indrumator metal - eg

38
 1. ROOF PURLIN DESIGN 1. CONSTRUCTIVE SCHEME d’  3,00 m * Case study: D = 24,00m; d = 2,40m; h 0  = 1,60m; H = 2,80m α = atan (1,20/12,00) = 5,71º cos α = 0,995 2. CALCULUS SCHEME * Case study: t = 9.00m 

Upload: hooky1

Post on 04-Jun-2018

229 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 1/37

Page 2: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 2/37

 

3. LOADS, LOAD FACTORS, LOAD COMBINATIONS

Loads

 Nominal

Load

[KN/m2]

Factor

of

Safety

Factored

Load

[KN/m2]

PermanentLoads 

(P)

(dead loads)

  Roof weight: ….………………..(corrugated sheet)

  Purlin weight: ……………..…...

  Technological load: ……………

0.15…0.35

0.10…0.15

0.10…0,20

1.35

1.35

1.35

Variable

Loads

(V)

(environmental

loads)

  Snow (CR 1-1-3-2005):

sk = µ i × Ce × Ct × s0,k

where :

* s0,k  is the ground snow load (as is

shown in ground snow load map)

Zone on the map s0,k  [KN/m2]

A 1,50

B 2,00C 2,50

* Ce is the exposure factor (to account

for wind effects); the value of this

coefficient is:

Ce = 0.80 for full exposure.

* Ct is the thermal factor (to account

for snow melting effects due to the

heat inside the building); the value of

this coefficient is considered 1.00 in

most cases.

* µi is the slope factor;

µ1 = 0.80 whenever 0° < α  ≤ 30° 

sk 1.50

* Case study:

Loads

 Nominal

Load

[KN/m2]

Factor

of

Safety

Factored

Load

[KN/m2]

Permanent

Loads 

(P)

(dead loads)

  Roof weight: ….………………..

(corrugated sheet)

  Purlin weight: ……………..…...

  Technological load: ……………

0.15

0.15

0.10

1.35

1.35

1.35

0.203

0.203

0.135

Variable

Loads

(V)

(environmental

loads)

  Snow (CR 1-1-3-2005):

s0,k = 2,50 kN/m2 

Ce = 0.80 for full exposure.

Ct = 1.00.

µ1  = 0.80

1.60  1.50 2.40

Page 3: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 3/37

Load combinations: relevant load combinations for:

a) Ultimate Limit States (U.L.S.) : 1 0,

1 2

1,35 1,50 1,50n m

c

 j i i

 j i

q P V V  ψ = =

= + ⋅ + ⋅ ⋅∑ ∑  [KN/m2]

 b) Serviceability Limit States (S.L.S.) : 1 0,

1 2

n mn

 j i i

 j i

q P V V  ψ = =

= + + ⋅∑ ∑  [KN/m2]

where:V 1 is the dominant variable action

ψ 0,i = 0.70 (factor of simultaneity)

* Case study:

The horizontal distributed load on the roof is:

U.L.S. ⇒  Qc = 1,35 (0,15 x 1/cos α + 0,15 + 0,10) + 1,50 × ( 1.60 ) = 2.94 [KN/m

2]

S.L.S.  ⇒  Qn = 0,15 x 1/cos α + 0,15 + 0,10 + 1.60 = 2.00 [KN/m

2]

Determine the vertical distributed load acting on the current purlin (d = 2,40 m):

a)  U.L.S. : qc= Q

c × d = 2.941 × 2.40 = 7.06 kN/m

 b)  S.L.S. : qn= Qn

 × d = 2.001 × 2.40 = 4.80 KN/m

The vertical load on the purlin must be decomposed into normal (q w) and parallel (q f )

components; the parallel component (in the roof plane) q f  is carried by the roof deck if this is

made of corrugated steel. Consequently the purlin needs to be designed for the normal

component (perpendicular to the roof plane) q w only.

* Case study:

- the parallel component:

q f c= q 

c × sinα = 7.06 × sin5.71° = 0.70 KN/ml

q f n = q n × sinα = 4.80 × sin5.71° = 0.48 KN/ml

- the normal component (carried by the purlin):

q wc= q 

c × cosα = 7.06 × cos5.71° = 7.03 KN/ml

q wn= q 

n × cosα = 4.80 × cos5.71° = 4.78 KN/ml

Page 4: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 4/37

4. CAL

 

- for Ul

 

- for Se

 

5. CRO

 

The firs

 purlinConseq 

depth a

only on

 

CULUS O

imate Lim

viceability

SS-SECT

t (terminal

ortions hently, ther 

d the sam

e depth.

