improvement of lipophilic-amine-based thermomorphic .... technical chemistry b prof. dr. david w....

24
Lab. Technical Chemistry B Prof. Dr. David W. Agar Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang , David W. Agar Trondheim 15.06.2011 Shell’s research project: Development of novel amine absorbents for CO 2 capture TCCS-6, Session A2 Topic: Post-combustion Solvents

Upload: doanxuyen

Post on 17-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Lab. Technical Chemistry BProf. Dr. David W. Agar

Improvement of lipophilic-amine-based thermomorphic

biphasic solvent for energy-efficient carbon capture

Jiafei Zhang, David W. Agar

Trondheim

15.06.2011

Shell’s research project:Development of novel amineabsorbents for CO2 capture

TCCS-6, Session A2 Topic: Post-combustion Solvents

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 11

Outline

Motivation

Concepts

Solvent performance

Challenges and amelioration

Summary

1

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 22

Outline

Motivation

Concepts

Solvent performance

Challenges and amelioration

Summary

Global warmingShortcomings of conventional solventsAdvantages of novel biphasic solvents

2

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Motivation

Technical shortcomings of conventional solvents:

e.g. monoethanolamine (MEA)High energy consumptionHigh quality of heat: 130-150 °CSignificant amine loss by degradation

Major superiorities of novel biphasic solvents:

Regeneration temperature 80°CUse of waste heat for desorptionGood chemical stabilityHigh net CO2 loading capacity

Challenges? New generation absorbents

Anodic

Fe Fe2+ + 2e-

Catodic

2H+ + 2e- 2H0

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Amine corrosion

Fe + 2RNH3+ Fe2+ + 2H0 + 2RNH2

Anodic

Fe Fe2+ + 2e-

Catodic

2H+ + 2e- 2H0

Anodic

Fe Fe2+ + 2e-

Anodic

Fe Fe2+ + 2e-

Catodic

2H+ + 2e- 2H0

Catodic

2H+ + 2e- 2H0

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Wet CO2 corrosion

CO2 + H2O HCO3- + H+

Amine corrosion

Fe + 2RNH3+ Fe2+ + 2H0 + 2RNH2

Amine corrosion

Fe + 2RNH3+ Fe2+ + 2H0 + 2RNH2

3

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 44

Outline

Motivation

Concepts

Solvent performance

Challenges and amelioration

Summary

Lipophilic aminePhase changeTBS absorbentOther CO2 capture process with LLPS

4

(a) Homogeneous absorption (b) Heterogeneous desorption

CO2

Heating

Aqueous phase

Organic phase

CO2

Cooling

R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-

(a) Homogeneous absorption (b) Heterogeneous desorption

CO2CO2

Heating

Aqueous phase

Organic phase

Aqueous phase

Organic phase

CO2CO2

CoolingCooling

R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-

Liquid-liquid phase separation (LLPS)

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Concepts I

Novel amines

Alkanolamine vs lipophilic amine

Examples of lipophilic amineHexylamine (I) HADipropylamine (II) DPAN,N-Dimethylcyclohexylamine (III) DMCA

N

R

(H)R R(H)N

R

(H)R R(H)

OH

N

NH

5

NH2

Hydrophobic Hydrophilic

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Concepts II

Phase change

Thermomorphic phase transitionLow temperature single phaseHigh temperature dual phases

Lower critical solution temperature (LCST)

Expected

6

0,0 0,2 0,4 0,6 0,8 1,0-20

0

20

40

60

80 Hexylamine (I) A1 DPA (II) DMCA (III) Frozen

Tem

pera

ture

[°C

]

Mass fraction of lipophilic amine in aqueous solution [g/g]

Two phases

Single phase

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Concepts III

Novel absorbent: thermomorphic biphasic solvent (TBS) Absorption: single phase Regeneration: two phases

Lean solvent cooling to 30-40°C: homogeneousRich solvent heating to 70-80°C: biphasic

