ihp technology roadmap update and future

27
IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp- microelectronics.com © 2009 - All rights reserved IHP Technology Roadmap Update and Future Research Topics Bernd Tillack IHP Im Technologiepark 25 15236 Frankfurt (Oder) MOS-AK Meeting, April 2-3, 2009

Upload: tech-dude

Post on 19-Jun-2015

699 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

IHP Technology Roadmap Update and Future

Research Topics

Bernd Tillack

IHPIm Technologiepark 2515236 Frankfurt (Oder)

MOS-AK Meeting, April 2-3, 2009

Page 2: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

IHP Frankfurt (Oder)

Founded 1983

1991 Member of the Leibniz Association

1999: “Innovations for High Performance microelectronics”1000 m² class 1 clean room,staff: ~ 250 co-workers

2009: Leibniz Institute

4 core competencies:Materials research, Si process technology, RF circuit design, wireless communication systems

Funding 2008Institutional funds: € 16 million Third-party funds: € 11.5 million ERDF funds: € 12.7 million (European Regional Development Fund)

Page 3: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Core Competencies

Silicon based high-frequency technologies, circuits and systems for wireless and broadband communication

• System solutions for wireless and broadband communicationPrototypes of mixed-signal ICs; system-on-chip

• RF circuit designAnalog circuits in the higher GHz-range (frontends, converter..)

• Technology platform for wireless and broadband communication Performance increasing and functionality extending modules for standard

CMOS

• New materials for microelectronics technologyincl. integration (e.g. SiGe:C, high-K, nanostructures)

Page 4: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Outline

• Technology Vision

• Future Research Topics

• Summary

Page 5: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Technology Vision

Develop Develop

High Value Added Technologies High Value Added Technologies

for Wireless and Broadband Applicationsfor Wireless and Broadband Applications

Page 6: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Technology Vision

CMOS Baseline Technology

Modular extension of CMOS technologies

SiGe:C HBT LDMOS Flash Memories Passive Devices

Page 7: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Development Early access QualifiedSeptember 2008

Technology Roadmap for MPW

* Qual. on customer request

Process 2007 2008 2009 2010 2011

SGB25V yes

GOD module

SG25H1 yesCMOS

Bipolar

SG25H3 yesCMOS

BipolarH3 PNP module PNP: 85/120 / 2.5 ready for qualification

SG13B

SG13S yes

SG13C only RF CMOS yes

Bipolar Performance fT/f

max (GHz) / BV

CE0 (V)

digital libs

75/95 / 2.4 45/90 / 4 25/70 / 7

190/190 / 1.9 180/220 / 1.9

120/140 / 2.3 110/190 / 2.3 45/140 / 5 25/80 / 7

250/300 /1.745/120/4.0 tbd in 2009

tbd in 2009

Page 8: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

IHP‘s Technology Focus: More than Moore

Source: ITRS Roadmap 2005

IHP: 0.13 µm BiCMOS

THz Devices

Si Photonics

MEMS

Page 9: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Technology Vision – Future Research Topics

CMOS Baseline Technology

Modular extension of CMOS technologies – Diversification

SiGe:C HBT LDMOS Flash Memories Passive Devices

THz DevicesHBTs

Page 10: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

THZ HBTs

Page 11: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

DOTFIVE Project

• Timeframe

3-year (2/08-1/11) IP project of 7th Framework Program• Target

0.5 THz SiGe Heterojunction Bipolar Transistor

For the future development of communication, imaging and radar applications

• Consortium

15 partners from industry and academia in 5 countries

ST, Infineon, IMEC, IHP, XMOD, GWT-TUD, ENSEIRB, Bunderwehr Uni. Munich, Univ. of Neaples, Univ. of Linz, Univ. of Siegen, Univ. of Wuppertal

• Budget

Total € 14.75 million

€ 9.7 million founded by European Commission• For more information see www.dotfive.eu

Page 12: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

DOTFIVE ProjectToday's state-of-the-art SiGe HBTs achieve roughly a maximum operating frequency of 300 GHz at room temperature. With Dotfive Europe is getting ahead of the RF ITRS roadmap:

(www.dotfive.eu)

Page 13: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Generations of IHP’s High-Speed HBTs

Record gate delay of 2.5 ps

Digital circuit speed benchmarked by ring oscillator gate delay

Fastest circuit speed achieved in any Si IC technology

IEDM 2008: SiGe HBT module with 2.5 ps gate delay

23456789

101112

2006

300/350200/200

70/100

120/140

fT

/fmax

(GHz)

Year

Profile optimization

Self aligned &elevated extrinsic base

Low parasitic coll. design

Optimized base link

C-Doped SiGe base

2004 20082002

2.5ps

2000

Gat

e D

elay

(ps

)

Page 14: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Technology Vision – Future Research Topics

CMOS Baseline Technology

Modular extension of CMOS technologies – Diversification

SiGe:C HBT RF LDMOS Flash Memories Passive Devices

THz DevicesHBTs MEMS Integration

Page 15: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

MEMS integration in BiCMOS

Goal:

Design and fabrication of dedicated MEMS components for Radio Frequency ICs

Integration of MEMS processing technique to BiCMOS

Major Applications Areas

RFMEMS: High-Q passives, RFMEMS Switches

Deep-Silicon Etching; Substrate etching under passives, TSVs, Sensors

RFMEMS Switches

Si

Deep-Silicon Etching, TSV

Etched Region

Sensors

Page 16: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Technology Vision – Future Research Topics

