flarenet reference manual

330
FLARENET 2004 Reference Manual

Upload: krvishwa

Post on 27-Oct-2015

738 views

Category:

Documents


51 download

DESCRIPTION

flarenet manual

TRANSCRIPT

Page 1: FLARENET Reference Manual

FLARENET 2004 Reference Manual

Page 2: FLARENET Reference Manual

Contents

1 INTERFACE................................................................................................ 10 Terminology .......................................................................................................... 11 Menu Bar .............................................................................................................. 13 Toolbar................................................................................................................. 14 Status Bar ............................................................................................................ 15 Editing Data Views ................................................................................................. 16

Changing Column Width..................................................................................... 16 Changing Column Order ..................................................................................... 17

Setting Preferences ................................................................................................ 18 General Tab ..................................................................................................... 18 Defaults Tab..................................................................................................... 20 Databases Tab.................................................................................................. 21 Reports Tab ..................................................................................................... 22 PFD Tab........................................................................................................... 23 Formatting Tab ................................................................................................. 24 Import/Export Tab ............................................................................................ 25

Windows Menu ...................................................................................................... 25 Help Menu ............................................................................................................ 26

2 CREATING AND SAVING CASES ................................................................. 27 Creating A New Case .............................................................................................. 27 Opening An Existing Case........................................................................................ 29 Saving A Case ....................................................................................................... 30

3 COMPONENTS............................................................................................ 31 Overview .............................................................................................................. 31 Selecting Components ............................................................................................ 32

Component Types ............................................................................................. 32 Component List................................................................................................. 32 Matching the Name String .................................................................................. 33 Removing Selected Components.......................................................................... 33

Adding/Editing Components..................................................................................... 33 Add Hypothetical Component/Edit Component View ............................................... 33

1 Interface 2

Page 3: FLARENET Reference Manual

Editing Database Components............................................................................. 37 Estimating Unknown Properties ........................................................................... 37

Organizing the Component List ................................................................................ 38 Sorting the Component List ................................................................................ 38 Move Single Component..................................................................................... 38 Swapping two components ................................................................................. 38 Changing the Components.................................................................................. 38 Combining Components ..................................................................................... 38

Binary Interaction Parameters.................................................................................. 39

4 SCENARIOS ............................................................................................... 41 Overview .............................................................................................................. 41 Scenario Manager .................................................................................................. 42 Adding/Editing Scenarios......................................................................................... 43

General Tab ..................................................................................................... 43 Constraints Tab ................................................................................................ 44 Sources Tab ..................................................................................................... 45 Estimates Tab................................................................................................... 45

Scenario Tools ....................................................................................................... 47 Adding Single Source Scenarios .......................................................................... 47

5 PIPE NETWORK ......................................................................................... 48 Pipe Manager ........................................................................................................ 48 Ignoring/Restoring Pipes ......................................................................................... 49

Connections Tab ............................................................................................... 50 Dimensions Tab ................................................................................................ 51 Fittings Tab ...................................................................................................... 53 Heat Transfer Tab ............................................................................................. 54 Methods Tab .................................................................................................... 56 Summary Tab................................................................................................... 58

Multiple Editing...................................................................................................... 59 Pipe Class Editor ............................................................................................... 60

6 NODES....................................................................................................... 61 Node Manager ....................................................................................................... 61 Ignoring/Restoring Nodes........................................................................................ 62 Connection Nodes .................................................................................................. 63

Connector ........................................................................................................ 63 Flow Bleed ....................................................................................................... 65 Horizontal Separator.......................................................................................... 67

1 Interface 3

Page 4: FLARENET Reference Manual

Orifice Plate ..................................................................................................... 71 Tee ................................................................................................................. 74 Vertical Separator ............................................................................................. 77

Boundary Nodes .................................................................................................... 80 Control Valve.................................................................................................... 80 Relief Valve ...................................................................................................... 87 Source Tools .................................................................................................... 94 Flare Tip .......................................................................................................... 95

7 CALCULATIONS ......................................................................................... 99 Calculation Options ................................................................................................ 99

General Tab ..................................................................................................... 99 Scenarios Tab..................................................................................................102 Methods Tab ...................................................................................................103 Warnings Tab ..................................................................................................106 Initialization Tab ..............................................................................................109 Check Model....................................................................................................110

Starting The Calculations .......................................................................................111 Efficient Modeling Techniques .................................................................................112

Data Entry ......................................................................................................113 Calculation Speed ............................................................................................114 Sizing Calculations ...........................................................................................115

8 DATABASES..............................................................................................116 Overview .............................................................................................................116 Database Features ................................................................................................117

Selection Filter.................................................................................................117 Maneuvering Through the Table .........................................................................118 Printing ..........................................................................................................118 Adding/Deleting Data........................................................................................118

Setting The Password ............................................................................................119 Pipe Schedule Database Editor ................................................................................119 Fittings Database Editor .........................................................................................121 Component Database Editor ...................................................................................122

Importing Component Data ...............................................................................122

9 VIEWING DATA AND RESULTS..................................................................124 Components Data .................................................................................................124 Scenarios Data .....................................................................................................125 Pipes Data ...........................................................................................................125

1 Interface 4

Page 5: FLARENET Reference Manual

Sources Data........................................................................................................126 Nodes Data ..........................................................................................................127 Messages.............................................................................................................127