(a) Homogeneous absorption (b) Heterogeneous desorption

CO2

Heating

Aqueous phase

Organic phase

CO2

Cooling

R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-

(a) Homogeneous absorption (b) Heterogeneous desorption

CO2CO2

Heating

Aqueous phase

Organic phase

Aqueous phase

Organic phase

CO2CO2

CoolingCooling

R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3-R1R2R3N + CO2 + H2O R1R2R3NH+ + HCO3

-

7

Process Flow Sheet

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Concepts IV

‘Self-Concentration’ CO2Capture Process

Univ. of Kentucky

DMXTM process with demixing solvents

IFP Energies Nouvelles

8

Other CO2 capture process with LLPS

Ref.: Hu, 2010 Annual NETL CO2 Capture Technol. R&D Meeting. Lemaire, et al., 12th Intl. Network for CO2 Capture, 2009

Heat

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 99

Outline

Motivation

Concepts

Solvent performance

Challenges and amelioration

Summary

Amine selectionAbsorptionDesorptionChemical stability

9

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 10

Solvent performance IScreening tests – searching new amines

> 50 lipophilic amines (alkylamines)< 10 comparable to MEA or MDEACriteria

High loading capacity: > 0.7 mol/mol (20% CO2)Fast absorption rate: comparable to MEAGood regenerability: better than MDEALow degradability: comparable to AMP & MDEAModerate heat of reaction: lower than MEA

A: partially soluble in water, rapid absorption rateB: less miscible with water, high regenerability

Recommended absorbent: Solvent blend A+BA: as absorption activator e.g. DPA, A1

B: as regeneration promoter e.g. DMCA, EPDBlending A+B exploits the strengths of both components

N

HN

N

DPA

DMCA

EPD

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 11

Solvent performance II

Absorption

ReactivityRapid reaction rateComparable to MEA (when α<0.5)

Loading capacity (net)Alkanolamine 40-120 °C

w/ steam strippingTBS absorbent 30-80 °C

w/o steam strippingCO2 absorbed in TBS: 3.4 mol/kgHigher than MEA and AMP

mol

-CO

2/kg -

sol

0 20 40 60 80 100 120 140 1600,0

0,2

0,4

0,6

0,8

1,0

Load

ing

of C

O2 [m

ol C

O2 /

mol

am

ine]

Time [min]

A1

MEA

MDEA+MEA

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 12

Solvent performance III

Desorption

Liquid-liquid phase separation

Low regeneration temperatureca. 80°CLow value heat

High regenerability> 80% at 80°C for most TBS> 98% at 80°C for optimised TBS

Estimated energy consumption MEA: 4.0 GJ/t-CO2

TBS: 2.5 GJ/t-CO2

Before regeneration

During regeneration

After regeneration

Ref.: Geuzebroek, et al., TCCS-5, 2009

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 13

Solvent performance IV

Cyclic loading capacity

Higher CO2 loadingLower residual loading

Better than benchmarks

Chemical stability

Low temperature (80°C) for desorption less thermal degradationLow oxidability less oxidative degradation

B1 A1 MEA MDEA0

20

40

60

80

100

Perc

ent [

%]

Solvent

Basicity reduction by oxidative degradation Reactivity reduction by CO2 induced degradation Reactivity reduction by oxidative degradation Reactivity reduction by catalyzed oxidative degradation

B1 A1 MEA

DMX-1, 40°C A1+DsBA, 30°C A1+DsBA, 80°C MEA 30wt%, 40°C MEA 30wt%, 120°C

0 1 2 3 4 540

50

60708090

100

200

300

400

500

Loading (mol-CO2/kg-sol.)