CMOS Baseline Technology

Modular extension of CMOS technologies – Diversification

SiGe:C HBT LDMOS Flash Memories Passive Devices

THz DevicesHBTs? MEMS Integration

Optical function“Si Photonics”

Page 17: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Silicon Photonics

(Source: Intel)

• Photonics electronics functional integration on CMOS (HELIOS) EU FP7

• SiLight BMBF

Page 18: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Si Photonics: Waveguide Integration

Waveguide preparation in IHP technology

High slope & minimal roughness

Excellent uniformuty

Small waveguide losses (<0.5dB/cm)

R=200…2000µm

R=1mm R=2mm

MZIs

S-BendsMMIs

Page 19: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

40 Gbps TIA in SiGe Technology1

• Transimpedance Amplifier (TIA): amplifies & converts photo-current to an output voltage

• 40 Gbps needs ~30 GHz BW

• 200 GHz SiGe BiCMOS (SG25H1)

• Developed in cooperation w. TU Dresden / Ellinger

40 Gbps TIA in SiGe Technology

1 A 40 Gbit/s TRANSIMPEDANCE AMPLIFIER IN 0.25 μm SiGe TECHNOLOGY WITH ULTRA LOW POWER CONSUMPTION S. Hauptmann, D. Schoeniger, R. Eickhoff, F. Ellinger, and C. Scheytt, IEEE MIKON 2008

Page 20: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

40 Gbps TIA in SiGe Technology (II)

40 Gbps TIA in SiGe Technology

• Chip size 0.67 x 0.28 mm2

• TIA design combines High gain (73 dB) with very low power

Simulated: dashed; measured: solid

Page 21: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Silicon PhotonicsBiCMOS technology with optical functionality • Goal: Integration electronics & waveguide optics in a

qualifiedtechnology offered to fabless design partners (customers)

Optical BiCMOS

0.25/0.13 BiCMOSTechnology

SOI WaveguideOptics

ModulIntegration

Page 22: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Summary

0.25 µm/0.13 µm BiCMOS platform as baseline technology for

• MPW and prototyping

• Integration of additional functionality following the

“More than Moore” path

Page 23: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Comparison with State-of-the-Art

IHP single poly (reference)+ well controlled base epitaxy+ low resistances

(Rücker et al. IEDM 2007)

New double poly+ fully self-aligned & lateral base-link =>reduced capacitances+ low silicide resistance+ enhanced SIC

E

B

C100nm

100nm

E

B

C

Page 24: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

CMOS/BiCMOS – MEMS Integration

BiCMOS + Microviscosimeter (Minimal invasive blood sugar sensor ):

Electronics + wireless communication + sensor function

Cantilever

Page 25: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

RFMEMS Switches in BiCMOS

Parameter Simulated Results

Insertion Loss 0.3 dB

Isolation 25 dB

OperatingVoltage

< 20 V(Measured Result)

Con-state/Coff-state >30

Movable Membrane

SupportingBeams

AnchorsBottom Electrode

Main application areas: Multiband circuits and 60-70 GHz applications

Reliability is the main concern

<10 V operating voltages seems possible

Etching Holes

Page 26: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

RFMEMS Capacitive Switch

10 20 30 40 50 60 700 80

-60

-40

-20

-80

0

freq, GHz

dB(M

EM

S_C

73_S

W_V

1M1.

.V1M

1_C

73_M

EA

S_S

.S(2

,1))

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8-1.0 1.0

-0.5

0.0

0.5

-1.0

1.0

nothing

plot

_vs(

dB(V

1M1_

C53

_ME

AS

_S.S

(2,1

)[48

]), V

1M1_

C53

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

53_M

EA

S_S

.S(2

,1)[5]

), V

1M1_

C53

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

53_M

EA

S_S

.S(2

,1)[10

]), V

1M1_

C53

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

53_M

EA

S_S

.S(2

,1)[30

]), V

1M1_

C53

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

53_M

EA

S_S

.S(2

,1)[40

]), V

1M1_

C53

_ME

AS

_S.v

cc) <in

valid

>

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8-1.0 1.0

-0.5

0.0

0.5

-1.0

1.0

nothing

plot

_vs(

dB(V

1M1_

C63

_ME

AS

_S.S

(2,1

)[48

]), V

1M1_

C63

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

63_M

EA

S_S

.S(2

,1)[5]

), V

1M1_

C63

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

63_M

EA

S_S

.S(2

,1)[10

]), V

1M1_

C63

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

63_M

EA

S_S

.S(2

,1)[30

]), V

1M1_

C63

_ME

AS

_S.v

cc) <in

valid

>pl

ot_v

s(dB

(V1M

1_C

63_M

EA

S_S

.S(2

,1)[40

]), V

1M1_

C63

_ME

AS

_S.v

cc) <in

valid

>

5 10 15 20 250 30

-25

-20

-15

-10

-5

-30

0

Voltage

S21

24 GHz

20 GHz

15Hz

5 GHz2.5 GHz

10 GHz

5 10 15 20 250 30

-25

-20

-15

-10

-5

-30

0

Applied Voltage (V)

S21

(dB

)

Pull-In Region

Measured Data @ 24 GHz

Pull-In voltage ~17V Mechanically stable up to 30V and no stiction observed At 24 GHz 25 dB isolationRF Characterization and reliability measurements are still on-going.

Page 27: IHP Technology Roadmap Update and Future

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2009 - All rights reserved

Integration Elektronik-Photonik