Problems Tab ..................................................................................................128 Data Echo Tab .................................................................................................128 Solver Tab ......................................................................................................129 Sizing Tab.......................................................................................................129 Loops tab........................................................................................................130

Pressure/Flow Summary ........................................................................................130 Compositions........................................................................................................131 Physical Properties ................................................................................................132 Profile .................................................................................................................133 Flow Map .............................................................................................................134 Scenario Summary................................................................................................136 Graph Control.......................................................................................................137

Control Tab .....................................................................................................138 Axes Tab ........................................................................................................139 ChartGroup Tab ...............................................................................................141 ChartStyles Tab ...............................................................................................143 Titles Tab........................................................................................................144 Legend Tab .....................................................................................................146 ChartArea Tab .................................................................................................148 Plot Area Tab...................................................................................................150 ChartLabel Tab ................................................................................................152 View3D tab .....................................................................................................154 Markers Tab ....................................................................................................155

Trace Window.......................................................................................................156

10 PFD ........................................................................................................157 Overview .............................................................................................................157 Object Inspection..................................................................................................159 PFD Toolbar .........................................................................................................159

PFD Toolbar Icons ............................................................................................159 Print Options ...................................................................................................161 Stream Label Options .......................................................................................162 Viewports Option .............................................................................................162

Installing Objects ..................................................................................................163 Connecting Objects ...............................................................................................164 Manipulating the PFD.............................................................................................164

1 Interface 5

Page 6: FLARENET Reference Manual

Selecting PFD Objects.......................................................................................164 Unselecting Objects..........................................................................................165 Moving Objects ................................................................................................165 Locating Objects on the PFD ..............................................................................165 Regenerate PFD ...............................................................................................165

Printing and Saving the PFD Image..........................................................................166 Changing the PFD View Options ..............................................................................167

11 PRINTING, IMPORTING AND EXPORTING .............................................168 Printing ...............................................................................................................169

FMT Files ........................................................................................................170 Location-Specific Printing ..................................................................................172 Printer Setup...................................................................................................173

Import Wizard ......................................................................................................173 Import Data Layouts.........................................................................................173 Using the Import Wizard ...................................................................................174

Importing Source Data ..........................................................................................182 ASCII Text Files ...............................................................................................183 Importing HYSYS Source Data ...........................................................................187

Export Wizard.......................................................................................................189 Export Data Layouts ..............................................................................................189

Using the Export Wizard....................................................................................189 Import/Export Examples ........................................................................................198

Default XML Import ..........................................................................................198 Access Database Import Using Select Criteria.......................................................199 Import of Updated Source Data from Excel ..........................................................206 Export to Access Database For FLARENET 3.05....................................................209 Export Pipe Data Table to Excel..........................................................................210 Merge Cases Through Export/Import Wizards .......................................................213

12 AUTOMATION.........................................................................................215 Overview .............................................................................................................215 Objects................................................................................................................216

Object Hierarchy ..............................................................................................216 The FLARENET Type Library...............................................................................217 Object Browser ................................................................................................217 Automation Syntax...........................................................................................220

FLARENET Object Reference ...................................................................................226 Application ......................................................................................................226 Bleed .............................................................................................................227

1 Interface 6

Page 7: FLARENET Reference Manual

Bleeds ............................................................................................................228 Component .....................................................................................................228 Components....................................................................................................230 Connector .......................................................................................................230 Connectors......................................................................................................231 ControlValve....................................................................................................231 ControlValves ..................................................................................................233 HorizontalSeparator..........................................................................................233 HorizontalSeparators ........................................................................................234 Nodes.............................................................................................................234 OrificePlate .....................................................................................................235 OrificePlates ....................................................................................................235 Pipe ...............................................................................................................236 Pipes..............................................................................................................238 ReliefValve ......................................................................................................238 ReliefValves ....................................................................................................240 Scenario .........................................................................................................240 Scenarios........................................................................................................241 Solver ............................................................................................................242 Tee ................................................................................................................243 Tees...............................................................................................................243 Tip.................................................................................................................244 Tips ...............................................................................................................245 VerticalSeparator .............................................................................................246 VerticalSeparators............................................................................................246

Example – Automation In Visual Basic......................................................................247

A THEORETICAL BASIS................................................................................254 Pressure Drop.......................................................................................................254

Pipe Pressure Drop Method................................................................................254 Fittings Pressure Change Methods ......................................................................262

Vapor-Liquid Equilibrium ........................................................................................271 Compressible Gas ............................................................................................271 Vapor Pressure ................................................................................................271 Soave Redlich Kwong........................................................................................272 Peng Robinson.................................................................................................273

Physical Properties ................................................................................................274 Vapor Density..................................................................................................274 Liquid Density..................................................................................................274 Vapor Viscosity ................................................................................................275 Liquid Viscosity ................................................................................................275 Thermal Conductivity........................................................................................278

1 Interface 7

Page 8: FLARENET Reference Manual

Enthalpy .........................................................................................................278 Noise ..................................................................................................................282

B FILE FORMAT ...........................................................................................284 Import/Export Details ............................................................................................284

Process Descriptions.........................................................................................284 Definition File Formats ......................................................................................288 Recognized Objects and Items ...........................................................................294

FMT Files Format...................................................................................................309