F BENDI

t States ver 

 Limit Stat

ON SIZI

 purlin por 

s two croe are four

thickness

G MOME

ification:

s verificati

G

ion and cu

ss-sectionsross-sectio

of flanges

NT AND

on (only n

rent purlin

for sizingns to be si

 because th

HEAR F

minal bend 

 portion are

: midspaned, so that

y belong t

RCE (in e

ing mome

 to be calc

section ais necessa

 the same

lastic rang

t diagram):

lated; each

d supporty to have t

element, w

e)

of these

section.he same

hich has

Page 5: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 5/37

•  Choice of the cross-section shape:

Double T - bisymmetric cross-section (most adequate shape for members in bending);

•  Choice of the material quality:

For purlin design is possible to use one of the following steel grades: S355, S275 or S235;

the steel grade is chosen such that the deflection requirement should be satisfied, with a

minimum material consumption. For the beginning one should start with S355 grade and if

the actual deflection is greater than the allowable deflection, the steel grade should be

changed in S275 or further on, in S235.

Steps:

1)  Determination of the required section modulus:

** 0 M 

 y

 M W 

 f 

γ =  

where: M* is the ponderate moment on the purlin

γM0 is a coefficient equal to 1,00

f y is the yield limit of the material

* Case study:

M* =2 0,8 44,41 2 0,4 59,79 2 0,6 18,79 4 0,4 44,98 3 0,6 26,20

7

t t t t t  

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅=

= 37,22 kNm

W* = 37,22 x 10

6

 /275 = 117164 mm

3

 = 117,16cm

3

(S275)

2)  Determination of the web dimensions : hw  tw 

hw ≈ 1.15 × w

nec

W  

Page 6: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 6/37

- propose tw  (tw = 3, 4, 5, 6, 7, 8, 9, 10, 12 mm).

- calculate hw 

100 to 100 mm for hw > 1000 mm;

- round off result: 50 to 50 mm for 500 mm < hw ≤ 1000 mm;

10 to 10 for hw  ≤ 500.

- Determine hw  and check ifw

w

h ∈ (70…150); if not, change tw .

* Case study: propose tw = 3 mm

* 1171641,15 1,15 227,3

3w

w

W h mm

t = = =   hw = 230 mm

w

w

h= 76,7 (as the result was obtained with the minimum tw  it is not possible to change)

3) Determination of the flanges dimensions : bf  × tf  

Af ≈  i

w

h - 0.16 × hw × tw = net area for one flange

where: W i =0 M i

 y

 M 

 f 

γ  

- propose: tf = ( 1.50…2.50 ) × tw ;

- calculate: bf  = f 

 f 

 A ≥ 60 mm

- round up result 10 to 10 mm;

13 S355

-check if: f 

b'  ≤  14 S275 if not change tf .

15 S235

4) Optimize the material consumption (if possible)

-check if:

wh

b  ∈ ( 1/3…1/5 );

2 × Af ≈(0.50…0.60) × A ; (A is the area for the whole cross-section)

Ai ≈ (0.50…0.40) × A .

Page 7: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 7/37

* Case

1. Prop

2. Com

- first s

- first s

- curren3. Com

 

 bf1 = A

 bf2 = A

 bf3 = A

 

6. VER

 

a)

 b)

 positio

 

tudy:

se tf  = 6 m

ute the str 

an and cur 

 pport:

t spans:ute the fla

1 f 

 f 

= 600,7/

2 f 

 f 

= 834,9

3 f 

 f 

= 303,8

IFICATI

raw the s

alculate t

 of neutral

m

ngth modu

ent suppor 

 

ge areas:

6 = 100,1

6 = 139,2

6 = 50,6 m

NS FOR

etch of the

e geometri

axis; mom

lus:

ts: W1 

W2 

W3 

Af1

Af2

Af3

m

m

HE SIZE

section;

cal charact

nt of inerti

 44,98 x 1

 59,79 x 1

 26,20 x 1

163563,6 /

217418,2 /

95272,7 /

 b

  b

  b

 CROSS-

ristics: ar 

 with resp

6 /275 = 1

6 /275 = 21

6

 /275 = 9

 230-0,16x

 230-0,16x

30-0,16x3

f1 = 110 m

f2 = 140 m

f3 = 60 mm

SECTION

a (A); cent

ct to x-x a

3563,6 m

7418,2 m

272,7 mm

x230 = 60

x230 = 83

230 = 303

 

oid locatio

is (Ix).

0,7 mm

,9 mm

,8 mm

n (C.G.)

Page 8: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 8/37

6.1. VE

 a) CH 

 

1.  Esta 

•  Cas

1. 2. 

