(S) . 1441769 Branching rules of F4 ⊃ so9(R) . 1442770 Branching rules of F4 ⊃ su3 ⊕

    su3(R) . . . . . . . . . . . . . . 1443771 Branching rules of F4 ⊃ su2 ⊕

    usp6(R) . . . . . . . . . . . . . . 1445772 Branching rules of F4 ⊃ su2(S) . 1446773 Branching rules of F4 ⊃ su2 ⊕

    G2(S) . . . . . . . . . . . . . . . 1447774 Branching rules of G2 ⊃ su3(R) 1449775 Branching rules of G2 ⊃ su2 ⊕

    su2(R) . . . . . . . . . . . . . . 1452776 Branching rules of G2 ⊃ su2(S) . 1458777 Tensor products of A1 . . . . . . 1461778 Tensor products of A2 . . . . . . 1475779 Tensor products of A3 . . . . . . 1493780 Tensor products of A4 . . . . . . 1506781 Tensor products of A5 . . . . . . 1523782 Tensor products of A6 . . . . . . 1539783 Tensor products of A7 . . . . . . 1553784 Tensor products of A8 . . . . . . 1566785 Tensor products of A9 . . . . . . 1583786 Tensor products of A10 . . . . . . 1598787 Tensor products of A11 . . . . . . 1611788 Tensor products of A12 . . . . . . 1625