PC

O2 (

mba

r)

Ref.: Raynal et al., 2010 (DMX-1 )

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 1414

Outline

Motivation

Concepts

Solvent performance

Challenges and amelioration

Summary

Vaporisation lossPhase transitionRegeneration techniquesProcess development

14

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Challenges and amelioration I

Amine vaporisation lossHigh volatilitySignificant volatile loss

Countermeasures

T for feed (top) at 30 °CReduced vaporisation

Hydrophobic solvent scrubbing

e.g. DiphylRecovery >80%

Water wash when using A1 as primary solvent

Reduced amine lossComparable to MEA or AMP

15

Amine Temp. Loss

°C %/day

A130 <0.540 1.8

DMCA30 4.840 12

DMCA+A1(3:1)

30 4.140 1050 14

MEA 40 1.2AMP 40 1.6

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Challenges and amelioration II

Phase transition

Lower critical solution temperature (LCST): most lipo. Amines < 20°CProblem:biphasic solvent in absorber

Countermeasures

ConcentratingNegative on vaporisation lossLimited at 4M

Using more A1Negative on regenerationLCST ≈ 20°C

Partial deep regenerationResidual loading 0.1Increasing LCST to 30°C

Adding solubiliser<10wt%Increasing LCST to 40°C

16

3M(2:1) 3M(1:1) 4M(2:1) 4M(1:1)

0

10

20

30

40

50

emulsion

Tem

pera

ture

(°C

)

Concentration (mol/L)

PTT of DMCA+A1 with 9wt% AMP CST of DMCA+A1 with 9wt% AMP PTT of DMCA+A1 CST of DMCA+A1

Two phases

Single phase

emulsion

PTT: phase transition temperatureCST: critical solution temperature

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Challenges and amelioration III

Challenges

Low temperature 80°CWithout steam

How to intensify theregeneration?

Regeneration intensification

+ Regeneration promoter

AgitationNucleationNucleation + Agitation

17

Regeneration techniques

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Challenges and amelioration III

Agitation

Nucleation

18

Regeneration techniques

0 10 20 30 400,0

0,4

0,8

1,2

1,6

2,0

Des

orbe

r CO

2 (mol

/L)

Time (min)

750 rpm 500 rpm 250 rpm N

2 stripping

Solution: A1+B1, 2+1M at 75 °C

0 10 20 30 400,0

0,4

0,8

1,2

1,6

2,0

Des

orbe

r CO

2 (mol

/L)

Time (min)

1/40 wt. 1/60 wt. 1/80 wt. N2 stripping

Solution: A1+B1, 2+1M at 75 °C

none 100 rpm 250 rpm 500 rpm 750 rpm 1000 rpm Stripping0

50

100

150

200

250

CO

2 rele

ase

rate

[g/L

/hr]

Method

DMCA+A1 DMCA+DPA

Agitati

on

Stirring

Porous particles for CO2 bubble

formation

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Challenges and amelioration IV

Process development

19

Regeneration w

ithoutsteam stripping

Flow sheeting diagram

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 20

Challenges and amelioration V

Bench-scale experimentation in packed absorption columns

20

Absorber

Bottom of absorber

Regenerator

At TU DortmundAt Shell G.S.

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar 212121

Summary

Novel absorbent: lipophilic amine TBS

Rapid absorption rate (due to activator A)High regenerability (due to regeneration promoter B)Excellent net CO2 loading capacityLow energy requirement High chemical stability

Novel concept: phase transition

LLPS enhanced regenerationRegeneration at 80°C use of waste heat reduces CO2capture process costs

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

Acknowlegement

Improvement of lipophilic-amine-based thermomorphic biphasic solvent

for energy-efficient carbon capture

CO2 Capture Research Group:

Prof. Dr. David W. AgarM.Sc. Jiafei Zhang TU Dortmund University

Dr. Frank GeuzebroekIr. Mark Senden Dr. Xiaohui Zhang Shell Global Solutions Int. B.V.

Technical Staff:Michael SchlüterJulian GiesJerzy Konikowski

Students:Robert Misch, Jing ChenYu Qiao, Wanzhong Wang Onyekachi Nwani

Trondheim

15.06.2011

Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture Jiafei Zhang

Lab. Technical Chemistry BProf. Dr. David W. Agar

End

Jiafei ZHANG

Emil-Figge-Str. 66 (TCB)D-44227 Dortmund, GermanyTel.: (+49) 231 - 755 2582 E-Mail: [email protected]/tcb

ThankThank youyouforfor youryour attentionattention

Campus of TU DortmundTCB