For the

2. Be

 

•  Cas

 

3. She

 

•  Cas

 

 RIFICATI 

CK FOR

 blish the s

e study for

or the we

or flanges

whole secti

ding mom

e study for

r capacity

e study for

ONS OF

 ESISTAN 

ction class

 purlin secti

 : hw / tw =

: b’ / tf  = 6

on, the cla

nt capacit

 purlin secti

of the secti

 purlin secti

 LTIMATE

 E

according t

on 2

230/3 = 77

8,5/6 = 11,

s establish

 of the sect

c

 M 

on 2

Wel

Mc,

on, Vc,Rd :

,c RV 

on 2

AV = 3

Vc,

 LIMIT S

 

o SREN 1

→ class 2

 → class

d will be 3

ion, Mc,Rd  :

,min

,

el

 Rd  M 

γ =

,min = 218,4

d = 60,06

(0

V y

 M 

 A f 

γ 

=

 x 230 = 6

Rd = 109,6

 ATES (wit

93-1-1-20

 

 y f 

 

cm3 

Nm

)3 

0 mm2 

kN

 factored

6 (table 5.

 oads)

)

Page 9: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 9/37

4. Resistance check

,

,

2 2

,

0 0

1,0

1,0

3 1,0

 Ed 

c Rd 

 Ed 

c Rd 

 x Ed   Ed 

 y M y M 

 M 

 M 

 f f 

σ    τ 

γ γ 

⎛ ⎞ ⎛ ⎞+ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

•  Case study for purlin section 2 :

VEd  = 38,27 kN (see diagram)

MEd  = 59,79 kNm (see diagram)6

2

,

59,79 10 230260,0 /

2 26431000 2

 Ed w x Rd 

 x

 M h N mm

 I σ 

  ⋅= = =  

3238,27 10

55,47 /230 3 Ed  Ed 

w w

V  N mmh t τ 

  ⋅= = =⋅  

( ) ( )

,

,

2 2

2 2,

0 0

38,270, 35 1, 0

109,6

59,790, 996 1, 0

60,06

3 0,945 3 0,20 1,0 1,0

 Ed 

c Rd 

 Ed 

c Rd 

 x Ed   Ed 

 y M y M 

 M 

 M 

 f f 

σ    τ 

γ γ 

= = ≤

= = ≤

⎛ ⎞ ⎛ ⎞+ = + = ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

6.2. VERIFICATION OF SERVICIABILITY LIMIT STATE (with nominal loads)

Check for deflection:

f actual =x

2

I10

t  × ∑ α × M ≤  f allowable =

200

t  ;

Input t ⇒  [m] ;

Ix  ⇒ [cm4] ; ⇒  f actual in [cm] ;M ⇒ [KNm] ;

(α  ⇒ from tables)

Page 10: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 10/37

 

7. PURLIN CROSS-SECTION VARIATION ON THE LENGTH OF THE BEAM

It is necessary to determine the distances ‘x’ on both sides of the supports, for which

the midspan section resists to the bending moment; for purlin design we choose the greatest

distance ‘x’. Assuming the loads discussed earlier and S275 for the purlin material, we obtain:

Page 11: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 11/37

 

8. PURLIN (ERECTION) SPLICE DESIGN (with factored loads)

It is necessary to design two (erection) splices (connections which provide the purlin

continuity): on the second support and on the current one.

Page 12: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 12/37

- Design stress is: M10, (M20) which is resolved in a couple of forces

H =h

 M   ; h = hw + 2 tf (lever arm = overall depth of the beam)

- Cover plates sizing: Ac.p.

nec

 =

0

 y

 M 

 H 

 f γ 

 

a) top flange cover plate ( tc.p.t × bc.p.

t- lc.p.

t):

- propose: bc.p.t

= b – 20 ;

- calculate : tc.p.t

=t

c.p.

nec

c.p.

 b

(round off to a plate thickness which is manufactured)

- check for cover plate resistance:

σ =t 

 pc

 pcbt 

 H 

....   ×  ≤ f y/γM0 ;

- fillet welds sizing:

- propose weld size aw ≤ 0.70 × tmin ;

tmin = min (tf , tc.p.

t) ;

- weld length : lw =. . . . 0

,2

t t 

c p c p y M  

w vw d  

t b f 

a f 

γ × ×

× ×  + 2 aw (round off 5 to 5)

2

,

2

430

233,653 3 0,85 1,25

uvw d 

w M 

 f 

 f N mm β γ = = =⋅ ⋅ ;

- verify if : lw ≤ 60  × aw .

 b) bottom flange cover plate ( tc.p. b

 × bc.p. b

- lc.p. b

):

- propose : tc.p. b

  = tf ;

- calculate : bc.p. b

  = b

 pc

nec

 pc

 A

..

