hari inveter

Upload: manoj-shrestha

Post on 07-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 hari inveter

    1/17

    Electronic Load Controller for microhydro system

    Many people who are lucky enough to have a creek, stream, or even a small waterfall on their property,

    try to use it to generate electricity for their home, perhaps a small workshop, and maybe even for sale

    to neighbors or to the public grid. Such a microhydro system consists of a water intake with filtering, a

    penstock, a small powerhouse (or even just a box) containing a turbine and a generator, then some

    wiring from there to the house, and some system that can regulate turbine speed, frequency, and

    voltage. Typically most people are able to figure out how to build everything except the

    speed/frequency regulator. So they go shopping for this item, and find that only a few small specialty

    companies in the world make them, and that they are pretty expensive, often becoming the most

    expensive item of the whole installation!

    This article is intended to help those people, by presenting a simple, low cost ELC that can be built from

    easily available components.

    No ELC can possibly cover every imaginable application. Some are more flexible than others. The ELC

    presented here has some flexibility, thanks to being software-controlled, but also has its limitations: It's

    intended for microhydro systems that employ a single-phase synchronous alternator, working at 220-

    240V, 50Hz, in a power range up to 25 kilowatts, and using up to eight dump loads, some or all of which

    can be "useful" loads, such as water boilers or room heaters. It can be built for 120V systems too, simply

    by using the proper power transformer, but then it will be limited to half the power. It can also be

    configured for 60Hz (or any other reasonable frequency) simply by setting a parameter in the software.

    In the form presented here, four of the outputs are used in prioritized fashion, with the other four

    having all the same (last) priority, with power being distributed among them. This can be changed in the

    software too, allowing any combination from fully sequentially prioritized, to fully "democratic" among

    all outputs.

    This ELC uses a quartz crystal for reference, and in normal operation it locks the generator/turbine

    speed to this quartz, resulting in highly accurate frequency control. The software allows fine tuning of

    the frequency. However, if a heavy load change momentarily pulls the system out of lock, the resulting

    missing or surplus cycles will not be recovered; instead the system will try to recover the correct speed

    as quickly as possible. For this reason, in the presence of such transient loads it might not be stable

  • 8/6/2019 hari inveter

    2/17

    enough to accurately run clocks that use the line frequency for reference, despite having quartz control.

    I have no line-frequency-dependent clock, so I haven't tested how accurate such a clock is with this ELC.

    This ELC is designed for stand-alone microhydro systems. It cannot be used with grid-tied ones. And

    since it uses the frequency as input parameter, it's not well suited for those systems that force induction

    motors into generator service. It might work, though, but if using such an induction motor instead of a

    real generator, it's better to use an ELC that uses the voltage as input parameter. Real generators

    instead usually have their own voltage regulators built in, so that combining them with this ELC results in

    a system that has both the voltage and the frequency regulated, which is, in my humble opinion, by far

    the best way to go.

    Also, this ELC is not suitable for three-phase systems. Modifying it for three phases would require a lot

    more parts. And it has no user load protection features against over- or undervoltage, or incorrectfrequency, being instead just a basic ELC.

    Now lets start with it. If you are interested in additional general ELC talk, you will find some at the end of

    this article.

    ------------------------

    ------------------------

    ------------------------

    --------

    The circuit:

    The core of this

    ELC is a PIC

    microcontroller. I

    used a 16F628,

    which is one of

    the most common

    PICs, inexpensive,

    easy to get, and

    quite powerful

  • 8/6/2019 hari inveter

    3/17

    and versatile. It also has just about the right number of pins for this application. The whole ELC consists

    of little more than this PIC, the power supply, and the power circuit built around eight TRIACs.

    The power transformer has two secondaries. One of them is used to power the circuit, by means of a

    totally conventional circuit using a bridge rectifier, filter capacitor, and three-terminal regulator. The

    other secondary is used to feed the l ine frequency to the PIC, via a simple biasing and limiting circuit.

    The PIC uses one of its internal analog comparators to detect the zero crossings of the input waveform.