C REFERENCES ............................................................................................317

D GLOSSARY OF TERMS...............................................................................319 Adiabatic Flow ......................................................................................................319 Choked Flow.........................................................................................................319 Critical Pressure....................................................................................................319 Critical Temperature..............................................................................................319 Dongle ................................................................................................................319 Equivalent Length .................................................................................................319 Isothermal Flow....................................................................................................320 MABP ..................................................................................................................320 Mach Number .......................................................................................................320 Node...................................................................................................................320 Reduced Pressure .................................................................................................320 Reduced Temperature............................................................................................320 Scenario ..............................................................................................................321 Schedule .............................................................................................................321 Security Device.....................................................................................................321 Source ................................................................................................................321 Static Pressure .....................................................................................................321 Tailpipe ...............................................................................................................321 Total Pressure ......................................................................................................321 Velocity Pressure ..................................................................................................322

GENERAL INFORMATION..............................................................................323 Copyright.............................................................................................................323 Related Documentation..........................................................................................324

1 Interface 8

Page 9: FLARENET Reference Manual

TECHNICAL SUPPORT...................................................................................325 Online Technical Support Center .............................................................................325 Phone and E-mail..................................................................................................326

INDEX ..........................................................................................................327

1 Interface 9

Page 10: FLARENET Reference Manual

1 Interface

The FLARENET interface has been designed to give you a great deal of flexibility in the way in which you enter, modify and view the data and results which comprise your model of a flare system. This chapter describes the various components of the FLARENET interface. If you need help with any particular task, the on-line help can give you step-by-step instructions.

1 Interface 10

Page 11: FLARENET Reference Manual

Terminology The following view of the FLARENET screen shows most of the interface components that you will encounter. The terminology used to describe these components throughout this manual is given in the following table.

Fig 1.1

1 Interface 11

Page 12: FLARENET Reference Manual

Term Definition

Button Most views contain buttons. They perform a specific action when selected (either by clicking the left mouse button or via the appropriate hot key combination).

Icon Icons are like buttons, they perform a specific action when selected (by clicking the left mouse button).

Checkbox Data items or settings that have an On/Off status are indicated by checkboxes. Selecting the checkbox will turn it on, selecting it again will turn it off.

Data View A window that contains a non-editable view of the model data and/or the calculation results.

view A modal window which allows you to enter the model data. You cannot access any other element in the model until this form has been closed.

Drop-Down List A drop-down list is indicated by a down arrow next to a field. If you click on this arrow, a list of available options for that field will be displayed.

Throughout this manual whenever any reference is made to clicking on a button, icon, or menu item, unless otherwise specified it refers to the left mouse button.

Input Field Data items that are alphanumeric in nature are entered into an input field. In general, the data that is entered in a field is checked for validity before you can continue.

Menu Bar The Menu Bar displays all of the program functions, which can be accessed by clicking on the appropriate menu item. This is described in more detail later in the chapter.

Modal/Non-Modal View

When a view is modal, you cannot access any other element in the simulation until you close it. Non-modal views do not restrict you in this manner. You can leave a non-modal view open and interact with any other view or menu item.

Scenario Selector This drop-down list shows the current scenario selected for the case. On clicking the down arrow, located beside the field, a list of all the scenarios will be displayed.

Calculation Mode Selector

This drop-down list shows the current calculation mode selected. Clicking the down arrow allows you to choose from Rating, Design or Debottleneck calculations.

Scroll Bar Whenever the information associated with a view or list exceeds what can be displayed, you may move through the view or list by using the scroll bar.

Scroll Button Part of the Scroll Bar, allowing you to slide the list up or down, or left or right.

Status Bar This displays the current model status. For more information, see Status Bar.

Title Bar Indicates the FLARENET file currently loaded.

Toolbar The Toolbar contains a number of controls (icons/buttons) which give short-cut access to the most commonly used program functions. This is described in more detail later in this chapter.

Tool Tip Whenever you pass the mouse pointer over one of the icons/buttons on the toolbar, a Tool Tip will be displayed. It will contain a summary description of the action that will take place if you click on that icon/button.

A modal view is characterized by a single border and the absence of the minimize/maximize icons in the upper right corner of the view. A non-modal view has a double border, and has the minimize/maximize icons.

1 Interface 12

Page 13: FLARENET Reference Manual

Menu Bar The menu bar allows access to all the program functions via menus and sub-menus.

Fig 1.2

The menu bar contains commands for each of the main areas of program functionality:

Menu Description

File Work with files (New, Open, Save), supply Case Description, import/export files, print, adjust printer setup, and set preferences. Also a list of previously opened cases is displayed at the bottom of the menu.

Build Access the Managers for Components, Scenarios, Pipes and Nodes.

Tools Access various FLARENET utilities.

Calculations Set calculation options and start calculations.

Database Manages the pipe schedule, pipe fittings, and pure component databases and allows you to set a password.

View Look at summaries of the Data, the Results, and the Process Flow Diagram (PFD).

Windows Arrange the display of windows (Cascade, Tile, etc.)

Help Access on-line help and program version information.

1 Interface 13

Page 14: FLARENET Reference Manual

As an alternative to using the mouse to click on the menu item, you can hit the ALT key, then the underlined letter key. For example, to import source data from the HYSIM process simulator as shown above you would hit the ALT key, and then while holding down the ALT, press the F, I and H keys in sequence (abbreviated as ALT F I H).