..  , round off 10 to 10;

- check for cover plate resistance :

σ =b

 pc

b

 pcbt 

 H 

....   ×  ≤ f y/γM0 ;

- fillet welds sizing:

- propose weld size aw ≤ 0.70 × tmin ;

Page 13: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 13/37

 

tmin = min (tf , tc.p.

t) ;

- weld length: lw =. . . . 0

,2

b b

c p c p y M  

w vw d  

t b f 

a f 

γ × ×

× ×  + 2 aw (round off 5 to 5)

- verify if: lw ≤ 60  × aw .

* Case study: H =h

 M  =

59,79

0,242= 247,1 kN

Ac.p.nec =

 R

 H =

3247,1 10

275

⋅= 898,4 mm2 

a) top cover plate: bc.p.t

= b – 20 = 140 – 20 = 120 mm

tc.p.t

=t

c.p.

nec

c.p.

 b

A =

898,4

120

= 7,5 mm tc.p.t

= 8 mm

- check for strength: σ =t 

 pc

 pcbt 

 H 

....   ×=

3247,1 10

120 8

⋅⋅

= 257,4 N/mm2 ≤ f y/ γM0 = 275 N/mm

- fillet weld sizing: aw = 4 mm

- weld length : lw =. . . . 0

,2

t t 

c p c p y M  

w vw d  

t b f 

a f 

γ × ×

× ×  + 2 aw =

8 120 275

2 4 233,65

× ×× ×

+ 2 x 4 = 149,3 mm

lw = 150 mm ≤ 60 x 4 = 240 mm

 b) bottom cover plate: tc.p. b

= tf   = 6 mm

 bc.p. b =

nec

c.p.

 b

c.p.

A

t =

898,4

6= 149,7 mm bc.p.

 b = 160 mm

- check for strength: σ =. . . .

b b

c p c p

 H 

t b×=

3247,1 10

160 6

⋅⋅

= 257, N/mm2 ≤ R = 275 N/mm

- fillet weld sizing: aw = 4 mm

- weld length : lw =. . . . 0

,2

b b

c p c p y M  

w vw d  

t b f 

a f 

γ × ×

× ×  + 2 aw =

6 160 275

2 4 233,65

× ×

× ×+ 2 x 4 = 149,3 mm

lw = 150 mm ≤ 60 x 4 = 240 mm

Page 14: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 14/37

ROOF TRUSS DESIGN

1.  STRUCTURAL CONFIGURATION

2. 

LOADS, LOAD FACTORS, LOAD COMBINATIONS

Loads are the same as fo the purlins, exept for Permanent Loads, which must take into

account the truss weight as well. The nominal truss weight is assumed to be in between

0.10…0.15 KN/m2. The factor of safety for the truss weight is n = 1.35.

Load Combinations:

a) Ultimate Limit States (U.L.S.) : ⎯   q c = ∑ ni × Pi + ∑ ni × Ci + ng × ∑ ni × Vi [KN/m2]

 b) Serviceability Limit States (S.L.S.) : ⎯   q n= ∑ Pi + ∑ Ci + ng × ∑ Vi [KN/m

2]

Determination of the panel point loads:

a) U.L.S.: Qc= ⎯   q 

c × Aaff = ⎯   q c× d × t [KN]

 b) S.L.S.: Qn = ⎯   q n × Aaff = ⎯   q n× d × t [KN]

where Aaff  is the aferent area, detailed in the figure below

Page 15: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 15/37

Page 16: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 16/37

 

3.2. Determination of the member forces

For instance using the method of sections:

∑ M3 = 0 ⇒  B24 = '33

3

l

 M 

 ;

Mi = 0 

∑ M4 = 0 ⇒  T35 ='44

4

l

 M  ;

Yi = 0  ⇒  R - Qc /2- Q

c- Q

c- T35 × sinα - D34 × sinγ = 0

D34 =

γ 

α 

sin

sin2

35 ×−−−− T QQQ

 R ccc

 

T01 = T13 ='22

2

l

 M  ;

-Qc

+ T01 × sinα  - T13 × sinα + M12 = 0

M12 = Qc

3.3. Truss diagram (with force values resulted from computations)

The sign “?” will be replaced by each student with the force values resulted from calculation.

4.  DESIGN OF THE TRUSS MEMBERS

4.1. Choice of the cross-section shape

An adequate cross-section (concerning fabrication) for the truss elements (chords and

web members) is built up of two angles back to back. The two angles are connected to each

other by means of local filler plates spaced as follows:

Page 17: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 17/37

 - for compression members :

  l1 ≤ 15 r 1; 

  no less than two filler plates along the members between two joints.

- for tension members :

  l1 ≤ 80 r 1; 

  no less than one filler plate along the members between two joints.