    The power circuit uses TRIACs rated at 16 amperes each. This allows controlling up to 3.5 kW on each of

    the eight outputs, as long as the TRIACs are properly heatsinked - which is easy to do, since these are

    internally insulated TRIACs, which can be directly bolted or clamped to a grounded heatsink. In practice,

    the highest load I use on a single channel is only 2.5kW, so that there is a lot of headroom available.

    The TRIACs are directly driven, without galvanic insulation. To allow this, the 5 Volt Vcc for this circuit is

    connected to the neutral side of the 220V line, allowing the PIC to pull down the TRIACs' gates via small

    transistors that are able to conduct the necessary trigger current. This negative triggering operates the

    TRIACs in quadrants where they have high sensitivity, avoiding the fourth quadrant, which is usually

    harder to drive.

    The lack of galvanic insulation makes the circuit simpler and saves some cost. Since the control is made

    on the neutral side, it is still safe to touch the control circuit while it's running, as long as the neutral is

    indeed properly grounded, but please don't touch it while it's connected, just in case if something is

    wrong with the grounding of your neutral line! The main disadvantage of not having galvanic insulation

    is that if a TRIAC blows, there is a chance that high voltage might blow through all the way to the PIC,

    and fry it. But since the PIC is much cheaper than the eight optocouplers that would be needed to

    insulate the circuit, I opted for the direct connection! It makes little sense to protect a component

    costing 3 dollars by using 20 dollars in additional parts! A TRIAC failure should be very rare, anyway. In

    the four months since I started using this ELC, I had two large thunderstorms, each of which produced

    nearby lightning hits that activated several ground fault interrupters in my house, and the ELC survived

    both. I think that proves adequate ruggedness!

    This ELC triggers the TRIACs precisely at the zero crossings of the waveform. This is implemented in the

    software, so that no hardware measures are necessary to achieve this. The duration of the trigger pulse

    is also set in software, to one mill isecond. That should be enough to get the TRIACs engaged even when

  • 8/6/2019 hari inveter

    4/17

    the dump loads are very small, as would be the case when using the ELC with a low power

    turbogenerator.

    While not shown in the schematic, of course each of the dump loads might (or even should, depending

    on the situation) have a circuit breaker between the phase line and the dump load.

    The LED in the circuit is used to indicate that the generator and turbine are locked to the quartz crystal.

    If the LED does not light, it means the system is out of control, either because it's being overloaded by

    the user, or because the total dump load power is smaller than the excess generated power.

    You can click the schematic to get a higher resolution version.

  • 8/6/2019 hari inveter

    5/17

    --------------------------------------------------------------------------------

    Software

    The software for this ELC was written in PicBasic Pro. You can edit it with Notepad or any other text

    editor to make the changes you might need, then compile it with the mentioned compiler, and program

    it into the PIC using whatever PIC programmer you have or can build. I used the WinPic software

    together with a simple homemade programming interface. When you program the PIC, be sure to

    enable the normal external clock option, and also enable the low voltage programming, regardless of

    whether you use low or high voltage programming, so that the PIC will not try to use pin 10 as output

    (it's connected to Vss!). You need some working knowledge about PICs to do this. If you have never

    worked with PICs before, this project is a great way to start, and there are many web sites about the PIC

    microcontrollers, which will help you get started.

  • 8/6/2019 hari inveter

    6/17

    The program starts with the definitions of user variables for the phase period, and the integral and

    proportional gain. If you need 60Hz instead of 50, you have to change the period value. And depending

    on the electromechanical characteristics of your turbogenerator unit, you might need to change the I

    and P values to obtain stable operation combined with quick enough action. This might require a seriesof tests, each time removing and reprogramming the PIC, so be sure to mount it in a socket! I freely

    admit that this isn't very elegant, but this PIC doesn't have enough pins to easily add external controls to

    set the gains! In a future version, using a larger PIC, I will include such controls.

    Then come pin definitions and the PIC setup variables, and then the program starts.