    789 Tensor products of A13 . . . . . . 1637

    790 Tensor products of A14 . . . . . . 1650

    791 Tensor products of A15 . . . . . . 1664

    792 Tensor products of B3 . . . . . . 1680

    793 Tensor products of B4 . . . . . . 1681

    794 Tensor products of B5 . . . . . . 1684

    795 Tensor products of B6 . . . . . . 1686

    796 Tensor products of B7 . . . . . . 1689

    797 Tensor products of B8 . . . . . . 1691

    798 Tensor products of B9 . . . . . . 1692

    799 Tensor products of B10 . . . . . . 1694

    800 Tensor products of B11 . . . . . . 1696

    801 Tensor products of B12 . . . . . . 1698

    802 Tensor products of B13 . . . . . . 1700

    803 Tensor products of B14 . . . . . . 1702

    804 Tensor products of B15 . . . . . . 1704

    805 Tensor products of C2 . . . . . . 1708

    806 Tensor products of C3 . . . . . . 1709

    807 Tensor products of C4 . . . . . . 1712

    808 Tensor products of C5 . . . . . . 1714

    809 Tensor products of C6 . . . . . . 1716

    810 Tensor products of C7 . . . . . . 1720

    811 Tensor products of C8 . . . . . . 1723

    812 Tensor products of C9 . . . . . . 1725

    813 Tensor products of C10 . . . . . . 1727

    814 Tensor products of C11 . . . . . . 1730

    815 Tensor products of C12 . . . . . . 1733

    816 Tensor products of C13 . . . . . . 1735

    817 Tensor products of C14 . . . . . . 1737

    818 Tensor products of C15 . . . . . . 1740

    819 Tensor products of D4 . . . . . . 1743

    820 Tensor products of D5 . . . . . . 1803

    821 Tensor products of D6 . . . . . . 1806

    822 Tensor products of D7 . . . . . . 1808

    823 Tensor products of D8 . . . . . . 1810

    824 Tensor products of D9 . . . . . . 1812

    825 Tensor products of D10 . . . . . . 1814

    826 Tensor products of D11 . . . . . . 1816

    827 Tensor products of D12 . . . . . . 1820

    828 Tensor products of D13 . . . . . . 1822

    829 Tensor products of D14 . . . . . . 1824

    830 Tensor products of D15 . . . . . . 1826

    831 Tensor products of D16 . . . . . . 1828

    832 Tensor products of E6 . . . . . . 1831

    833 Tensor products of E7 . . . . . . 1834

    834 Tensor products of E8 . . . . . . 1836

    835 Tensor products of F4 . . . . . . 1843

    836 Tensor products of G2 . . . . . . 1847

    15

  • 1 Introduction

    We will discuss finite-dimensional Lie algebras and their representations for unified model build-ing. There is already a good report Ref. [1] of Lie algebras and their representations for particlephysicists with the title “Group Theory for Unified Model Building” written by R. Slansky. Thepaper contains almost all knowledge for usual model building to construct grand unified modelsin four-dimensional spacetime with the finite degrees of freedom of internal space or mattercontent. However, in modern sense, several exceptional cases have emerged. In this paper, wefind missing information for further unified model building, but it does not contain definitions ofLie algebras, their theorems and lemmas and their proofs, completely. They can be confirmed inDynkin’s original papers Refs. [2–5], a Dynkin’s paper’s brief review “Semi-Simple Lie Algebrasand Their Representations” written by R. N. Cahn Ref. [6], or books about Lie algebras and Liegroups, e.g., Refs. [7–9]. Introductory-level knowledge about Lie algebras and groups is given inRef. [10].

    At present, the irreducible representations of simple Lie algebras, whose rank is not exceeding8, are summarized in Ref. [11] written by W. G. McKay and J. Patera with the title “Tablesof Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras.” TheTable 1 of the book includes tables of dimensions [3, 7], second order and forth order Dynkinindices [12, 13], and type of representations, i.e. complex, self-conjugate, real, and pseudo-realrepresentations [11]. For each simple Lie algebra of rank 2 ≤ n ≤ 8 two pages are devoted,where two pages are used for E7 and E8.

    It is known that branching rules of Lie algebras and their Lie subalgebras can be calculatedby using their corresponding projection matrices. The projection matrices of Lie algebras andtheir maximal regular and special Lie subalgebras are listed by W. Mckay et al. in Ref. [14] upto rank 8, where they do not contain u1 charges. Also, several generic projection matrices ofrank-n classical Lie algebras are derived by using Weyl group orbits in Refs. [15–18].

    The Table 2 in Ref. [11] is devoted to the tables of the branching rules of up to 5,000-dimensional representations for the classical Lie algebras An, Bn, Cn, and Dn, and up to 10,000-dimensional representations for the five exceptional algebras E6, E7, E8, F4, and G2 by usingprojection matrices in Ref. [14]. Its tables do not contain u1 charges because u1 is not a semi-simple. R. Slansky give us its information in Ref. [1], but it is very limited.

    There are useful public codes to calculate some features of irreducible representations ofLie algebras such as dimensions [3, 7], conjugacy classes [3, 19], (second order) Dynkin indices[3], quadratic Casimir invariants, and anomaly coefficients [20–22], and also tensor products,branching rules and some projection matrices [14]. For example, Susyno program [23] is aMathematica package, LieART [24] is also a Mathematica package, and LiE [25] is a C program.

    Before we finish the introduction, we give some examples when we need Lie algebras, theirrepresentations, etc. in physics. For example, to construct a consistent chiral SU(n) gaugetheory [26] in four dimension, we must consider its SU(n) chiral gauge anomaly. (See e.g.,Ref. [27].) We can easily check whether a matter content is anomaly-free or not by using anomalycoefficients. To calculate the renormalization group equation for gauge coupling constant, weneed (second order) Dynkin indices of irreducible representations. (See e.g., Refs. [28–31].) Thenotion of types of representations (complex, self-conjugate, real, and pseudo-real representations)is important to find special Lie subalgebras. The notion of conjugacy classes is also useful toclassify irreducible representations and to calculate tensor products.

    Tensor products of Lie algebras are also important for model building to write down invariantaction under certain symmetry transformation. There are several calculation techniques by usinge.g., Dynkin labels and Dynkin diagrams in Refs. [6,11] and Weyl group orbits in Refs. [32,33].

    Branching rules are essential not only to construct grand unified theories but also to considermodels including explicit or spontaneous broken symmetries. For example, in an SU(5) grandunified theory discussed in Ref. [34], we have to know how to decompose representations ofSU(5) in its matter content into representations of GSM := SU(3) × SU(2) × U(1). E.g., the

    16

  • gauge bosons with the adjoint representation 24 of SU(5) are decomposed into the SM gaugebosons with (8,1)(0) ⊕ (1,3)(0) ⊕ (1,1)(0) of GSM and the so-called X and Y gauge bosonswith ⊕(3,2)(5) ⊕ (3,2)(−5) of GSM , where we take a normalization of U(1) charges as all theU(1) charges are integers.

