impact’analysis’of’leo’hyperspectral’sensor’ifov’size’on...

1
Impact Analysis of LEO Hyperspectral Sensor IFOV size on the next genera=on NWP model forecast performance Agnes Lim 1 , Zhenglong Li 1 , James Jung 1 , Allen Huang 1 , Jack Woollen 2 , Greg Quinn 1 , FW Nagle 1 , Jason Otkin 1 and Mitch Goldberg 3 1. CooperaFve InsFtute for Meteorological Satellite Studies 2. IMSG/NOAA/NCEP/EMC 3. NOAA/JPSS Program Science Office Joint Polar Satellite System NaFonal Oceanic and Atmospheric AdministraFon Mo=va=on To assess the forecast impact obtained from the assimila=on of next genera=on CrIS observa=ons with increased spa=al resolu=on in a high resolu=on global model. Email : [email protected] Figure 3 (a) Orbits of observa=on ingested into GSI in a 6hour window generated by the orbit simulator, (b) comparison of simulated satellite orbit in blue and real satellite orbit coverage in cyan valid for the same start and end =me, (c) comparison of simulated FOV loca=ons in red and real FOV loca=ons in blue. 1. Observing Simula=on System Experiment (OSSE) Aim to assess the impact of a hypothe=cal data type on a forecast system. Methodology (Figure 1) Nature run. Simulate exis=ng observa=ons. Control run assimila=ng simulated exis=ng observa=ons. Calibra=on. Simulate candidate observa=ons. Perturba=on run with the addi=on of simulated candidate observa=ons. Comparison of forecast skill between the control and perturba=on run. 2. Nature Run (NR) A long, uninterrupted forecast generated by state of the art numerical weather predic=on (NWP) model at the highest resolu=on possible. NASA GEOS5 NR Horizontal resolu=on: 7km. Number of ver=cal levels: 72 extending up to 0.01hPa. Period covers May 2005 to May 2007 (30 minutes writeout). 3. Simula=on of conven=onal observa=ons for exis=ng observing systems Noise free rawinsondes, surface, profiler, scaZerometer and GPSRO data simulated based on the loca=on and =me considered stored in BUFR files used by opera=onal GFS for the same date. Nearest =me step, bilinear interpola=on in the horizontal and loglinear interpola=on in the ver=cal. Surface pressure and sta=on eleva=on follows NR topography. GPSRO uses 2D bending angle forward model from EUMETSAT Radio Occulta=on Processing Package. (Figure 2 shows comparison between simula=on and observed). Errors added to simulated observa=ons Rawinsonde : ver=cally correlated errors added to T, q, u and v component of winds. Other datasets – Noncorrelated Gaussian random errors with standard devia=on based on GSI observa=onal error table. 5. Assimila=on System, NWP model and its configura=on GFS (mode) revision r44713 and GSI revision r42096 Global @ T1534 (~13km) 80 Ensemble members 6. Experimental Design Data denial experiments, model and bias correc=on spinup: 1 April to 14 May 2014 Calibra=on: 15 – 31 May 2014. Data type denied for calibra=on comparison are rawinsondes (Ps, T, q and uv), METOPB AMSUA and AIRS. Acknowledgements: We wish to thank: NASA GMAO for providing the Nature Run. Nigel Atkinson (UK Met Office)and Psacal BRUNEL (Meteo France) for providing informaFon/test code for the modeling of unsteady nonzero yaw angles of METOPA/B EUMETSAT represented by DML for providing the license/technical support to use the Radio OccultaFon Processing Package. Sean Heaky at ECMWF for providing great insight to the GOSRO 2D operator and assimilaFon aspects of it. Sean Casey, Hongli Wang and Michiko Masutan for sharing their experience and providing various ancillary files needed by GFS. Derrick Herndon for post processing the ATOVS data for orbit simulaFon comparison. NOAA/NESDIS. The experiments were run on the Supercomputer for Satellite SimulaFons and data assimilaFon Studies (S4) located at the University of Wisconsin– Madison 4. Simula=on of satellite observa=ons for exis=ng observing systems Flying satellites in the NR. Simulated radiances using CRTM 2.1.3 for the following sensors: (a) AMSUA on NOAA15, NOAA18, NOAA19, METOPA, METOPB and AQUA (b) MHS on NOAA18, NOAA19, METOPA and METOPB (c) HIRS4 on METOPA (d) AIRS on AQUA (e) IASI on METOPA and METOPB (f) CrIS on SNPP (Figure 4) (g) ATMS on SNPP Orbit simulator Generate sensor geometry for the above list of sensors to be used for radiance simula=on at any given set of start and end =me. See Figure 3 for comparison between real and simulated orbits. Errors added to simulated satellite observa=ons – sum of Gaussian random error with standard devia=on based on sensor NEDT and forward model error. No spa=al and spectral correla=ons. 7. Progress from July 2014 to March 2015 Figure 1 Components of OSSE for Next Genera=on CrIS Figure 4 Simulated SNPP CriS BT from CRTM using inputs from NR and orbit simulator for water vapor channel (leg) and surface channel (right). 20 25 50 72 95 100 100 100 100 99 80 75 50 28 5 0 10 20 30 40 50 60 70 80 90 100 Forecast Impact Assessement for next genera=on CrIS Calibra=on Observa=onal noise simulator Noise free Satellite Radiance Simulator Satellite radiance BUFR encoder GPSRO simulator Satellite Oribit Simulator Noise free conven=onal data simulator Real world OSE High resolu=on Nature Run Completed Uncompleted (a) (c) (b) Figure 2 Comparison of simulated and observed bending angle for CHAMP at he start of the NR. OSSE Impact assessment NWP Model 6 High resolution Nature Run Current Systems Rawinsondes, Aircraft, Surface, Profiler, Scatt Winds, GPSRO Microwave radiances (AMSU-A MHS and ATMS) Infrared Radiances (HIRS-4, AIRS, IASI and CrIS @ 14km) DA System GFS @T1534 CrIS @ Half the current resolution Generating Simulated Observations Future System Calibration