Toolbar The Toolbar contains a set of controls which give short-cut access to some of the program functions without the need to navigate through a series of menus and/or sub-menus.

Name Icon Description

New Case

Starts a new case.

Open Case

Opens a case that has been previously saved to disk.

Save Case

Saves a case to disk using the current file name. If you want to save the case with a different file name, use the Save As command in the File menu.

Print Data and Results

Opens a Print view, which allows you to print the entries from the Database, Data and Results groups. You can either print to a printer or to a file.

Display Metric Units

Displays data and results in Metric units.

Display British Units

Displays data and results in British units.

Display PFD

Displays the Process Flow Diagram.

Display Pipe Data View

Displays the Pipe data view.

Display Source Data View

Displays the Source data view.

Display Node Data View

Displays the Node data view.

Open Pressure/Flow Summary View

Displays the Pressure/Flow Summary view.

Open Profile Graphical View

Displays the graphical Profile view.

Start Calculations

Starts the FLARENET calculations.

Stop Calculations

Stops the FLARENET calculations.

1 Interface 14

Page 15: FLARENET Reference Manual

There are also two drop-down lists in the toolbar:

Name Description

Calculation Mode Selector

This drop-down list selects and displays the current calculation mode. The options are:

Rating - It is used to check the existing flare system in a plant. This method calculates the pressure profile for the existing pipe network.

Design - It is used to design a new flare system for the plant. During calculation it adjusts the diameters of all pipes until all the design constraints of MABP velocity, etc. have been met. These diameters can be smaller than the initially defined data.

Debottleneck - It is used to determine which areas of the flare system must be increased in size due to either the uprating of the existing plant and hence flare loading, or the tie-in of new plant. This mode can only increase pipe diameters from their current size, it cannot reduce them.

Scenario Selector This drop-down list show the current scenario selected for the case. On clicking the down arrow, located beside the field, a list of all the scenarios will be displayed.

The Tool Bar can be hidden by unchecking the Show Toolbar checkbox in the Preferences view.

Status Bar Fig 1.3

1 Interface 15

Page 16: FLARENET Reference Manual

The status bar displays the current status of the model. There are two general regions in the status bar:

• The first region displays the program status - If Edit is displayed, you can make changes to your model. After calculations, this field will display Done.

The calculation time can be reduced by hiding the status bar, which is particularly useful for large cases.

• The second region displays important information during calculations, such as the iteration error and the current pipe being solved.

Note: The Status Bar can be hidden by unchecking the Show Status Bar checkbox in the Preferences view.

Editing Data Views You can change the position and width of some of the columns in each of the data views such as the Pressure/Flow Summary view.

Changing Column Width To change the width of a column, move the mouse pointer until it is over the vertical column separator line to the right of the column that you want to resize (e.g. Flowrate). The mouse pointer will change to a double-headed arrow.

Fig 1.4

Click and hold down the primary mouse button, then drag the separator line to the new position.

The column width set here remains in effect for the duration of the current session and is saved when you exit FLARENET.

1 Interface 16

Page 17: FLARENET Reference Manual

Changing Column Order To reposition columns, first select the columns by positioning the mouse pointer in the column heading(s) (you will see a down arrow), then clicking. The column heading will now be shaded.

Fig 1.5

Now click anywhere in the shaded region and hold down the primary mouse button. The move column cursor will be shown, and there will be its now two colored arrows either side of the header which contains the cursor. While holding down the mouse button, drag the column(s) to their new position. The two colored arrows either side of the header will move as you drag the column(s) and indicate where the selected column(s) will be transferred. In this case, the Mass Flowrate and the Molar Flowrate columns will be positioned between the Noise and the Source Back Pressure columns.

Fig 1.6

Release the mouse button. The selected column(s) will remain in their new location within the data view.

Note: You can highlight multiple columns by clicking and dragging the mouse over the adjacent columns you want to select. Alternatively, you could hold the SHIFT key and click on the additional adjacent columns you want to select.

1 Interface 17

Page 18: FLARENET Reference Manual

Fig 1.7

The change in column order remains in effect for the duration of the current session and is saved when you exit FLARENET.

Setting Preferences The Preferences view allows you to specify default information for the simulation case.

To access the Preferences view, select Preferences from the File menu (ALT

F P). The Preferences view will be displayed.

The information on the Preferences view is divided into different tabs:

General, Defaults, Databases, Reports, Import/Export and PFD tab.

General Tab Fig 1.8

1 Interface 18

Page 19: FLARENET Reference Manual

The following fields are available on this tab:

Options Description

Show Status Bar Select this checkbox to display the Status bar. Unchecking this option to hide the Status Bar can speed up calculations in large cases.

Show Tool Bar Activate this checkbox to display the Tool bar.

Timed Backup Select this checkbox to activate a periodically backup of the current case. File is saved back to the directory as Backup.fnw.

Backup Frequency This field is only accessed if the Timed Backup checkbox is selected. The default value is 10 minutes.

Compress Files If checked, the data files will be saved in a compressed format that can reduce the file size of the saved cases by a factor of up to 50.

Edit Objects On Add On activating this checkbox, the editor view will be displayed as the nodes/pipes are added to the PFD.