    The program spends most of the time waiting for a zero crossing to occur. When that happens, the

    software goes immediately to the task that sends the proper trigger pulses to those TRIACs that were

    determined in the previous cycle to require being switched on now. After the pulses have been set, the

    software checks whether this zero crossing was upgoing or downgoing. In one case, it does nothing else

    and just goes waiting for the next crossing. In the other case, it processes the rest of the program. In this

    way, each of the eight channels is always controlled in full cycles, rather than in semicycles. This is

    necessary in order to keep the load on the generator balanced, with no DC component. When there is a

    DC component, typically there are slight saturation problems in generators and any transformers in the

    system, resulting in decreased efficiency, some audible noise, etc.

    Note that whenever the analog comparator detects a zero crossing, the PIC will spend an entire

    millisecond applying the TRIAC trigger pulses. When it completes this task, the waveform has progressed

    quite a bit into the new semicycle. This completely avoids multiple triggering if the waveform should be

    noisy, avoiding the need for a Schmitt trigger. And having no Schmitt trigger, the zero crossing detection

    is highly accurate. This makes the trigger pulses start very precisely at the zero crossings, and last 1ms

    into the beginning semicycle, guaranteeing a clean, transient-free operation. For this reason, this ELC

    doesn't generate any radio interference through its TRIACs, unlike those ELCs that switch the TRIACs

    when voltage is present. For the same reason, no slope-softening inductors are needed for the TRIACs.

    The abovementioned rest of the program consists of the following: The program will read out the PIC's

    timer, that was started one cycle ago, and then restart the timer to measure the present cycle. It will

    then compare the measured value to the nominal cycle duration, calculate the error, and apply a

    proportional-integral function to this error, to obtain a 15-bit value representing the required load. Since

    all this math is implemented in integer numbers, as PicBasic Pro doesn't have floating point math, more

    program space is devoted to the necessary limiting, than to the PI function proper! My implementation

  • 8/6/2019 hari inveter

    7/17

    of this math is surely not the most clever possible, so if anyone can improve it, please do so, and send

    me the improved version!

    The program then checks if the resulting value is within range, to enable the lock LED. If instead it's

    pegged, either high or low, the LED will be turned off.

    All that follows from this point on is a routine that decides exactly which of the eight loads will be

    switched on during the next cycle. This will most likely require your modifications to suit your

    application, so I will explain the basics behind this:

    I use this ELC in my house, and the eight dump loads are all useful loads: The kitchen is the biggest

    "client", with the range, the kettle, and the oven each using one ELC channel. Then comes the boiler that

    provides hot water to the house. Finally, I have four heating circuits connected to the ELC. The kitchen

    range takes 2.5kW max, the oven needs 1.2kW, the kettle and the boiler are 2kW each, and the heating

    circuits have each roughly 2kW of heaters connected, distributed all over the house. The range, kettle

    and oven are switched on and off as needed by the user (yours truly), the boiler is switched on and off

    by its internal thermostat, while the heaters are all left on all the time. The latter guarantees that the

    ELC always has enough dump load power connected, given that my microhydro system can deliver up to

    about 7kW.

    To control all this, I decided to use a priority scheme: The range, which has no thermostat, but is

    manually switched to a wide range of power levels from zero to 2.5kW, gets priority one, so that I won't

    have to worry about my potatoes turning to coal because something else stopped using power. The

    oven gets priority two, since its own thermostat is able to compensate for varying degrees of

    momentary power availability. The kettle gets third priority, because it doesn't matter much if the water

    for my tea takes 3 minutes to boil, instead of just two. And the boiler gets fourth priority, because it's

    large enough that hot water for my well deserved shower will be available even if the boiler didn't get

    any power for hours.

    Of course, all those loads that cannot accept interruptions or missing cycles, such as the lights,

    computer, music equipment, etc, which includes almost all outlets of the house, are directly connected

    to the generator, thus getting top priority, above the one gotten by any load connected to the ELC.

