giorgos mellios and leon ntziachristos

19
LABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY THESSALONIKI SCHOOL OF ENGINEERING DEPT. OF MECHANICAL ENGINEERING Giorgos Mellios and Leon Ntziachristos Updated methodology for Updated methodology for estimating evaporative estimating evaporative VOC emissions VOC emissions Copenhagen, 17 Copenhagen, 17 th th June June 2008 2008

Upload: kadeem-weaver

Post on 31-Dec-2015

34 views

Category:

Documents


1 download

DESCRIPTION

Giorgos Mellios and Leon Ntziachristos. Updated methodology for estimating evaporative VOC emissions. Copenhagen, 17 th June 2008. Recent updates. Chapter 0706 (Gasoline Evaporation from Vehicles) of the Guidebook was updated in August 2007 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Giorgos Mellios and Leon Ntziachristos

LABORATORY OF APPLIED THERMODYNAMICS

ARISTOTLE UNIVERSITY THESSALONIKISCHOOL OF ENGINEERING

DEPT. OF MECHANICAL ENGINEERING

Giorgos Melliosand

Leon Ntziachristos

Updated methodology Updated methodology

for estimating for estimating

evaporative VOC evaporative VOC

emissionsemissions

Copenhagen, 17Copenhagen, 17thth June 2008 June 2008

Page 2: Giorgos Mellios and Leon Ntziachristos

Recent updates

Chapter 0706 (Gasoline Evaporation from Vehicles) of the Guidebook was updated in August 2007

The chapter has been extensively reviewed by a number of expert users; mistakes were identified and corrected and the updated chapter will be included in the revised Guidebook

The new methodology and emission factors were incorporated in COPERT 4 Version 5.0 in December 2007

Page 3: Giorgos Mellios and Leon Ntziachristos

Evaporative emissions from gasoline vehicles

Emission sources

Breathing losses (fuel tank, activated carbon canister)

Fuel permeation and/or leakage (fuel and vapour control systems)

Mechanisms causing evaporative emissions

Diurnal emissions

Hot soak emissions

Running losses

Parked vehicle

Vehicle engine running

Page 4: Giorgos Mellios and Leon Ntziachristos

Background data

Joint JRC/CONCAWE/EUCAR Programme on Evaporative Emissions 7 vehicles

10 fuels (including ethanol blends)

Regulatory SHED test procedure

LAT/CONCAWE/JRC work 5 vehicles

3 fuels (HC only)

Modified test protocol (improved vehicle preconditioning, more temperature profiles, consecutive diurnal tests, permeation tests)

Literature data Motorcycles (Artemis)

Carburetted and uncontrolled vehicles (older CONCAWE studies)

Page 5: Giorgos Mellios and Leon Ntziachristos

Activated carbon canister loading with fuel vapour

Canister weight:

a, b are linear functions of temperature & vapour pressure

Vapour pressure effect Temperature effect

vapour load

breakthrough emissions

)(e loadmsbaloadads mm

Page 6: Giorgos Mellios and Leon Ntziachristos

Fleet emissions calculation

Total evaporative emissions:

Eeva,voc,j = 365 ∙ Nj ∙ (HSj + ed,j + RLj)

Hot soak emissions

HSj = x {c [p ∙ es,hot,c + (1 – p) ∙ es,warm,c] + (1 – c) ∙ es,hot,fi}

Running losses

RLj = x {c [p ∙ er,hot,c + (1 – p) ∙ er,warm,c] + (1 – c) ∙ er,hot,fi}

Page 7: Giorgos Mellios and Leon Ntziachristos

Overview of the calculation procedure

Input parametersFuel vapour pressure (kPa)Tank size (l)Canister size (small, medium, large)Fuel tank fill level (%)Temperature variation (°C)Cumulative mileage (km)

Intermediate calculationsFuel vapour generation (g)Initial canister weight (g)

Canister breakthrough emissions (g)Permeation and/or leakage emissions (g)

Total evaporative emissions (g)

Page 8: Giorgos Mellios and Leon Ntziachristos

Parking time distribution

Parking duration tpark (h) Parking end-time t2 (hh:mm) < 0.5 1 1.5 … >11.5

0:00 f1 f2 f3 … f24

1:00 f25 f26 f27 … f48

2:00 f49 f50 f51 … f72

… … … … … …

23:00 f553 f554 f555 … f576

Parking duration distributed into 24 time classes ranging from <0.5 to >11.5 h

Each combination of parking duration and parking end-time has

a probability factor fk

∑ fk = 1

Page 9: Giorgos Mellios and Leon Ntziachristos

Parking time distribution

Parking duration tpark (h)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

0:00 0.94% 0.31% 0.04% 0.11% 0.13% 0.04% 0.07% 0.03% 0.03% 0.02% 0.02% 0.01% 0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.30% 2.2%

1:00 0.51% 0.17% 0.02% 0.06% 0.07% 0.02% 0.04% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.17% 1.2%