Units Specify the units set to be used for the simulation. The available unit sets are Metric and British.

Work Directory Specify the directory for temporary files, which should be writeable.

Auto Flash Source Nodes Activate the Auto Flash Source Nodes checkbox to automatically flash the source fluid when it is edited. Otherwise sources are flashed during the calculation.

Display Total Pressure Select this checkbox to display the total pressure, which is a sum of the static pressure and the velocity pressure, instead of the static pressure.

Display Velocity Properties Used By Pressure Drop Calculation

Select this checkbox to display properties that are velocity dependant based upon the velocities derived from rated flow rather than from the nominal flow.

Save Phase Properties Phase properties can be saved by activating this checkbox. The disk space/memory requirements are significantly effected by this option, especially for large cases. It is advised to select this option only if you have a high specification PC.

Hide Results For Uncalculated Pipes

Selecting this option will hide the results for pipes that have not been calculated in the last run of the model. This prevents cluttering of the results view with uncalculated values from sections of the flare network that might have been ignored.

Trace Buffer Size This field specifies the size in bytes of the text buffer displayed by the Trace window. Larger values will allow more text to be stored. The default value of 32000 is adequate for most cases.

1 Interface 19

Page 20: FLARENET Reference Manual

Defaults Tab Fig 1.9

The default data values given on the Default tab applies only to new instances of pipe class of pipes and nodes. The value for each instance may be freely edited at any stage.

The options available on this tab are:

Options Description

Composition Basis Select composition basis for each of the relief sources:

Molecular Weight - The molecular weight of the fluid is given. Mole fractions are estimated by FLARENET, based upon the list of installed components.

Mole/Mass Fractions - A full component-by-component composition must be given for the fluid.

Tee Type Select the tee type to be set as a default for all the tees in the model. The available tee types are 90o, 60o, 45o and 30o tee.

Pipe Material This is the default material to be used in new pipes. The two materials available for selection are Carbon Steel and Stainless Steel.

Use Pipe Class Activate this checkbox to use the pipe class to restrict the available uses for pipes.

CS/SS Roughness Set the material roughness to be used in calculation. The default CS Roughness is 0.04572 mm and SS Roughness is 0.02540 mm.

CS = Carbon Steel

SS = Stainless Steel

1 Interface 20

Page 21: FLARENET Reference Manual

Databases Tab The databases for the Components, Pipe Schedules and Pipe Fittings can be specified here.

Fig 1.10

If the Save Database Directories With Model check box in checked then these locations are stored with the model. This is useful if the databases have been modified for use with specific models.

1 Interface 21

Page 22: FLARENET Reference Manual

Reports Tab You can specify the directories in which to save the report definition for each of the entries in the Report list

Fig 1.11

If the Save Report Format Paths With Model check box in checked then these locations are stored with the model. This is useful if the report formats have been modified for use with specific models.

1 Interface 22

Page 23: FLARENET Reference Manual

PFD Tab Fig 1.12

The options available on this tab are:

Option Description

Use Wire Frame Icons When selected, pipe and node icons in the PFD are drawn as wireframe outlines rather than shaded pictures. Selecting this option can speed the drawing of the PFD for large models. If the PFD is already open it must be closed and reopened to see the change.

Font Name Allows selection of the font to be used for pipe and node labels in the PFD.

Font Size Allows definition of the size of the font used for pipe and node labels in the PFD.

2.5 x Scale factor The factor to be used by FLARENET to scale the PFD when importing models created in earlier versions of FLARENET.

1 Interface 23

Page 24: FLARENET Reference Manual

Formatting Tab Fig 1.13

The options available on this tab are:

Option Description

Data Formatting Group

Display Using Significant Figures

Activate this check box to display all results to a number of significant figures rather than to a fixed number of decimal places.

Sig. Figures The number of significant figures used for the display of results.

Printing Group

Use Header Activate this check box to add a header at the top of each printed page.

Use Footer Activate this check box to add a footer at the Bottom of each printed page.

Binding margin A margin of this size is placed along the long side of printouts to allow for binding.

Tiled Scale Factor For tiled printouts of the PFD view, the diagram will be scaled by this factor. Larger values will tile the printout over more pages.

1 Interface 24

Page 25: FLARENET Reference Manual

Import/Export Tab You can specify the name and location of the Import and Export definition files to be used when transferring information between FLARENET and Access, Excel or XML files. Entries allow specification of the default definition files and the base definition files to be used for creating new customized import export definition files.

Fig 1.14

If the Save Import/Export Paths With Model check box in checked then these locations are stored with the model. This is useful if the definition files have been modified for use with specific models.

Windows Menu This is a general Windows application function. The options are:

Option Description

Cascade Cascade all currently-open windows.

Tile Horizontally Tile all currently-open windows horizontally.

Tile Vertically Tile all currently-open windows vertically.

Arrange Icons Organize icons at the bottom of the screen.

Open All Open all the windows, which can be accessed through the View menu bar

Close All Close all windows.

1 Interface 25

Page 26: FLARENET Reference Manual

Help Menu The options under the Help menu are:

Option Description

Contents Displays the FLARENET Help contents.

Using Help Displays the general Windows Help on using Help.

Technical Support Displays a list of world wide Technical Support offices.

About The About option displays the About FLARENET view.