    A purpose of this paper is to provide basic and useful information about some propertiesof irreducible representations of Lie algebras, branching rules of Lie algebras and their subal-gebras, and tensor products, where the properties of irreducible representations of Lie algebrasinclude dimensions, quadratic Casimir invariants, Dynkin indices, anomaly coefficients, conju-gacy classes, and types of representations. The branching rules contain not only semi-simplesubalgebra but also u1 charges because the information is important for model building. An-other purpose is to inform one of calculation methods to obtain the above things. By using theabove information, we will check what kind of Lie algebras can be applied for grand unificationin 4 and 5 dimensions.

    This paper is organized as follows. In Sec. 2, we check basics of Lie algebras and theirsubalgebras such as Dynkin diagrams, Cartan matrices, and notion of regular, special, and max-imal subalgebras. In Sec. 3, we see several features of representations of Lie algebras such asconjugacy classes, types of representations, Weyl dimension formulas, Dynkin indices, Casimirinvariants, and anomaly coefficients. In Sec. 4, we consider how to decompose irreducible repre-sentations of Lie algebras into irreducible representations of their Lie subalgebras. In Sec. 5, wediscuss a method to calculate tensor products of two irreducible representations of a Lie algebramainly by using its Dynkin diagram. In Sec. 6, several features of rank-n classical Lie algebrasand the five exceptional Lie algebras are summarized. This section includes several new resultsabout generic projection matrices of rank-n Lie algebras and their Lie subalgebras. In Sec. 7,we show which Lie algebras can be applied for grand unification in general by using the abovediscussion. Section 8 is devoted to a summary and discussion. Appendix A contains tables ofrepresentations of classical Lie algebras An, Bn, Cn, Dn (n = 1, 2, · · · , 15), and D16 and theexceptional Lie algebras E6, E7, E8, F4, and G2, which include dimensions, conjugacy classes,Dynkin indices, quadratic Casimir invariants, anomaly coefficients, and types of representa-tions. The tables are partially calculated by Susyno program [23]. Appendix B contains tablesof positive roots of some classical Lie algebras and the exceptional Lie algebras. Appendix Ccontains tables of weight diagrams of several representations of some classical Lie algebras andthe exceptional Lie algebras. Appendix D contains tables of all projection matrices of classicalLie algebras An, Bn, Cn, Dn (n = 1, 2, · · · , 15), and D16 and the exceptional Lie algebras E6,E7, E8, F4, and G2 and their maximal regular and special subalgebras. Appendix E containstables of branching rules of classical Lie algebras An, Bn, Cn, Dn (n = 1, 2, · · · , 15), and D16and the exceptional Lie algebras E6, E7, E8, F4, and G2 and their maximal regular and specialsubalgebras. The tables are also obtained by Susyno program [23] by using projection matricesshown in Appendix D. Appendix F contains tables of tensor products of classical Lie algebrasAn, Bn, Cn, Dn (n = 1, 2, · · · , 15), and D16 and the exceptional Lie algebras E6, E7, E8, F4,and G2. The tables are also calculated by Susyno program [23].

    2 Lie algebras and their subalgebras

    First, we list up some technical terms about Lie algebras and subalgebras. (For more detail, seee.g., Refs. [6, 35].)

    • A Lie algebra g is an algebra such that its map [, ]: g ⊗ g → g satisfies the followingproperties:

    (1) [x, y] = −[y, x] for ∀x, y ∈ g (antisymmetry);

    (2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]]] = 0 for ∀x, y, z ∈ g (Jacobi identity).

    • A Lie subalgebra h (h ⊆ g ) of the Lie algebra g itself is a Lie algebra.

    17

  • • A proper Lie subalgebra h is a Lie subalgebra if h 6= g; i.e., h ⊂ g;

    • An ideal h of the Lie algebra g is a subalgebra that satisfies the property [g, h] ⊆ h.

    • An Abelian Lie algebra is a Lie algebra that satisfies [g, g] = 0.

    • A simple Lie algebra is a Lie algebra that does not contain proper ideals and that is notAbelian algebra u1.