  • 8/6/2019 hari inveter

    8/17

    Any power left over, after powering the top priority loads and the four prioritized ELC-controlled loads,

    is available for heating. To obtain smooth, even, well distributed heating, I wrote the software to

    distribute this surplus power in a completely even way among the four heating channels. My house has

    good insulation and a very large thermal mass, so that the modulation of the heaters that results from

    other loads coming and going, cannot be felt at all. The thermal mass is even enough to iron out the

    variations caused by normal weather fluctuations lasting several days. And the summer/winter

    temperature variations are largely compensated for by the lower water availability in summer, so that

    the hydro system delivers less power. So the only thing I have to do to keep the temperature in my

    house constant to 1 degree, is to partially open some windows for more or less time per day, depending

    on the weather. However, since I'm a lazy guy, I plan to replace this ELC by a 12-channel version, adding

    four channels for dump loads outside the house, and adding a temperature sensor circuit, so that the

    ELC will double as thermal controller and keep the temperature in the house completely constant. I just

    need a PIC with more pins, which I didn't have on hand when I hacked together this ELC!

    Back to the software: The 15 bit value, telling how much load power is needed, first is converted into

    the number of load channels that need to be on. For this, first the three most significant bits are

    stripped off and used. They can express anything from 0 to 7 channels. Then the remaining 12-bit value

    is added to a "fraction accumulator", which keeps increasing from cycle to cycle until it rolls over. When

    it rolls over, an additional channel is switched on, and when the addition completes without rollover, no

    channel is added. So, if for example the 15-bit number tells that five and one half channels need to be

    on, then this routine will alternately enable 5 and 6 channels on successive cycles. If the 15-bit number

    tells that 2.1 channels need to be on, then the result will be 9 cycles with two channels on, followed by

    one cycle with three channels on.

    Then the program decides which of the eight channels have to be on. If the number of channels that

    have to be on is up to 4, then of course the channels are simply enabled in order of their priority. And

    when more than 4 channels need to be on, those exceeding this amount are the number of heater

    channels to be enabled. To achieve even distribution of power among the four heater channels, the

    software switches on channels in round robin fashion, remembering which of the four heating channels

    got switched on most recently, and starting with the following one the next cycle. So, if for example the

    software has calculated that 6.5 channels need to be on, then it will always keep the four priority

    channels on, and in addition it will switch on the following heater channels:

    Cycle 1: Channels 5 and 6.

    Cycle 2: Channels 7, 8 and 5.

  • 8/6/2019 hari inveter

    9/17

    Cycle 3: Channels 6 and 7.

    Cycle 4: Channels 8, 5 and 6

    And so on. So we have 2 or 3 heater channels enabled on alternate cycles, while each of the heater

    circuits gets the same on time, which is in this case 62.5% of the time, as evenly distributed as possible,

    given that only full cycles can be assigned.

    You might want to modify this routine to get more or fewer prioritized channels, up to making them all

    prioritized or all of the same priority. It's entire up to you and your application.

  • 8/6/2019 hari inveter

    10/17

    --------------------------------------------------------------------------------

    Construction:

    I built this ELC using a piece of project board for all the low power circuitry, and bolted the TRIACs to a

    generously sized extruded aluminium heat sink. At the power level of my microhydro system, the

    heatsink gets just barely warm. I needed the ELC as soon as possible, so I didn't care much about a

    beautiful layout - I wanted it to work, now !

    The PIC was installed in a socket, so that it can be easily removed, to change parameters in it, or even to

    make radical software changes.

    The voltage regulator was bolted to an U-shaped junk-box heatsink, which is also larger than necessary.

    Actually, the regulator could probably work without any heatsink in this circuit, but it's safer to use one.

    After all, heat is the biggest enemy of electronic components.

  • 8/6/2019 hari inveter

    11/17

    The copper pattern of the board is just like a protoboard, that is, a few long copper strips for power

    distribution, and many short transversal strips between them. It's very convenient for most uses, but

    here I had to bend the pins of the crystal to make it fit without needing jumpers.