Fig 1.15

1 Interface 26

Page 27: FLARENET Reference Manual

2 Creating and Saving Cases

Creating A New Case When you start FLARENET, the Desktop area will be blank. Before you can work, you must either create a new case, or retrieve a saved case.

When you start FLARENET, a new case is automatically created.

To start a new case, do one of the following:

• Select New from the File menu in the menu bar.

• Use the hot key combination ALT F N.

• Click on the New Case icon in the toolbar.

The Case Description view will be displayed.

Fig 2.1

2 Creating and Saving Cases 27

Page 28: FLARENET Reference Manual

Enter appropriate data into the User Name, Job Code, Project, and Description fields and then click the OK button.

Note: The case description can be modified later by selecting Description from the File menu.

After you enter the case description information, the Component Manager view appears as shown in the figure below:

Fig 2.2

Select the desired components as described in Components and click OK. You can now set up the simulation.

2 Creating and Saving Cases 28

Page 29: FLARENET Reference Manual

Opening An Existing Case When you open a case that has previously been stored on disk, all data from the current case is cleared; however, the arrangement of any windows that are already open is maintained.

To open an existing case, do one of the following:

• Select Open from the File menu.

• Use the hot key combination ALT F O.

• Click the Open Case icon on the toolbar.

The File Open view appears.

Fig 2.3

Select the file to be opened by doing one of the following:

• Type the file name (including exact directory path if necessary) into the Filename field and click the OK button.

• Search the directory using the Look in drop-down menu and upon finding the file, click once on the file name to highlight it and then click the OK button.

• Search the directory using the Look in drop-down menu and upon finding the file, double click the file name.

It is also possible to open a recently used file by selecting it from the list at the bottom of the File menu.

2 Creating and Saving Cases 29

Page 30: FLARENET Reference Manual

Saving A Case Cases may either be saved using the current case name or under a new name.

To save a case using the current file name, do one of the following:

• Select Save from the File menu.

• Use the hot key combination ALT F S.

• Click on the Save Case icon on the toolbar.

To save a case using a new name, do one of the following:

• Select Save As from the File menu.

• Use the hot key combination ALT F A.

When you’re saving the case for the first time or with a new name, the Save FLARENET Model view will appear as shown in Figure 2.4.

Fig 2.4

Select the file to be saved by directly entering it, or selecting the appropriate file from the list in the view which contains all the files and folders. The Save in drop-down list can be used to change the directory and/or drive.

Clear the Filename field, type in the file name you want to give to the case in and click on the OK button.

Note: You do not have to include the .fnw extension. FLARENET will add it on automatically.

You will be asked to confirm that you want to overwrite if an existing file is named.

2 Creating and Saving Cases 30

Page 31: FLARENET Reference Manual

3 Components

Overview Data for all components that will be used in the simulation must be selected before the sources are defined. These components may be taken from the standard component library, or you may define your own components, known as hypothetical components.

You may select components from the Component Manager, which can be accessed by selecting Components from the Build menu.

The Component Manager view will be displayed:

Fig 3.1

This view displays all of the Database and Selected components, and provides various tools which you can use to add and edit database and hypothetical components.

3 Components 31

Page 32: FLARENET Reference Manual

Selecting Components

Component Types You may filter the list of available components to include only those belonging to a specific family. The All and None buttons turn all of the filters on and off, respectively, while the Invert button toggles the status of each checkbox individually. As an example, if only the Hydrocarbons (HC) and Misc options were on, and you pressed the Invert button, then these two options would be turned off, and the remaining options would be turned on.

Component List Components can be chosen from the Database list, and added to the Selected group, using one of the following methods:

• Arrow Keys - The < > or < > arrow keys move the highlight up one component, and the < > or < > arrow keys move the highlight down one component.

• PageUp/PageDown - Use these keyboard keys to advance an entire page forward or backward.

• Home/End - The <Home> key moves to the start of the list and the <End> key moves to the end of the list.

• Scroll Bar - With the mouse, use the scroll bar to move up and down through the list.

• Enter a character - When you type a letter or number, you will move to the next component in the list which starts with that character. If you repeatedly enter the same character, you will cycle through all of the components which start with that character.

You can highlight multiple components to add to the Selected list using the normal windows SHIFT-click and CTRL-click options in the Database list.

Note: You can select multiple components by using the SHIFT or CTRL keys as you select components.

To add a component, you must first highlight it (by moving through the list until that component is highlighted), then transfer it by double-clicking on it or clicking the Add button.

3 Components 32

Page 33: FLARENET Reference Manual

Matching the Name String Another way to add components is through the Selection Filter feature. The Selection Filter cell accepts keyboard input, and is used to locate the component(s) in the current list that best matches your input.

The interpretation of your input is limited to the Component Types which are checked. You may use wildcard characters as follows:

• ? - Represents a single character.

• * - Represents a group of characters of undefined length.

• Any filter string has an implied '*' character at the end.

Some examples are shown here:

Filter Result

methan methanol, methane, etc.

*anol methanol, ethanol, propanol, etc.

?-propanol 1-propanol, 2-propanol

*ane methane, ethane, propane, i-butane, etc.

As you are typing into the Selection Filter cell, the component list is updated, matching what you have presently typed. You may not have to enter the complete name or formula before it appears in the component list.