    • A semi-simple Lie algebra is an algebra that is the direct sum of simple Lie algebras.

    • A non-semi-simple Lie algebra is an algebra that is the direct sum of a semi-simple andan Abelian Lie algebra.

    Let us classify a finite-dimensional simple Lie algebra g by using a Cartan matrix Aij(g),

    Aij(g) := 2(αi, αj)

    (αj , αj), (2.1)

    where αi(i = 1, 2, · · · , n) are the simple roots of rank-n algebra g, (∗, ∗) is a scalar product onthe root space. Here we define a Cartan matrix of a simple Lie algebra g as it satisfying thefollowing conditions:

    (C0) Aij(g) ∈ Z,

    (C1) Aii(g) = 2,

    (C2) Aij(g) = 0 ⇔ Aji(g) = 0,

    (C3) Aij(g) ∈ Z≤0 for i 6= j,

    (C4) detAij(g) > 0,

    (C5) irreducible. (2.2)

    (See e.g., Refs. [6, 35].)We check what kind of Cartan matrices Aij(g) satisfy the above conditions. For rank-2, we

    can write a Cartan matrix Aij(g) as

    A(g) =

    (

    2 a12a21 2

    )

    . (2.3)

    Its determinant detAij(g) must satisfy the following condition:

    detAij(g) = 4− a12a21 > 0. (2.4)

    Thus, the possible sets of (a12, a21) are

    (a12, a21) = (0, 0), (−1,−1), (−1,−2), (−1,−3), (−2,−1), (−3,−1), (2.5)

    where (0, 0) does not give us a simple Lie algebra, but D2 ≃ A1 ⊕A1. For usual notations, theycorrespond to D2, A2, C2(≃ B2), G2, B2, G2, respectively. (Note that for rank-2 Lie algebras, aCartan matrix is the same as its transpose one, where it can be understood e.g., by using theirDynkin diagrams discussed later; thus, the matrix with (a12, a21) = (−1,−2) is the same asthat with (a12, a21) = (−2,−1); the matrix with (a12, a21) = (−1,−3) is the same as that with(a12, a21) = (−3,−1).) The explicit matrices of A2, B2(≃ C2), C2, D2(≃ A1 ⊕A1), and G2 are

    A(A2) =

    (

    2 −1−1 2

    )

    , A(B2) =

    (

    2 −2−1 2

    )

    , A(C2) =

    (

    2 −1−2 2

    )

    ,

    A(D2) =

    (

    2 00 2

    )

    , A(G2) =

    (

    2 −3−1 2

    )

    . (2.6)

    18

  • Notice that for (a12, a21) = (−2,−2), (−1,−4), the Cartan matrices are

    A(A(1)1 ) =

    (

    2 −2−2 2

    )

    , A(A(2)1 ) =

    (

    2 −4−1 2

    )

    . (2.7)

    They lead to detA(g) = 0, where the superscript of the algebra (r), e.g., (1) of A(1)1 , is cor-

    responding to so-called Coxeter label. Thus, they are not finite-dimensional Lie algebras, butAffine Lie algebras. The class of the former matrix gives us important information about aso-called extended Dynkin diagram. (See e.g., [35, 36] for Affine Lie algebras and Kac-Moodyalgebras.)

    For rank-3, we can write a Cartan matrix as

    Aij(g) =

    2 a12 a13a21 2 a23a31 a32 2

    . (2.8)

    Its determinant detAij(g) must satisfy the following condition:

    detAij(g) = 8 + a12a23a31 + a21a32a13 − 2 (a12a21 + a13a31 + a23a32) > 0. (2.9)

    Thus, the possible sets of (a12, a21; a13, a31; a23, a32) are

    (a12, a21; a13, a31; a23, a32) =(−1,−1; 0, 0;−1,−1), (−1,−1; 0, 0;−2,−1),

    (−1,−1; 0, 0;−1,−2), (−1,−1;−1,−1; 0, 0). (2.10)