    This little board, the transformer, and the connection blocks, were mouted on a simple homemade

    aluminium sheet chassis, which was bolted to the heat sink. You have already seen the photo of the

    completed ELC, at the start of this page. Despite the use of the project board instead of a real PCB, the

    assembly is solid and dependable.

    --------------------------------------------------------------------------------

    I installed this ELC in my house's main distribution box. Here you can see the distribution box, still half-

    ready, but working fine. It's a somewhat complex circuit, compared to most home distribution panels,

    because it includes switches for selective enabling of dual backup systems (gasoline powered generator,

    and battery/inverter); it is 220V for the most part, but includes a 110V circuit for some outlets in the

    house, and the controlled loads are switchable between 220 and 110V, to adapt them to my small 1kW

    summertime turbogenerator, when necessary. There are ground fault interrupters for everything, four

    separate ones, with the one for the ELC and its loads being a four-circuit unit. These are normally used in

    three-phase systems, but here I need the four channels to pass 220V, 110V, a voltage-switched phase,

    and the neutral.

  • 8/6/2019 hari inveter

    12/17

    There are still a few

    switches and

    connections missing. But

    at the top left, there arefour spare circuit

    breakers, which are

    intended for the external

    dump loads, when I

    build that 12-channel

    thermal control version

    of the ELC.

    When all that has been

    done, I also intend to

    tidy up the wiring,

    replace the masking tape

    cable IDs by more

    elegant ones, and make

    a panel to hide the

    mess! Also some meters

    would be nice to have.

    For the moment, the

    only indicator is the ELC's LED, which is glowing in this photo, indicating that the system is working

    correctly and I'm getting accurate 50Hz.

    --------------------------------------------------------------------------------

    Background information on ELCs

    Back in the age of our grandfathers, microhydro systems were implemented without an ELC. Typically

    these systems had a mechanical or hydraulic speed governor, which in some cases controlled the water

    supply via a spear valve or similar device, or it acted upon a deflector that moved the jet away from the

    turbine, and some systems even had the speed governor act on a mechanical brake. In any case, this

  • 8/6/2019 hari inveter

    13/17

    resulted in a reasonably constant speed (and thus frequency), and the voltage was set by manually

    adjusting a rheostat controlling the generator field current. Often the load current was coupled back to

    the field, which resulted in increasing the field current when there was more load, so that the output

    voltage was pretty constant.

    These systems usually worked quite well, but they had their problems. First of them was that they

    reacted slowly. Slowest of all was the one that controlled the water valve, because it had to be slow, in

    order to avoid water hammer effects in the penstock! The others could be faster, but were still limited

    by the inherent limitations of mechanical systems. To make up for the slow response of the mechanical

    speed governors, large, very heavy flywheels were used to stabilize the speed by brute force.

    Another problem was, of course, maintenance and wear. Mechanical systems need to be lubricated,

    cleaned, adjusted, and even then they break down rather easily. Specially the mechanical brake systemproduced a lot of friction, heat and wear. Add to this an assortment of problems like the tendency of

    spear valves to clog with small debris, and the tremendous spray in the turbine housing when a

    deflector is used.

    Also, the lack of real voltage regulation made it hard to use some of these systems with sensitive loads.

    The massification of electronic devices made it possible to radically change the approach. It soon

    became standard practice to provide generators with built-in, highly accurate and reliable electronic

    voltage regulators, usually called "AVR" (automatic voltage regulator, to differentiate it from the old

    manual field current adjustment!) by the generator manufacturers. At that time, microhydro builders

    became interested in using electronic speed control too, that works without any mechanical actuators.

    The basic concept any ELC uses is to let the turbine and generator run at their full power, or possibly a

    manually set partial power, and keep the electric load just right to attain the correct speed. It's very

    similar to the old mechanical speed governor that acts on a mechanical brake, only that an ELC uses

    electrical braking: Dump loads into which excess electric power can be put.

    So an ELC will measure turbine speed, and control the power delivered to one or more dump loads, to

    keep the speed correct.