In the equations above, r 1 is the radius of gyration for one angle with respect to its 1-1

axis parallel to y-y axis contained in the y-y plane which passes between the two angles.

4.2. Choice of the material quality

The steel grade used for the rolled sections is S235.

5. DESIGN OF TENSION MEMBERS

- bottom chord;

- some diagonal members.

5.1. Cross-section sizing

Areq  = y

 M 

 f 

 N  0γ   ⇒  from the tables with rolled angles, select angle:

L…x…x…

to fulfill Aact = 2 A1L ≥  Areq

- extract also from tables the values for: e; r x = ix; r y = iy; 

r 1 = i1 

Page 18: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 18/37

5.2. Check for resistance0/  M  yact 

 Ed 

 f  A

 N 

γ ⋅  ≤ 1,00

5.3. Check for slenderness λmax = max (λx , λy ) ≤  λallowable = 400

λx = x

 x

l  ;  λy =

 y

 y

- bottom chord :

lx = li = distance between two joints

ly = L1 = distance between two latteral braced joints (between the diagonal links).

- diagonal members in tension:

lx = 0.80 li

ly = li

li = distance between the two joints of the member (length of the bar).

6. DESIGN OF COMPRESSION MEMBERS- top chord;

- some diagonal members and the vertical members.

6.1. Cross-section sizing

Page 19: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 19/37

Areq  =1

4,1

 M  y

 Ed 

 f 

 N 

γ 

×  ⇒  from the tables with rolled angles, select angle: L…x…x…

to fulfill Aact = 2 A1L ≈  Areq  (γM1 = 1,00)

- extract also from tables the values for: e ; r x = ix; r y = iy; r 1 = i1 

6.2. Check for buckling 1/  M  yact 

 Ed 

 f  A N 

γ  χ    ××  ≤  1,00

 χ = min  y x   χ  χ  , 

)( y x χ  =2

)(2

1

 y xλ −Φ+Φ 

( )[ ]2

)()( 2,012

1 y x y x   λ λ α    +−⋅+⋅=Φ  

 xλ  =ε ⋅

⋅9,93

1

 x

bx

l  ;  yλ  =

ε ⋅⋅

9,93

1

 y

by

l ;

 y f 

235=ε   

- for the top chord:

l bx = li = distance between two joints

l by = L = distance between two lateral braced joints = distance between two purlins 

- all other members in compression:

lx = 0.80 li

ly = li

li = distance between the two joints of the member (length of the bar).

The factor α is equal to 0,49 (curve c)

7. DESIGN OF FILLET WELDS (for web members only)

⎯    N = min ( 1.30 NEd , NRd )

 NEd →  as it results from computation of the

forces in the truss members ;

 NRd = Aact f y/γM0  (members in tension); NRd = χmin Aact f y/γM1  (members in

compression).

-propose weld size: a1 ≤ 0.70 × tg 

⇒  a1 

a1 ≤ 0.85 × tL 

Page 20: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 20/37

  a2 ≤ 0.70 × tg

⇒  a2

a2 ≤ 0.70 × tL 

-calculate weld length:

l1 =1

,1

22

a f a

 N b

eb

d uw

×+××

×− 

rounding up 5 to 5.

l2 =2

,1

22

a f a

 N b

e

d uw

×+××

× 

where f uw,d  =

23  M w

u f 

γ  β    ⋅⋅ 

- verify if : l1 ≥ 40 mm l2 ≥ 40 mm

l1 ≥ 15 a1 l2 ≥ 15 a2

l1 ≥ b l2 ≥ b 

l1 ≤ 60 a1 l2 ≤  60 a2

Page 21: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 21/37

TRANSVERSE FRAME ANALISYS

1.  STRUCTURAL LAYOUT 

-  See the transverse section (cross-section of the building).

2.  STRUCTURAL CONFIGURATION AND LOADING

-  Single storey sway frame

Page 22: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 22/37

Page 23: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 23/37

•  dea

•   per 

•  sno

 

0.1=α 

ga  is t

 

2.r  β    =

( β r  is th

r T   is th

cT   is th

 

q = 3 fo

(the Du

 r ε  = 1.0

structur 

 

LOAD

a) ∑ 1.3

 b) ∑ Pi

loads

anent load 

 (e

γ  x pz)

0  is the Im

e ground a

5 r if T   <

e Site Stru

e fundame

e Seismic

r transvers

ctility Fact

0 is the Eq 

e to the firs

COMBIN

5 × Pi + 1.5

  Snoe ×γ 

s

;e

γ 

cr 

ortance fa

celeration

c ; 2.r 

 β    =

ture Reson

tal elastic

one Dump

 frame; q

r);

ivalency F

t degree.