Removing Selected Components You can remove any component from the Selected Component list:

1 Highlight the component(s) you want to delete.

2 Click either the Delete button on the Component Manager view, or press the DELETE key.

You can select multiple components using SHIFT-click and CTRL-click options. Once the component(s) are removed from the list, any source compositions

that used this component will be normalized.

Adding/Editing Components To create a new component (hypothetical), click the Hypothetical button. Hypothetical components are set up in the same manner as database components. Previously defined hypothetical components can be changed by selecting them in the Selected Component list and then clicking the Edit button.

Add Hypothetical Component/Edit Component View Upon clicking either the Hypothetical button or the Edit button the Component Editor view opens up.

3 Components 33

Page 34: FLARENET Reference Manual

Identification Tab The minimum data requirements for creating a component are specified here:

Fig 3.2

Component Types:

Hydrocarbon

Miscellaneous

Amine

Alcohol

Ketone

Aldehyde

Ester

Carboxylic Acid

Halogen

Nitrile

Phenol

Ether

The following fields are available on this tab:

Input Field Description

Name An alphanumeric name for the component (e.g. - Hypo -1). Up to 15 characters are accepted.

Type The type of component (or family) can be selected from the drop-down menu provided. There is a wide selection of families to choose from, which allows better estimation methods to be chosen for that component.

ID The ID number is provided automatically for new components and cannot be edited.

Mol. Wt. The molecular weight of the component. Valid values are between 2 and 500.

NBP The normal boiling point of the component.

Std. Density The density of the component as liquid at 1 atm and 60 F.

Watson K The Watson characterization factor.

3 Components 34

Page 35: FLARENET Reference Manual

Critical Tab Critical properties are specified here.

Fig 3.3

The following fields are available on this tab:

Input Field Description

Critical Pressure The critical pressure of the component. If the component represents more than a single real component, the pseudo critical pressure should be used. Valid values are between 0.01 bar abs and 500 bar abs.

Critical Temp. The critical temperature of the component. If the component represents more than a single real component, the pseudo critical temperature should be used. Valid values are between 5 K and 1500 K.

Critical Volume The critical volume of the component. If the component represents more than a single real component, the pseudo critical volume should be used. Valid values are between 0.001 m3/kg and 10 m3/kg.

Acentric Factor The acentric factor of the component. Valid values are between -1 and 10.

Acentric Factor (SRK) The Soave-Redlich-Kwong acentric factor of the component (also called the COSTALD Acentricity).

3 Components 35

Page 36: FLARENET Reference Manual

Other Tab Coefficients for the polynomial equations for the prediction of Ideal Gas thermodynamic properties and parameters for the viscosity calculations are specified here:

Fig 3.4

The following fields are available on this tab:

Input Field Description

Hi A, Hi B, Hi C, Hi D, Hi E, and Hi F The coefficients for the ideal gas specific enthalpy equation:

Hi

A BT CT2 DT3 ET4 FT5+ + + + +=

Entropy Coef. The coefficient for the entropy equation.

Viscosity A and Viscosity B Viscosity coefficients used in the NBS Method (Ely and Hanley, 1983).

3 Components 36

Page 37: FLARENET Reference Manual

Editing Database Components If you want to change the data for one of the database components, e.g. Methane, you will find that opening the Component Edit view for this component will display read only values that cannot be changed.

Fig 3.5

In order to update the data for a database component it must first be changed to a hypothetical component.

This is done by clicking the Hypothetical button on the Component Editor view. FLARENET will convert the displayed database component to a hypothetical as indicated by the adding of a * character to the name and by changing the component ID to -1. The data values can then be updated.

At the very minimum, you need to specify the Molecular Weight. However, it is a good practice to specify at least two of the following properties:

Molecular Weight

Normal Boiling Point

Standard Density

Estimating Unknown Properties If any of the above data is unknown, then click Estimate to fill-in the unknown properties.

Supply as many properties as are known, so that the estimation can be as accurate as possible.

3 Components 37

Page 38: FLARENET Reference Manual

Organizing the Component List The Selected Components list can be organized in the following different ways.

Sorting the Component List The Sort button allows the whole component list to be sorted by the criteria selected from the following pop up list:

Sorting Option Description

Name Arranged components alphabetically in descending order.

Molecular Weight Components are listed according to increasing molecular weight.

Normal Boiling Point (NBP) Select this to arrange components in increasing NBP value.

Group Group the components by type.

Move Single Component A single component may be moved up and down the list by clicking on it in the list of selected components and then clicking either the up or down arrow buttons.

Swapping two components In the Component Manager view, select the first component in the Selected Component list by clicking on it. Then select the second component either using the SHIFT key if the two are in sequence or pressing the CTRL key and then clicking on the component. Swap the two components by clicking the Swap button.

Changing the Components You can switch the components in the Selected Component list with the ones in the Database list while maintaining the source mole fractions.

In the Component Manager view, select the components in both the Selected Components and the Database lists. Click the Change button to switch the two components.

Combining Components Multiple components can be combined and represented by a single component to reduce the number of components in the model.

This is done by selecting the components you want to combine by control-clicking them in the Selected Components list and then clicking the Combine button. A pop-up view will then ask you to select which of these combined components should be used as the target component to combine

3 Components 38

Page 39: FLARENET Reference Manual

your selected components into. Once the target component has been selected the combined components will update each source in the model by summing the composition of all of the combined components and assigning it to the target component.