Upload: others

Post on 26-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Impact’Analysis’of’LEO’Hyperspectral’Sensor’IFOV’size’on ...satelliteconferences.noaa.gov/2015/doc... · orbit simulator, (b) comparison of’ simulated satellite’

Impact  Analysis  of  LEO  Hyperspectral  Sensor  IFOV  size  on  the  next  genera=on  NWP  model  forecast  performance  

Agnes  Lim1,  Zhenglong  Li1,  James  Jung1,  Allen  Huang1,  Jack  Woollen2,  Greg  Quinn1,  FW  Nagle1,  Jason  Otkin1  and  Mitch  Goldberg3  1.  CooperaFve  InsFtute  for  Meteorological  Satellite  Studies  

2.   IMSG/NOAA/NCEP/EMC    3.  NOAA/JPSS  Program  Science  Office  Joint  Polar  Satellite  System  NaFonal  Oceanic  and  Atmospheric  AdministraFon    

Mo=va=on    To  assess  the  forecast  impact  obtained  from  the  assimila=on  of  next  genera=on  CrIS  observa=ons  with  increased  spa=al  resolu=on  in  a  high  resolu=on  global  model.  

Email  :  [email protected]  

Figure   3   (a)   Orbits   of   observa=on   ingested  into   GSI   in   a   6-­‐hour   window   generated   by   the  orbit   simulator,   (b)   comparison   of   simulated  satellite   orbit   in   blue   and   real   satellite   orbit  coverage   in   cyan   valid   for   the   same   start   and  end   =me,   (c)   comparison   of   simulated   FOV  loca=ons  in  red  and  real  FOV  loca=ons  in  blue.  

1.    Observing  Simula=on  System  Experiment  (OSSE)  §  Aim  to  assess  the  impact  of  a  hypothe=cal  data  type  on  a  forecast  system.  §  Methodology  (Figure  1)  

§  Nature  run.  §  Simulate  exis=ng  observa=ons.  §  Control  run  assimila=ng  simulated  exis=ng  observa=ons.  §  Calibra=on.  §  Simulate  candidate  observa=ons.  §  Perturba=on  run  with  the  addi=on  of  simulated  candidate  observa=ons.    §  Comparison  of  forecast  skill  between  the  control  and  perturba=on  run.  

2.    Nature  Run  (NR)  §  A   long,   uninterrupted   forecast   generated   by   state   of   the   art   numerical  weather   predic=on  

(NWP)  model  at  the  highest  resolu=on  possible.    §  NASA  GEOS-­‐5  NR  

§   Horizontal  resolu=on:  7km.  §   Number  of  ver=cal  levels:  72  extending  up  to  0.01hPa.  §   Period  covers  May  2005  to  May  2007  (30  minutes  write-­‐out).  

3.    Simula=on  of  conven=onal  observa=ons  for  exis=ng  observing  systems    •  Noise  free  rawinsondes,  surface,  profiler,  scaZerometer  and  GPSRO  data  simulated  based  on  

the  loca=on  and  =me  considered  stored  in  BUFR  files  used  by  opera=onal  GFS  for  the  same  date.  

•  Nearest  =me  step,  bilinear  interpola=on  in  the  horizontal  and  log-­‐linear  interpola=on  in  the  ver=cal.  

•  Surface  pressure  and  sta=on  eleva=on  follows  NR  topography.  •  GPSRO  uses  2D  bending  angle  forward  model  from  EUMETSAT  Radio  Occulta=on  Processing  

Package.  (Figure  2  shows  comparison  between  simula=on  and  observed).  •  Errors  added  to  simulated  observa=ons  

•  Rawinsonde  :  ver=cally  correlated  errors  added  to  T,  q,  u  and  v  component  of  winds.  •  Other  datasets  –  Non-­‐correlated  Gaussian  random  errors  with  standard  devia=on  based  

on  GSI  observa=onal  error  table.  