TIONS 

× Vi + 0.7 

Seism+  

(n

 0.40

q

r  ××

 β α 

tor for nor 

according t

(5r c

T T − −

nce Factor 

eriod of vi

ng Period (

 4 for long

actor betw

 ∑ 1.5 × 

ominal loa

g  (global

al buildin

o seismic r 

) 1r 

if T ≥

);

ration of t

Dumping

tudinal bra

en effectiv

 j (

eγ  =0.4

s)

seismic fa

gs;

sk zones (

cT   

e building

eriod Map

ced bay.

e structure

= varable

.

tor)

n the map)

 

;

nd statical

 loads)

;

ly indeterm

 

inate

Page 24: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 24/37

DETERMINATION OF THE LOADS AND MOMENT DISTRIBUTION

1.  Permanent (P) :

( ) .aff 

cc

P  APQ   ×=   [KN]

( ) .aff 

nn

P

 APQ   ×=   [KN]

 Aaff  = t × L / 2

2.  Cvasipermanent (C) :

( ) .aff 

cc

C   AC Q   ×=   [KN]

( ) .aff nn

C   AC Q   ×=   [KN]

3.  Snow (Z) :

.aff  zF 

c  A p Z    ××= γ    [KN]

.aff  ze

n A p Z    ××= γ    [KN] 

4.  Wind (W) :

( )whw

g zc p   ×××= 80.060.1 [KN/ 2m ] pressure

( ) whw g zc p   ×××= 40.060.1,   [KN/ 2m ] suction

F w

c

www  p pt  p p   γ ×=→×=   [KN/m]; F 

c

averagew W W t  pW    γ ×=→××= 35.1,   [KN]

F w

c

www p pt  p p   γ ×=→×= ,',,   [KN/m]; F 

c

averagew W W t  pW    γ ×=→××= ''35.1'' ,   [KN]

Page 25: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 25/37

 

This frame is indeterminate to the

first degree; it is a sidesway frame

(joint translation is possible).

Calculation of bending moment distribution

h ph pW W  R c

w

c

w

cc ××+××++= '8

3

8

3'

 

8'

2

1

h p M  c

w ×=  

8''

2

2

h p M  c

w ×=   ''11  M  M  M    +=   and ''22  M  M  M    +=  

h R

 M    ×=2

'  

5.  Seismic Force (S) :

hS 

 M    ×=2

  [KNm]

Page 26: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 26/37

 

Results of calculation:

After finishing all the calculations, the results will be centralized in the following table for

 both sections 1 –1 and 2 – 2 of the column.

Column

sketchSection Efforts

Permanent Loads

(Pi)

Quasipermanent

Loads (Ci) 

Snow

(Z)

Factored Nominal Factored Nominal Factored Nominal

0 1 2 3 4 5 6 7 8

1 1

2 2

1 - 1

(kNm)

(kN)

(kN)

2 - 2

(kNm)

(kN)

(kN)

(The nominal load for snow is considered for the earthquake combination – 0.30 x pz)

Wind

(W) 

Eartquake

(S) 

Relevant Load Combinations

∑ ni × Pi + ∑ ni × Ci + ng × ∑ ni × Vi 

3 5 7 + 9

∑ Pi + ∑ Ci + γ e x Z + S

4 6 8 10

Factored GcS  r  ×=  Mmax 

 Ncor 

 Nmax 

Mcor 

Mmax 

 Nmin 

Mmax 

 Ncor 

 Nmax 

Mcor

Mmax  

 Nmin 

9 10 11 12 13 14 15 16

Page 27: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 27/37

COLUMN DESIGN

1.  CONSTRUCTION DETAILS

(Fig. 32)

2.  CALCULUS SCHEME

The bracing (of the longitudinal frame) prevents sway in the longitudinal plane of the

hall, or members connecting stanchions to a braced bay;

Effective lengths of stanchion (buckling length) – theoretical is the distance between

two points of contraflexure:

-  transverse plane of the hall = plane of the diagram;  Ll fx  ×= 2  ; if we consider that

in the plane of diagram the stanchions act as cantilevers tied together by the roof

trusses (but in this plane the tops of the stanchions are not otherwise held in position or

restrained in direction), than for two or more spans :  Ll fx  ×= 50.1 .

-  longitudinal plane of the hall = perpendicular to the plane of the diagram;2

 Ll fy  =  ;

3.  LOADING

 N = …

M = …

T = …

For (maximum) values of axial compression , bending moment and shear force , see frame

analysis.