    For usual notations, they correspond to A3, B3, C3, and D3(≃ A3), respectively. (Note thatfor rank-3 Lie algebras, the Cartan matrix of A3 is the same as that of D3, where it can beunderstood e.g., by using their Dynkin diagrams discussed later.) The explicit matrices of A3,B3, C3, D3(≃ A3), and G2 are

    A(A3) =

    2 −1 0−1 2 −10 −1 2

    , A(B3) =

    2 −1 0−1 2 −20 −1 2

    ,

    A(C3) =

    2 −1 0−1 2 −10 −2 2

    , A(D3) =

    2 −1 −1−1 2 0−1 0 2

    . (2.11)

    Notice that for appropriate sets (a12, a21; a13, a31; a23, a32), the Cartan matrices with detA(g) = 0are

    A(A(1)2 ) =

    2 −1 −1−1 2 −1−1 −1 2

    , A(D(2)5 ) =

    2 −1 0−2 2 −20 −1 2

    ,

    A(A(2)4 ) =

    2 −2 0−1 2 −20 −1 2

    , A(C(1)2 ) =

    2 −2 0−1 2 −10 −2 2

    ,

    A(G(1)2 ) =

    2 −1 0−1 2 −30 −1 2

    , A(D(3)4 ) =

    2 −3 0−1 2 −10 −1 2

    . (2.12)

    19

  • For rank-4, algebras A4, B4, C4, D4, and F4 satisfy the condition detA(g) > 0. The explicitmatrices of A4, B4, C4, D4, and F4 are

    A(A4) =

    2 −1 0 0−1 2 −1 00 −1 2 −10 0 −1 2

    , A(B4) =

    2 −1 0 0−1 2 −1 00 −1 2 −20 0 −1 2

    ,

    A(C4) =

    2 −1 0 0−1 2 −1 00 −1 2 −10 0 −2 2

    , A(D4) =

    2 −1 0 0−1 2 −1 −10 −1 2 00 −1 0 2

    ,

    A(F4) =

    2 −1 0 0−1 2 −2 00 −1 2 −10 0 −1 2

    . (2.13)

    The algebras A(1)3 , B

    (1)3 , C

    (1)3 , A

    (2)5 , A

    (2)6 , and D

    (2)6 satisfy the condition detA(g) = 0. The

    explicit matrices of them are

    A(A(1)3 ) =

    2 −1 0 −1−1 2 −1 00 −1 2 −1−1 0 −1 2

    , A(B(1)3 ) =

    2 0 −1 00 2 −1 0−1 −1 2 −20 0 −1 2

    ,

    A(A(2)5 ) =

    2 0 −1 00 2 −1 0−1 −1 2 −20 0 −1 2

    , A(C(1)3 ) =

    2 −2 0 0−1 2 −1 00 −1 2 −10 0 −2 2

    ,

    A(D(2)6 ) =

    2 0 −1 00 2 −1 0−1 −1 2 −10 0 −2 2

    , A(A(2)6 ) =

    2 −2 0 0−1 2 −1 00 −1 2 −20 0 −1 2

    . (2.14)

    For rank-5, algebras A5, B5, C5, and D5 satisfy the condition detA(g) > 0. The explicitmatrices of A5, B5, C5, and D5 are

    A(A5) =

    2 −1 0 0 0−1 2 −1 0 00 −1 2 −1 00 0 −1 2 −10 0 0 −1 2

    , A(B5) =

    2 −1 0 0 0−1 2 −1 0 00 −1 2 −1 00 0 −1 2 −20 0 0 −1 2

    ,

    A(C5) =

    2 −1 0 0 0−1 2 −1 0 00 −1 2 −1 00 0 −1 2 −10 0 0 −2 2

    , A(D5) =

    2 −1 0 0 0−1 2 −1 0 00 −1 2 −1 −10 0 −1 2 00 0 −1 0 0

    . (2.15)