2:00 0.30% 0.10% 0.01% 0.04% 0.04% 0.01% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.7%

3:00 0.17% 0.06% 0.01% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.4%

4:00 0.30% 0.10% 0.01% 0.04% 0.04% 0.01% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.7%

5:00 0.94% 0.31% 0.04% 0.11% 0.13% 0.04% 0.07% 0.03% 0.03% 0.02% 0.02% 0.01% 0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.30% 2.2%

6:00 1.97% 0.64% 0.09% 0.23% 0.28% 0.09% 0.14% 0.07% 0.07% 0.05% 0.05% 0.02% 0.05% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.63% 4.6%

7:00 2.40% 0.78% 0.11% 0.28% 0.34% 0.11% 0.17% 0.08% 0.08% 0.06% 0.06% 0.03% 0.06% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.77% 5.6%

8:00 2.23% 0.72% 0.10% 0.26% 0.31% 0.10% 0.16% 0.08% 0.08% 0.05% 0.05% 0.03% 0.05% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.72% 5.2%

9:00 2.23% 0.72% 0.10% 0.26% 0.31% 0.10% 0.16% 0.08% 0.08% 0.05% 0.05% 0.03% 0.05% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.72% 5.2%

10:00 2.27% 0.74% 0.11% 0.27% 0.32% 0.11% 0.16% 0.08% 0.08% 0.05% 0.05% 0.03% 0.05% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.73% 5.3%

11:00 2.35% 0.76% 0.11% 0.28% 0.33% 0.11% 0.17% 0.08% 0.08% 0.06% 0.06% 0.03% 0.06% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.76% 5.5%

12:00 1.97% 0.64% 0.09% 0.23% 0.28% 0.09% 0.14% 0.07% 0.07% 0.05% 0.05% 0.02% 0.05% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.63% 4.6%

13:00 2.23% 0.72% 0.10% 0.26% 0.31% 0.10% 0.16% 0.08% 0.08% 0.05% 0.05% 0.03% 0.05% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.72% 5.2%

14:00 2.40% 0.78% 0.11% 0.28% 0.34% 0.11% 0.17% 0.08% 0.08% 0.06% 0.06% 0.03% 0.06% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.77% 5.6%

15:00 2.48% 0.81% 0.12% 0.29% 0.35% 0.12% 0.17% 0.09% 0.09% 0.06% 0.06% 0.03% 0.06% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.80% 5.8%

16:00 2.78% 0.90% 0.13% 0.33% 0.39% 0.13% 0.20% 0.10% 0.10% 0.07% 0.07% 0.03% 0.07% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.90% 6.5%

17:00 2.78% 0.90% 0.13% 0.33% 0.39% 0.13% 0.20% 0.10% 0.10% 0.07% 0.07% 0.03% 0.07% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.90% 6.5%

18:00 2.70% 0.88% 0.13% 0.32% 0.38% 0.13% 0.19% 0.09% 0.09% 0.06% 0.06% 0.03% 0.06% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.87% 6.3%

19:00 2.18% 0.71% 0.10% 0.26% 0.31% 0.10% 0.15% 0.08% 0.08% 0.05% 0.05% 0.03% 0.05% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.70% 5.1%

20:00 1.88% 0.61% 0.09% 0.22% 0.26% 0.09% 0.13% 0.07% 0.07% 0.04% 0.04% 0.02% 0.04% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.61% 4.4%

21:00 1.80% 0.58% 0.08% 0.21% 0.25% 0.08% 0.13% 0.06% 0.06% 0.04% 0.04% 0.02% 0.04% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.58% 4.2%

22:00 1.67% 0.54% 0.08% 0.20% 0.23% 0.08% 0.12% 0.06% 0.06% 0.04% 0.04% 0.02% 0.04% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.54% 3.9%

23:00 1.33% 0.43% 0.06% 0.16% 0.19% 0.06% 0.09% 0.05% 0.05% 0.03% 0.03% 0.02% 0.03% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.43% 3.1%

43% 14% 2.0% 5.0% 6.0% 2.0% 3.0% 1.5% 1.5% 1.0% 1.0% 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 14% 100%

Park

ing e

nd-t

ime t

2 (

hh:m

m)

Page 10: Giorgos Mellios and Leon Ntziachristos

Intermediate calculations

Fuel tank vapour generation (g)

Canister breakthrough emissions (g)

Permeation and leakage emissions (g)