  • 8/6/2019 hari inveter

    14/17

    To measure the turbine speed, there are several methods. When the generator is of the synchronous

    type, it's easiest to simply measure the frequency produced by the generator. If instead an induction

    motor is pressed into generator service, it won't have internal voltage regulation, so it's better to use

    the ELC as a voltage regulator, and sense voltage rather than frequency. This will only produce a rough

    speed control, but that's better than having equipment burn out from unstable voltage! And finally, a

    dedicated tachometer could be used, but I don't think anyone does this in the microhydro world.

    The power devices used to control the dump loads can be relays (very poor choice), thyristors (TRIACs

    for low and moderate power, antiparallel SCRs for high power), MOSFETs, or IGBTs. With relays, only

    very basic slow on/off control can be done, resulting in unstable speed, and the relays tend to wear out

    quickly. With thyristors, four types of operation are possible: Simple slow on/off (slower than the line

    frequency), individual half cycle control, individual full cycle control, and phase control within each half

    cycle. In principle thyristors can also be used for more sophisticated control, using additional thyristors

    to turn off the main ones before a half cycle is over, but that's rarely done nowadays. Finally, with

    MOSFETs or IGBTs it is possible to implemente any of the control methods mentioned, plus high

    frequency pulse width modulated control. IGBTs have a better power handling to price ratio, while

    MOSFETs can work at higher frequency, reducing the size of filter components.

    Each control method has advantages and problems. Simple non-synchronous on/off control is very easy

    to implement, for example using LED-meter ICs, but the performance in terms of speed control is poor,

    and it causes switching spikes and corresponding slight radio interference. By using zero crossing trigger

    circuits, the spikes and interference can be eliminated but the other disadvantages remain. When

    instead controlling individual half cycles, speed control is improved, there is no interference, but inmany operating conditions the load to the generator will be asymmetric, that is, will have a DC

    component on it. In some cases this causes trouble, in other cases it doesn't. I used an experimental ELC

    with half cycle control for some months, with no problems to my generator, but with my transmission

    transformers producing some odd noise from flux shifting and the resulting slight saturation. Full cycle

    control eliminates this problem, but is only half as fast as half cycle control, so the speed control is less

    good. Phase control at the line frequency achieves very good speed control, but has serious interference

    and waveform distortion issues, because of the inevitable inductance of the generator's windings:

    Whenever one of the control elements fires in the middle of a half cycle, the additional load current

    combined with the generator's inductance will make the voltage break down sharply, and then take

    typically around one millisecond to recover. This generates some heavy radio interference, which is

    important if the generator and/or ELC is close to the place where the power will be used, and it also

    tends to make any motors, transformers, and some other devices produce pretty loud noises from the

    high harmonic contents of the waveform!

  • 8/6/2019 hari inveter

    15/17

    In addition, all these methods cause a constantly changing load on the generator. The changes might

    happen slowly or fast, but always happen, and that translates into a poor power factor, requiring the

    generator to be oversized. When many dump loads are used, the extent of this problem is small, but it is

    a very bad idea to use such control with a single dump load.

    Instead, when high frequency (many times the line frequency) pulse width modulation is used, along

    with proper filtering, this problem disappears. Such PWM control can have unity power factor, very

    smooth speed control, and can work with a single dump load, but it's more expensive to implement, and

    also larger and much heavier, because of the filtering required. And that filtering is mandatory, because

    otherwise a PWM ELC generates a terrible amount of radio interference! Actually it can be hard to

    make the filter good enough to reduce interference to an acceptable level. The losses, and thus the heat

    production, are also larger than when using low frequency control with thyristors, because the MOSFETs

    or IGBTs normally need to be combined with several diodes, which cause additional loss, and the

    switching loss at high frequency is significant too. This further adds to size, weight and cost, because of

    the larger heatsink required.

    So, each system has its weak points and its strengths. You can buy ELCs using any of these different

    systems, from several manufacturers, but some are of poor quality, many are very expensive, and a few

    are both! The problem is that microhydro is a niche market, and ELCs are typically hand-made in very

    small quantities. This necessarily results in an unfavorable ratio of cost to performance. So ELCs belong

    to the select group of electronic projects which really make a lot of sense to build at home!