4.  CROSS-SECTION SIZING

-  cross-section shape: double T bisymmetric section;

-  material quality: steel grade OL 37;

-  sizing: by successive tests (propose an initial section and verify it; the proper section

satisfies, in all economical manners, all formulae of verification); for instance:

Page 28: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 28/37

Page 29: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 29/37

  5.2. Overall buckling check 

 R

 N 

 N W 

 M c

 A

 N 

 Ex

 xg

 x x ≤

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −××

×+

×1

minϕ 

ϕ  

 y x   ϕ ϕ ϕ  ,minmin  =   is the minimum buckling factor;

→= x

 fx

 xr 

lλ  from buckling curve A 

 xϕ →  

→= y

 fy

 yr 

lλ   from buckling curve B   yϕ →  

 y xr r  ,  are the radius of gyration with respect to x-x axis and y-y axis respectively.

→= yf 

 fy

 yf r 

lλ   from buckling curve B   yϕ →  

 yf r   is the radius of gyration for maximum compressed flange with respect to y-y axis;

 xc =0.85 is the equivalent uniform moment factor;

 A E 

 N 

 x

 Ex   ××

=2

2

λ 

π   is the elastic buckling Euler force.

5.3 Check for slenderness 

120,maxmax   =<= allowable y x  λ λ λ λ   

5.4.Check for local buckling 

- verify the width-to- thickness ratio (plate slenderness)

-  for maximum compressed flange:

- 15

'≤

 f 

 f 

b  (for OL 37)

-  for web:

[ ]22

3

42

20100

 β ψ ψ σ    ×++−×

××≤

h

w

w  

Page 30: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 30/37

  * y I 

 M 

 A

 N 

 x

×−−=σ   

→−

=⇒σ 

σ σ ψ 

' table 35 STAS 3k →   ;

σ τ  β  307.0

k ××=  

*'  y

 I 

 M 

 A

 N 

 x

×+−=σ    ',σ σ   with their signs;

ww t h

×=τ   

5.5. Anchorage bolts check 

(Fig. 37)

Loading:.min,max , corr  N  M   

b

in

 R An

≤×=σ   210.6.6.180.6.5.

150.6.4.

=→→=→→

=→→

 Rgr  R Rgr  R

 Rgr  R

b

i

b

i

b

i

  [N/

2

mm ]

T is the tensile force in bolts (2 bolts);

⎟ ⎠

 ⎞⎜⎝ 

⎛  −×+=

×

××=

−−=

−×××

=

2

2

325.250.1

2

0

2

02

0

2

0

0

ll N  M  M 

 M 

 Rblr 

 N  Rbl

a

a

b

b

α 

α 

 

R  b is the strength (compression stress) of the concrete;

B100 B150 B2002/ mm N  Rb

  5 7 9

4

2

0d 

 An

×

 π 

  , is the net area of the bolt in the threaded zone;

d d    ×≈ 89.00  ;

d = the nominal diameter of the bolt;

n = the number of bolts in tension.

Page 31: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 31/37

Base Plate :

Loading:.max,max , corr  N  M   

lb Rlb

 M 

lb

 N bb ,

6

2  ⇒≤

×+

×=σ   

2

2

1

l M 

b ×= σ   

 β →→ tablel

l

1

2

 

2

2 l M  b ××=   σ  β   

37

max6OL

 R M t    ×≥   rounded off to 20, 25, 30.

Page 32: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 32/37

 

A.  HO

 

1. 

RIZONT

OADIN

a)  Wi

ana

 w

 p

  c

w p

 

Th

 

R

L TRANS

:

d pressure

ysis”):

 pe

  cc   ××=

w p×= 50,1

 factored l

 

OF B

VERSE B

on the tran

w

g  

ads: p

W 1

  pW 2

  p

W 3

ACIN

ACINGS

verse clad 

 

 p

af 

c

w   A p ,1×

 p

aff 

c

w  A p ,2×

 p

aff 

c

w   A p ,3×

  DESI

ing (accor 

[KN

[KN

  [K 

  [K 

  [KN

GN

ing to “Tr 

2m ]

2m ]

]

]

]

nsverse fra

 

me

Page 33: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 33/37

 b)  Wind friction on the roof:

wewe f  f w gcgcc p   ××=××= 01,0,  [KN/ 2

m ]

01.0= f c   wind friction factor;

 f w

c

 f w  p p ,, 50,1   ×=   [KN/ 2m ]

The factored loads:  f aff 

c f w

 f   A pW  ,1,1   ×=   [KN]

 f 

aff 

c

 f w

 f  A pW  ,2,2   ×=   [KN]

 f 

aff 

c

 f w

 f  A pW  ,3,3   ×=   [KN]

c)  Stabilizing force corresponding to restraint the compression top chord of the

afferent trusses to the bracing;

-  total force “S” for one truss: max%2 T S    ×≈ ;

-  Tmax is the maximum compression force in the top chord of the truss (factored load);

-  “n” is the number of joints to be laterally restrained (we consider it equal to thenumber of central loaded joints – in a simplifying assumption: n = 3);

-  for a maximum of three trusses (considering the load is acting in the same sense):

3

3

0

32

1

S S S 

×==

=  [KN]

Bracing loading for diagonal members design (check in wind pressure):

Page 34: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 34/37

 f  p W W  H  111   +=   [KN]

2222S W W  H   f  p ++=   [KN]

3333 S W W  H   f  p ++=   [KN]

-  where:  p p pW W W  321

,,   are from wind pressure ( 80.0= pc ).