)ee(e025.0)100/1(),( 0716.00716.00205.0 min,kmax,k TTvptankmax,kmin,ktank vhTTm

)sb(a)sb(amaxmin ee),( load,1load,2 mm

,k,kbreak TTm

2,k

1,k

T

T

vp2,k1,kperm TTTm 0.0206)10(6.1656e),( 2.560.004

Page 11: Giorgos Mellios and Leon Ntziachristos

Emission factors – Gasoline passenger cars

Diurnal emissions (g/day)Canister-equipped

Uncontrolled

k

2,k1,kpermmax,kmin,kbreakkd ,TTm,TTmfe )()(

k

2,k1,kpermmax,kmin,ktankkd ,TTm,TTmfe )()(

Page 12: Giorgos Mellios and Leon Ntziachristos

Emission factors – Gasoline passenger cars

Hot soak emissions (g/procedure) fuel injection and returnless fuel systems

carburettor and/or fuel return systems

uncontrolled

k

1,kpermks,hot,fi Tmfe 11)(

s,hot,fik

1,k1,kbreakks,warm,c

s,hot,fik

1,k1,kbreakks,hot,c

e,TTmfe

e,TTmfe

)4.5(

)6(

s,hot,fik

1,k1,ktankks,warm,c

s,hot,fik

1,k1,ktankks,hot,c

e,TTmfe

e,TTmfe

)4.5(

)6(

Page 13: Giorgos Mellios and Leon Ntziachristos

Emission factors – Gasoline passenger cars

Running losses (g/trip) fuel injection and returnless fuel systems

canister-equipped with carburettor and/or fuel return systems

uncontrolled with fuel return systems

k

2,kpermktripr,hot,fi Tmfte )15(

r,hot,fir,warm,cr,hot,c eee

r,hot,fik

2,k2,ktankkr,warm,c

r,hot,fik

2,k2,ktankkr,hot,c

e,TTmfe

e,TTmfe

)1(

)5(

Page 14: Giorgos Mellios and Leon Ntziachristos

Emission factors – Motorcycles

Diurnal emissions (g/day)Canister-equipped

Uncontrolled

k

2,k1,kpermmax,kmin,kbreakkd ,TTm,TTmfe )()(

k

2,k1,kpermmax,kmin,ktankkd ,TTm,TTmfe )()(

Page 15: Giorgos Mellios and Leon Ntziachristos

Emission factors – Motorcycles

Hot soak emissions (g/procedure) canister-equipped

uncontrolled

k1,k1,kbreakks,hot,c

k1,k1,kbreakks,hot,fi

,TTmfe

,TTmfe

)3.5(

)1.5(

k1,k1,ktankks,hot,c

k1,k1,ktankks,hot,fi

,TTmfe

,TTmfe

)3.5(

)1.5(

Page 16: Giorgos Mellios and Leon Ntziachristos

Emission factors – Motorcycles

Running losses (g/trip) canister-equipped with carburettor and/or fuel return systems

uncontrolled with fuel return systems

k2,k2,kbreakkr,hot,c

k2,k2,kbreakkr,hot,fi

,TTmfe

,TTmfe

)2.5(

)1(

k2,k2,ktankkr,hot,c

k2,k2,ktankkr,hot,fi

,TTmfe

,TTmfe

)2.5(

)1(

Page 17: Giorgos Mellios and Leon Ntziachristos

Comparison with COPERT III – controlled vehicles

0

1

2

3

4

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

summer 20 - 35 °C winter 0 - 15 °C

Evap

orat

ive

emis

sion

s (g

)

running losses

hot soak emissions

diurnal losses

Fuel injection

0

3

6

9

12

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

summer 20 - 35 °C winter 0 - 15 °CEv

apor

ativ

e em

issi

ons

(g)

running losses

hot soak emissions

diurnal losses

Carburettor

Compared to the new methodology, COPERT III: overestimates diurnal and running losses

underestimates the effect of temperature and/or overestimates the effect of fuel volatility

Page 18: Giorgos Mellios and Leon Ntziachristos

Comparison with COPERT III – uncontrolled vehicles

0

5

10

15

20

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

summer 20 - 35 °C winter 0 - 15 °C

Evap

orat

ive

emis

sion

s (g

)

running losses

hot soak emissions

diurnal losses

Fuel injection

0

15

30

45

60

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

Pass

enge

r ca

rs<

1.4

lt

Pass

enge

r ca

rs1.

4 -

2.0

lt

Pass

enge

r ca

rs>

2.0

lt

CO

PERT I

II

summer 20 - 35 °C winter 0 - 15 °CEv

apor

ativ

e em

issi

ons

(g)

running losses

hot soak emissions

diurnal losses

Carburettor

Compared to the new methodology, COPERT III: overestimates diurnal and running losses

underestimates the effect of temperature and/or overestimates the effect of fuel volatility

Page 19: Giorgos Mellios and Leon Ntziachristos

Contributions to total emissions

Fleet information and exhaust emissions taken from TREMOVE v2.5 Observed differences on a country level are due to differences in

ambient temperatures (minimum and maximum), fuel volatility, vehicle usage (annual mileage) and technology mix (share of older uncontrolled vehicles, diesel vehicles, etc)

Country % Country %

AT 2.9 HU 4.4

BE 6.8 IE 12.7

CH 11.2 IT 8.5

CZ 5.0 LU 6.6

DE 11.5 NL 4.9

DK 6.1 NO 16.7

ES 9.0 PL 9.4

FI 5.1 PT 3.5

FR 10.5 SE 10.2

GR 8.8 SI 3.6

UK 15.2