    --------------------------------------------------------------------------------

    My own setup

    When I implemented my microhydro system, I first built a slightly modified version of Jan Portegijs'

    Humming Bird ELC, which is a TRIAC-based phase control ELC that also includes user load protection

    against abnormal operating conditions. For nearly a year this was the only ELC I used. It works very well,

    produces a very good speed control, no light flickering (most of the time), but because of its operating

  • 8/6/2019 hari inveter

    16/17

    principle it distorts the waveform and generates some RF interference. The interference was no big

    problem for me, despite being a radio amateur, because the turbine and controller are located far

    enough from the home. But the waveform distortion caused acoustic noise in some devices, pretty

    strong in a few of them. Also, the waveform distortion at some specific trigger angles interacted with

    the generator's voltage regulator, so that at these specific conditions suddenly the whole system

    became slightly unstable and the lights would flicker!

    Then I added the ELC described on this page. My present setup is that the Humming Bird remains at the

    turbine site, but is adjusted to 52Hz instead of 50. And at the home I have my new full-cycle ELC, which

    regulates to precisely 50Hz. The effect of this is that normally the new ELC is controlling the turbine, and

    distributing the power in my home at the same time, while the Humming Bird just sits there, sending no

    power to its dump loads. If for any reason the transmission line to the house opens, the circuit breakers

    come down, or whatever, then the Humming Bird steps in as a sort of emergency regulator, limiting the

    frequency to a very safe 52Hz, equivalent to a rotational speed of 1560 rpm. Also, the protection circuits

    of the Humming Bird remain active at all times, so that I don't need any additional protection systems in

    my new ELC.

    How does the new ELC perform, you surely want to know! It basically does its job quite well, the

    frequency accuracy is very good of course, but its reaction speed is inevitably slower than that of the

    Humming Bird, because its basic control bandwidth is only half as wide, a direct result of using full cycle

    control. This results in the turbogenerator making small speed excursions, lasting about one half second,

    when a big load is switched on or off. However that's no problem in practice. All interference is gone,

    and the strange noises in transformers and motors are gone too. And there are no spikes to causeinteraction with the generator's voltage regulator.

    But there is STILL some sort of light flickering! The problem is this: Like described above, all non-PWM

    ELCs place a variable load on the generator, as the dump loads come on and off. The voltage regulator in

    my generator is designed to keep the peak voltage of the waveform constant, and it does this very well

    indeed. But the waveform the generator delivers changes significantly with load! It's sort of a sine wave,

    but getting more slender or wider depending on load. So the peak to RMS ratio varies with load, and

    since the regulator keeps the peak constant, the RMS varies all the time! Glow bulbs react to the RMS

    voltage, so any glow lamp now flickers all the time, while with the Humming Bird it only flickers at very

    specific levels of power delivered to the dump loads. Compact fluorescent lamps instead react mostly to

    the peak voltage, thanks to the built-in filter capacitors behind their input rectifiers, and for this reason

    they do not flicker at all now! So I'm happy, because the only glow bulb in the whole house is the little

    one inside the fridge, while all my other lights use compact fluorescent lamps. So far, so good, I can live

    with a flickering fridge light!

  • 8/6/2019 hari inveter

    17/17

    This experience makes it clear that the only really good, do-it-all, high quality, guaranteed flicker-free

    option is a fully fledged high frequency PWM ELC with extensive filtering. When I first planned my

    microhydro system, I intended to build one. Then, due to work overload from all the other stuff I had to

    do, I postponed this lenghty work. I still intend to build the definitive PWM ELC some day, but until then,the ELC described on this page, together with the Humming Bird as a backup, are serving me very well.

    If you now have any patience left to keep reading web pages, you might want to read about the

    microhydro installation for which I built this ELC!

    --------------------------------------------------------------------------------

    Back to homo ludens electronicus.