Bracing loading for bracing chord design (check in tension for wind pressure and for

compresion in wind suction ):

 f s W W  H  111   +=   [KN]

2222 S W W  H   f s ++=   [KN]

3333 S W W  H  f s ++=   [KN]

-  where: sssW W W  321 ,,   are from wind suction ( 40.0= pc ).

 paff cws  A pW  ,11   ×=   [KN] p

aff 

c

w

s A pW  ,22   ×=   [KN]

 p

aff 

c

w

s A pW  ,33   ×=   [KN]

suction

aff 

 pressure

aff   A A ,1,1   =  

suction

aff 

 pressure

aff   A A ,2,2   =  

suction

aff 

 pressure

aff   A A ,3,3   =  

2.  DETERMINATION OF THE STRESSES IN THE MEMBERS OF THETRANSVERSE BRACING

-  Stresses in the bracing chord : from bracing truss calculation

.....max  = N    (tension/compression)

-  Stress in the diagonal members: from bracing truss calculation

....= D   (compression)

3.  DESIGN OF COMPRESSION MEMBERS OF THE BRACING (BRACING

CHORD AND DIAGONALS)

-  Choice of the cross-section shape : square hollow section  y x r r   = ;

-  Material quality : Steel grade S235 ;

-  Cross-section sizing: propose a section and verify it; repeat this operation until the

verifications for buckling and slenderness are satisfied.

Page 35: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 35/37

Example: Bracing chord:

•  Sizing for resistance in tension0/  M  yact 

 Ed 

 f  A

 N 

γ ⋅  ≤ 1,00

•  Check for buckling in compression 1/

 M  yact 

 Ed 

 f  A

 N 

γ  χ    ××  ≤  1,00

 χ = min y x   χ  χ  ,

 

)( y x χ  =2

)(2

1

 y xλ −Φ+Φ 

( )[ ]

2

)()( 2,012

1 y x y x   λ λ α    +−⋅+⋅=Φ  

 xλ  =ε ⋅

⋅9,93

1

 x

bx

l  ;  yλ  =

ε ⋅⋅

9,93

1

 y

by

l ;

 y f 

235=ε   

The factor α is equal to 0,21 (curve a)

 x

 x

bx

 xr 

l χ λ    →=  

 y

 y

by

 yr l  χ λ    →=  

== bybxll distance between two joints (between two purlins)

Check for slenderness: .250,maxmax   =≤= a y x   λ λ λ λ   

Page 36: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 36/37

 Example: Diagonal members:

Check for buckling: same as for the bracing chord

 x

 x

 xr 

l χ λ    →

×=

50.0 

 y

 y

 yr 

l χ λ    →

×=

70.0 

Check for slenderness: .250,maxmax   =≤= a y x  λ λ λ λ   

4. DESIGN OF FILLET WELDS (for all members)

⎯    N = min ( 1.30 NEd , NRd )

 NEd →  as it results from computation of the

forces in the truss members ;

 NRd = Aact f y/γM0  (members in tension);

 NRd = χmin Aact f y/γM1  (members in

compression).

-propose weld size: a1 ≤ 0.70 × tg 

⇒  a1 

a1 ≤ 0.70 × t

a2 ≤ 0.70 × tg

⇒  a2

a2 ≤ 0.70 × t

Page 37: Indrumator Metal - EG

8/13/2019 Indrumator Metal - EG

http://slidepdf.com/reader/full/indrumator-metal-eg 37/37

-calculate weld length:

l1 =1

,1

22

50,0a

 f a

 N 

d uw

×+×××

 

rounding up 5 to 5.

l2 =2

,1

2

2

50,0a

 f a

 N 

d uw

×+

××

× 

where f uw,d  =25,133 2   ⋅⋅

=⋅⋅ w

u

 M w

u f  f 

 β γ  β  

- verify if : l1 ≥ 40 mm l2 ≥ 40 mm

l1 ≥ 15 a1 l2 ≥ 15 a2

l1 ≥ b l2 ≥ b 

l1 ≤ 60 a1 l2 ≤  60 a2