    20

  • The algebras A(1)4 , A

    (1)3 , A

    (1)3 , F

    (1)4 , A

    (2)7 , A

    (2)8 , D

    (2)7 , F

    (1)4 , and E

    (2)6 satisfy the condition

    detA(g) = 0. The explicit matrices of them are

    A(A(1)4 ) =

    2 −1 0 0 −1−1 2 −1 0 00 −1 2 −1 00 0 −1 2 −1−1 0 0 −1 2

    , A(B(1)4 ) =

    2 0 −1 0 00 2 −1 0 0−1 −1 2 −1 00 0 −1 2 −20 0 0 −1 2

    ,

    A(C(1)4 ) =

    2 −2 0 0 0−1 2 −1 0 00 −1 2 −1 00 0 −1 2 −10 0 0 −2 2

    , A(D(1)4 ) =

    2 −1 0 0 0−1 2 −1 −1 −10 −1 2 0 00 −1 0 2 00 −1 0 0 2

    ,

    A(F(1)4 ) =

    2 −1 0 0 0−1 2 −2 0 00 −1 2 −1 00 0 −1 2 −10 0 0 −1 2

    . (2.16)

    We can also check rank-n (n ≥ 4) algebras by using the same technique. The condition (d)in Eq. (2.2) detAij > 0 does not constrain the rank of the classical algebras An, Bn, Cn, andDn, but it strongly constrains the rank of the exceptional algebras En, Fn, and Gn. In otherwords, the rank of the classical algebras is unlimited for large n, but the rank of the exceptionalalgebras En, Fn, and Gn is limited by n = 8, n = 4, and n = 2, respectively. By using words of

    the Affine Lie algebras, E9 = E(1)8 , F5 = F

    (1)4 , and G3 = G

    (1)2 .

    Note that detA(An) = n + 1 (n ≥ 1), detA(Bn) = 2 (n ≥ 1), detA(Cn) = 2 (n ≥ 1),detA(Dn) = 4 (n ≥ 3), detA(En) = 9− n (n ≥ 6), detA(F4) = 1, and detA(G2) = 1.

    2.1 (Extended) Dynkin diagrams and Cartan matrices

    Finite-dimensional Lie algebras are classified into An, Bn, Cn, Dn (n ≥ 1), En (n = 6, 7, 8), F4,and G2. For their associate groups, we only consider compact groups. We sometimes denotethe Lie algebras An = sun+1, Bn = so2n+1, Cn = usp2n, and Dn = so2n. Also, their associatecompact groups of An, Bn, Cn, Dn, En, F4, and G2 are SU(n + 1), SO(2n + 1), USp(2n),SO(2n), En, F4, and G2, respectively.

    The simple Lie algebras, their associate compact groups, and their extended Dynkin diagramsare summarized in the following table.

    Table 1: Extended Dynkin diagrams

    Algebra Group Rank Extended Dynkin diagram

    An = sun+1 SU(n+ 1)∀n ◦

    1

    ◦❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

    x

    ◦❘❘

    ❘❘❘❘

    ❘❘❘❘

    ❘❘❘❘

    ❘❘❘

    ◦2

    ◦3

    · · · ◦n−1

    ◦n

    Bn = so2n+1 SO(2n+ 1)∀n ◦

    2

    ◦ ❖❖❖❖❖❖1

    ◦ ♦♦♦♦♦♦

    x

    ◦3

    · · · ◦n−1

    •n

    Cn = usp2n USp(2n)∀n ◦

    x

    •1

    •2

    · · · •n−1

    ◦n

    21

  • Table 1 (continued)

    Algebra Group Rank Extended Dynkin diagram

    Dn = so2n SO(2n)∀n ◦

    2

    ◦ ❖❖❖❖❖❖1

    ◦ ♦♦♦♦♦♦

    x

    ◦3

    · · · ◦n−2

    ◦♦♦♦♦♦♦ n−1

    ◦❖❖

    ❖❖❖❖

    n

    E6 E6 6 ◦1

    ◦2

    ◦3

    ◦ 6

    ◦ x

    ◦4

    ◦5

    E7 E7 7 ◦x

    ◦1

    ◦2

    ◦3

    ◦ 7

    ◦4

    ◦5

    ◦6

    E8 E8 8 ◦1

    ◦2

    ◦3

    ◦ 8

    ◦4

    ◦5

    ◦6

    ◦7

    ◦x

    F4 F4 4 ◦x

    ◦1

    ◦2

    •3

    •4

    G2 G2 2 ◦x

    ◦1

    •2

    where Group stands for a compact group. Since D2 ≃ A1 ⊕ A1 (so4 ≃ su2 ⊕ su2), D2 = so4is not a simple Lie algebra. Note that we took the same notation in Refs. [1, 10] to write the(extended) Dynkin diagrams. The Dynkin diagram of a simple algebra is connected, and theDynkin diagram of a non-simple algebra is disconnected. Each simple algebra has simple rootsof one or two different lengths. The black circles denote the shorter roots.

