hale uav preliminary design

42
HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag Gandhi Thomas Gempp Doug Rohrbaugh Gregory Snyder Steve Stanek Victor Thomas SAURON

Upload: shadi

Post on 12-Jan-2016

85 views

Category:

Documents


11 download

DESCRIPTION

SAURON. HALE UAV Preliminary Design. AERSP 402B Spring 2014 Team: NSFW. Mission Statement. To design a High Altitude / Long Endurance (HALE) UAV using alternative fuel sources to support homeland security efforts with a concentration in long term border security. Design Changes. v1. v4. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: HALE UAV Preliminary Design

HALE UAV Preliminary Design

AERSP 402BSpring 2014

Team: NSFW

Nisherag Gandhi Thomas Gempp

Doug Rohrbaugh Gregory Snyder

Steve Stanek Victor Thomas

SAURON

Page 2: HALE UAV Preliminary Design

Mission Statement

To design a High Altitude / Long Endurance (HALE) UAV using alternative fuel sources to support homeland security efforts with a concentration in long term border security.

Page 3: HALE UAV Preliminary Design

Design Changesv1

v3

v2

v4

v5

v6

Page 4: HALE UAV Preliminary Design

Sauron v7

Page 5: HALE UAV Preliminary Design

Design Changes – Wing and Tail

Page 6: HALE UAV Preliminary Design

Design Changes – Landing Gear

Page 7: HALE UAV Preliminary Design

DimensionsParameter Wing Tail

Airfoil SM701 Jouk0015

Span (ft.) 128.6 18.0

Reference Chord (ft.) 4.0 2.5

Area (ft.2) 557.5 45.0

Cruise CL 0.66 0.09

Span Efficiency 1.01

Max CL 1.4

Power Generated (kW) 16.93

Aspect Ratio 29.6

Neutral Point Location (ft.) 13.4

C.G. Location (ft.) 13.2

Page 8: HALE UAV Preliminary Design

Wing/Tail Lift Distribution

Page 9: HALE UAV Preliminary Design

Structures – Materials

• HexPly M91 - Epoxy Matrix for primary aerospace structure

• High residual compression strength after impact (CAI)

• Supports automated manufacturing• HexTow IM10 - Carbon Fiber 12k

tow• Suitable for weaving, pre-pregging,

filament winding, braiding, and pultrusion

• Enhanced tensile properties• Highest commercially available

tensile strength

* Avg. cost: $45/lb.

M91/IM10

Page 10: HALE UAV Preliminary Design

Structures – Materials

Epoxy-Fiber (Prepreg) Combination (M91/IM10)Theoretical Values

Cured Ply Thickness (in) ~ 0.0072

Fiber Volume (%) ~ 58.9

Laminate Density (g/cm3) ~ 1.4

Laminate Modulus (GPa) ~ 200

Tensile Strength (MPa) ~ 3620

HexTow IM10 Carbon Fiber

# of Filaments 12000

Filament Diameter (microns) 4.4

Tensile Strength (MPa) 6964

Tensile Modulus (GPa) 310

Strain (%) 2.0

Density (g/cm3) 1.79

Page 11: HALE UAV Preliminary Design

Wing – Spar Design

Page 12: HALE UAV Preliminary Design

Wing – Weight and Lift Distribution

Page 13: HALE UAV Preliminary Design

Wing – Moment and Stress

Page 14: HALE UAV Preliminary Design

Wing – Deflection

Page 15: HALE UAV Preliminary Design

Wing Deflection Analysis

Page 16: HALE UAV Preliminary Design

H &V Stabilizer Spar Design

Page 17: HALE UAV Preliminary Design

Horizontal Stabilizer – Lift Distribution

Page 18: HALE UAV Preliminary Design

H. Stabilizer – Moment and Stress

Page 19: HALE UAV Preliminary Design

H. Stabilizer – Wing Deflection

Page 20: HALE UAV Preliminary Design

Vertical Stabilizer – Weight and Lift Distribution

Page 21: HALE UAV Preliminary Design

V. Stabilizer – Moment and Stress

Page 22: HALE UAV Preliminary Design

V. Stabilizer - Deflection

Page 23: HALE UAV Preliminary Design

Weight BreakdownAircraft Part Empty Weight (lbs)

Wing 126.89

Fuselage 32.77

Horizontal Stabilizer 10.24

Vertical Stabilizer 3.98

Solar Cell 87.53

Wing Spar 70.38

Vertical Stab Spar 0.71

Horizontal Stab Spar 1.87

4 Motors 16.00

Fuselage Formers 15.00

Gear System 40.00

Total Empty Weight 404.44

Parameter Empty Weight (lbs)