5.    Assimila=on  System,  NWP  model  and  its  configura=on  •  GFS  (mode)  revision  r44713  and  GSI  revision  r42096  •  Global  @  T1534  (~13km)  •  80  Ensemble  members  

6.    Experimental  Design  •  Data  denial  experiments,  model  and  bias  correc=on  spin-­‐up:  1  April  to  14  May  2014  •  Calibra=on:  15  –  31  May  2014.  •  Data   type   denied   for   calibra=on   comparison   are   rawinsondes   (Ps,   T,   q   and   uv),   METOP-­‐B  

AMSU-­‐A  and  AIRS.  

Acknowledgements:  We  wish  to  thank:  •  NASA  GMAO  for  providing  the  Nature  Run.  •  Nigel   Atkinson   (UK   Met   Office)and   Psacal   BRUNEL  

(Meteo  France)   for  providing   informaFon/test   code  for  the  modeling  of  unsteady  non-­‐zero  yaw  angles  of  METOP-­‐A/B      

•  EUMETSAT   represented   by   DML   for   providing   the  license/technical   support   to   use   the   Radio  OccultaFon  Processing  Package.  

•  Sean  Heaky  at  ECMWF  for  providing  great  insight  to  the  GOSRO  2D  operator  and  assimilaFon  aspects  of  it.  

•  Sean  Casey,  Hongli  Wang  and  Michiko  Masutan   for  sharing   their   experience   and   providing   various  ancillary  files  needed  by  GFS.  

•  Derrick  Herndon  for  post  processing  the  ATOVS  data  for  orbit  simulaFon  comparison.  

•  NOAA/NESDIS.   The   experiments   were   run   on   the  Supercomputer   for   Satellite   SimulaFons   and   data  assimilaFon  Studies  (S4)  located  at  the  University  of  Wisconsin–  Madison  

4.    Simula=on  of  satellite  observa=ons  for  exis=ng  observing  systems  •  Flying  satellites  in  the  NR.  •  Simulated  radiances  using  CRTM  2.1.3  for  the  following  sensors:    

•  (a)        AMSU-­‐A  on  NOAA-­‐15,  NOAA-­‐18,  NOAA-­‐19,  METOP-­‐A,  METOP-­‐B  and  AQUA  •  (b)          MHS  on  NOAA-­‐18,  NOAA-­‐19,  METOP-­‐A  and  METOP-­‐B  •  (c)          HIRS-­‐4  on  METOP-­‐A  •  (d)          AIRS  on  AQUA  •  (e)          IASI  on  METOP-­‐A  and  METOP-­‐B  •  (f)          CrIS  on  S-­‐NPP  (Figure  4)  •  (g)        ATMS  on  S-­‐NPP  

•  Orbit   simulator   -­‐   Generate   sensor   geometry   for   the   above   list   of   sensors   to   be   used   for  radiance   simula=on   at   any   given   set   of   start   and   end   =me.   See   Figure   3   for   comparison  between  real  and  simulated  orbits.  

•  Errors   added   to   simulated   satellite   observa=ons   –   sum   of   Gaussian   random   error   with  standard  devia=on  based  on  sensor  NEDT  and  forward  model  error.  No  spa=al  and  spectral  correla=ons.  

7.    Progress  from  July  2014  to    March  2015  

Figure  1    Components  of  OSSE  for  Next  Genera=on  CrIS  

Figure   4   Simulated   S-­‐NPP   CriS   BT   from   CRTM   using  inputs   from   NR   and   orbit   simulator   for   water   vapor  channel  (leg)  and  surface  channel  (right).  

20

25

50

72

95

100

100

100

100

99

80

75

50

28

5

0   10   20   30   40   50   60   70   80   90   100  

Forecast  Impact  Assessement  for  next  genera=on  CrIS  

Calibra=on  

Observa=onal  noise  simulator  

Noise  free  Satellite  Radiance  Simulator  

Satellite  radiance  BUFR  encoder  

GPSRO  simulator    

Satellite  Oribit  Simulator  

Noise  free  conven=onal  data  simulator    

Real  world  OSE  

High  resolu=on  Nature  Run  

Completed   Uncompleted  

(a)  

(c)  (b)  

Figure  2  Comparison  of  simulated   and   observed  b e n d i n g   a n g l e   f o r  CHAMP  at  he  start  of  the  NR.    

Flow Process for the Next Generation CrIS OSSE

OSSE Impact

assessment

NWP Model

6"

High resolution

Nature Run

Current Systems

Rawinsondes, Aircraft, Surface, Profiler, Scatt Winds, GPSRO Microwave radiances (AMSU-A MHS and ATMS) Infrared Radiances (HIRS-4, AIRS, IASI and CrIS @ 14km)

DA System

GFS @T1534

CrIS @ Half the current resolution Generating Simulated

Observations

Future System

Calibration