    The Dynkin diagrams have the same information of their corresponding Cartan matricesA(G) of Lie algebras g. (See, e.g., Ref. [1, 3, 8] in detail.) The Cartan matrices of simple Liealgebras are listed in the following table.

    Table 2: Cartan matrices

    Algebra Group Rank Cartan matrix

    An = sun+1 SU(n+ 1)∀n A(An) =

    2 −1 0 · · · 0 0 0−1 2 −1 · · · 0 0 00 −1 2 · · · 0 0 0...

    ......

    . . ....

    ......

    0 0 0 · · · 2 −1 00 0 0 · · · −1 2 −10 0 0 · · · 0 −1 2

    22

  • Table 2 (continued)

    Algebra Group Rank Cartan matrix

    Bn = so2n+1 SO(2n+ 1)∀n A(Bn) =

    2 −1 0 · · · 0 0 0−1 2 −1 · · · 0 0 00 −1 2 · · · 0 0 0...

    ......

    . . ....

    ......

    0 0 0 · · · 2 −1 00 0 0 · · · −1 2 −20 0 0 · · · 0 −1 2

    Cn = usp2n USp(2n)∀n A(Cn) =

    2 −1 0 · · · 0 0 0−1 2 −1 · · · 0 0 00 −1 2 · · · 0 0 0...

    ......

    . . ....

    ......

    0 0 0 · · · 2 −1 00 0 0 · · · −1 2 −10 0 0 · · · 0 −2 2

    Dn = so2n SO(2n)∀n A(Dn) =

    2 −1 0 · · · 0 0 0−1 2 −1 · · · 0 0 00 −1 2 · · · 0 0 0...

    ......

    . . ....

    ......

    0 0 0 · · · 2 −1 −10 0 0 · · · −1 2 00 0 0 · · · −1 0 2

    E6 E6 6 A(E6) =

    2 −1 0 0 0 0−1 2 −1 0 0 00 −1 2 −1 0 −10 0 −1 2 −1 00 0 0 −1 2 00 0 −1 0 0 2

    E7 E7 7 A(E7) =

    2 −1 0 0 0 0 0−1 2 −1 0 0 0 00 −1 2 −1 0 0 −10 0 −1 2 −1 0 00 0 0 −1 2 −1 00 0 0 0 −1 2 00 0 −1 0 0 0 2

    E8 E8 8 A(E8) =

    2 −1 0 0 0 0 0 0−1 2 −1 0 0 0 0 00 −1 2 −1 0 0 0 −10 0 −1 2 −1 0 0 00 0 0 −1 2 −1 0 00 0 0 0 −1 2 −1 00 0 0 0 0 −1 2 00 0 −1 0 0 0 0 2

    F4 F4 4 A(F4) =

    2 −1 0 0−1 2 −2 00 −1 2 −10 0 −1 2

    G2 G2 2 A(G2) =

    (

    2 −3−1 2

    )

    23

  • The inverse Cartan matrices of simple Lie algebras g in the following table are defined by

    G(g)ij :=(

    A(g)−1)

    ij

    (αj , αj)

    2, (2.17)

    The matrices are useful when we calculate the Weyl dimension formulas, second order Casimirinvariants, etc.

    Table 3: Inverse Cartan matrices

    Algebra Inverse Cartan matrix

    An G(An) =1

    n+1

    1 · n 1 · (n− 1) 1 · (n− 2) · · · 1 · 2 1 · 11 · (n− 1) 2 · (n− 1) 2 · (n− 2) · · · 2 · 2 2 · 11 · (n− 2) 2 · (n− 2) 3 · (n− 2) · · · 3 · 2 3 · 1

    ......

    .... . .

    ......

    1 · 2 2 · 2 3 · 2 · · · (n− 1)