Total Empty Weight 404.44

Battery 180.00

Payload 250.00

Total 834.44

Page 24: HALE UAV Preliminary Design

Control Surfaces

Page 25: HALE UAV Preliminary Design

Aileron

Control Surface Area: 3%

Pcruise|61k ft = 13.8 deg/sec

Pstall|61k ft= 11.5 deg/sec

Required Aileron Deflection =10°

Page 26: HALE UAV Preliminary Design

Elevator

Control Surface Area: 46.7%

Pitch Rate= 9 deg/sec

Required Elevator Deflection= -2.6°

Lift Coefficient, CL Elevator Deflection (°)

0.1 1.55

0.4 0.90

0.66 0.25

1.0 -0.74

1.4 -2.14

Page 27: HALE UAV Preliminary Design

Rudder

Control Surface Area: 42.9%

Rudder Deflection: 20°

Maximum Sidewash: 10°

Max Crosswind: 12.5 ft/s

Page 28: HALE UAV Preliminary Design

Control Surface Demo

Page 29: HALE UAV Preliminary Design

Airfoil Selection

Wing Airfoil H&V Stabilizer Airfoil

Page 30: HALE UAV Preliminary Design

Updated Drag Analysis

Page 31: HALE UAV Preliminary Design

Updated Drag AnalysisSea Level 45,000 feet 61,000 feet 79,000 feet

Stall Speed (ft/s) 37.0 83.9 122.3 188.7

Cruise Speed (ft/s) 44.4 100.7 146.8 226.5

Max Speed (ft/s) 113.0 191.5 245.3 294.0

Total Drag (lbs) 18.4 20.3 22.5 26.9

Power Required (kW) 1.05 2.7 4.3 8.1

Reynolds’  Number 1,129,663.40 626,856.80 429,692.6 274,504.6

CDo 0.0087 0.01 0.0105 0.0125

Oswald’s Efficiency 0.76 0.73 0.69 0.63

Max L/D 46.7 42.4 38.2 31.9

Page 32: HALE UAV Preliminary Design

Updated Power Analysis

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

1648 hour UAV Power Plan

Time (hours)

Pow

er (

Kilo

wa

tts)

Previous Power CalculationCurrent Power Calculation

Page 33: HALE UAV Preliminary Design

TakeoffParameter Sea Level Denver Afghanistan

Ground Roll [ft]

Vtakeoff [ft/s]

dab|35ft [ft]

dab|50ft [ft]

Dtotal|35ft [ft]

Dtotal|50ft [ft]

Thrust [lbs]

Page 34: HALE UAV Preliminary Design

LandingParameter Sea Level Denver AfghanistanVa [ft/s]

γa [deg]

Radius [ft]

Flare Height [ft]

Flare Speed [ft/s]

da35ft [ft]

da50ft [ft]

df [ft]

VTD [ft/s]

Thrust [lbs]

Page 35: HALE UAV Preliminary Design

Constraint Diagram

Original

Current

Page 36: HALE UAV Preliminary Design

Cost AnalysisFixed Costs for 5 Developmental Aircraft:

– Engineering Costs: $29,869,717.35

– Flight Test Ops: $17,638,487.67

– Tooling: $4,567,827.99

Page 37: HALE UAV Preliminary Design

Pricing

Page 38: HALE UAV Preliminary Design

Pricing Summary1 10 100 500 1000

Design Aircraft 5

Engineering Costs $ 29,869,717.35

Flight Test Ops $ 17,638,487.67

Tooling Costs $ 4,567,827.99

Manufacturing Costs $ 3,411,149.77 $ 14,924,534.27 $ 65,298,136.52 $ 183,206,365.99 $ 285,693,781.52

Quality Control Costs $ 490,688.06 $ 2,146,868.71 $ 9,393,025.19 $ 26,353,922.21 $ 41,096,561.54

Total Materials Costs $ 889,569.58 $ 2,223,923.96 $ 15,567,467.69 $ 74,872,106.51 $ 149,002,905.04

Design Materials Costs $ 741,307.99 $ 741,307.99 $ 741,307.99 $ 741,307.99 $ 741,307.99

Production Materials Costs $ 148,261.60 $ 1,482,615.97 $ 14,826,159.71 $ 74,130,798.53 $ 148,261,597.05

Total Frame Costs $ 60,725,386.10 $ 75,229,305.63 $ 146,192,608.09 $ 340,366,373.41 $ 531,727,226.80

Minimum Price Per UAV $ 60,725,386.10 $ 7,522,930.56 $ 1,461,926.08 $ 680,732.75 $ 531,727.23

* +$2M per for custom sensory packages

Page 39: HALE UAV Preliminary Design

Comparison to Competitors

• RQ-1/MQ-1 Predator– Unit Cost: $4.03M– 360 Built

• MQ-9 Reaper– Unit Cost: $16.9M– 104 Built

• RQ-4 Global Hawk– Unit Cost: $131.4M– 42 Built

• Solara 50/60– Unit Cost: $1-2M– N/A Built

Page 40: HALE UAV Preliminary Design

Questions?

14 Days ‘Til Graduation

Page 41: HALE UAV Preliminary Design

Double Camera

Page 42: HALE UAV Preliminary Design

Summary