Reducing the number of components in this way is useful since it can greatly speed the calculations. This is especially true where a model contains sources defined with a long list of hypothetical components.

For example consider a model containing the hypothetical components BP200, BP225, BP250, BP275, BP300 boiling at 200 °C, 225 °C, 250 °C, 275 °C and 300 °C respectively. Since these components are likely to stay in the liquid phase throughout the flare system, they may be combined into a single component, BP250 without significant loss of accuracy. As another example, in a purely gas phase flare system it is possible to combine isomers such as i-Butane and n-Butane into a single component n-Butane without compromising results.

Binary Interaction Parameters Binary Interaction Coefficients, often known as KIJ’s are factors that are used in equations of state to better fit the interaction between pairs of components and hence improve the accuracy of VLE calculations. FLARENET allows the user to specify binary interaction parameters for the Peng Robinson and Soave Redlich Kwong VLE methods or to estimate them through the Binary Coeffs tab of the Component Manager view as shown here.

Fig 3.6

3 Components 39

Page 40: FLARENET Reference Manual

To define binary interaction coefficients first select either the Peng Robinson or Soave Redlich Kwong VLE method using the drop-down list at the top of the view.

Note: Binary interaction coefficients are not used by either the Ideal Gas or Lee Kesler VLE methods at present. The view will show the binary interaction coefficient matrix for the selected VLE method.

Individual binary interaction parameters are set by selecting the required entry in the matrix and typing in the new value.

Note: The matrix is symmetrical i.e. KJI is the same value as KJI and updating an entry will also update the corresponding entry in the table. E.g. updating the entry in the Methane column, Propane row will also update the entry in the Propane column, Methane row.

Individual binary interaction parameters may be estimated by selecting the required entry in the matrix and clicking the Estimate button. The estimation method is based on the components boiling point, standard liquid density and critical volume.

It is possible to set several binary interaction parameters at the same time either by clicking the Select All button to select the whole matrix or by control-clicking the two corners of a rectangular area in the matrix. The selected entries can then be estimated by clicking the Estimate button or set to 0.0 by clicking the Zero HC-HC button.

The Reset All button causes all interaction parameters to be set to their default values. Generally this is 0.0 for hydrocarbon components with non zero values being supplied only for common polar components.

If the Auto Estimate check box is checked then the interaction parameters for new components are automatically estimated as they are added to the model.

3 Components 40

Page 41: FLARENET Reference Manual

4 Scenarios

Overview A scenario defines a set of source conditions (flows, compositions, pressures and temperatures) for the entire network. The design of a typical flare header system will be comprised of many scenarios for each of which the header system must have adequate hydraulic capacity. Typical scenarios might correspond to:

• Plantwide power failure.

• Plantwide cooling medium or instrument air failure.

• Localized control valve failure.

• Localized fire or Depressurization.

The scenario management features within FLARENET allow you to simultaneously design and rate the header system for all of the possible relief scenarios.

Note: Although the major relief scenarios will normally constrain the size of the main headers, care should be taken in the evaluation of velocities in the individual relief valve tailpipes and sub headers. When looking at relief valves which might operate alone, lower back pressures in the main headers may lead to localized high velocities and consequently choked flow in the tail pipes.

As well as having different source conditions, each scenario can have unique design limitations that will be used either to size the pipes or to highlight problems when an existing flare system is being rated. For example, a Mach number limit of 0.30 might be applied for normal flaring compared to a Mach number limit of 0.50 or greater at the peak flows encountered during plant blowdown.

4 Scenarios 41

Page 42: FLARENET Reference Manual

Scenario Manager Scenarios are managed via the Scenario Manager view. This view has buttons that allow you to add, edit or delete scenarios as well as to select the current scenario for which scenario specific data is displayed. All cases have at least one scenario.

Scenarios can also be selected by selecting the scenario in the Scenario selector on the tool bar.

To access the Scenario Manager view, select Scenarios from the Build menu.

The Scenario Manager view will be displayed.

Fig 4.1

The Scenario Manager view displays all Scenarios in the case, and indicates the Current Scenario. Several buttons are available:

Button Description

Add Adds a new scenario.

Edit Edits the highlighted scenario.

Delete Removes the currently highlighted scenario. There must always be at least one scenario in the case.

Sort Arrange the scenario list alphabetically in descending order.

Up and Down Arrow Move the highlighted scenario up and down the Scenario list.

Swap Swap the two selected scenarios in the list.

Current To make a scenario the current one, highlight the appropriate scenario, and then click on the Current button.

OK Closes the Scenario Manager view.

4 Scenarios 42

Page 43: FLARENET Reference Manual

Adding/Editing Scenarios To add a scenario, click the Add button on the Scenario Manager view. If there is already a scenario present in the Scenario list, clicking the Add button will show a Clone Scenario Form view. You can select an existing scenario from the list to be used to initialize the flows, compositions, pressures and temperatures of all the sources in the new scenario.

FLARENET has no pre-programmed limits on the number of scenarios which can be defined within a single case.

To edit a scenario, highlight it, and then click the Edit button. For adding and editing a scenario, the views are similar except for the Next button on the Scenario Editor view for adding a scenario.

The Next button allows you to continue adding scenarios without returning to the Scenario Manager.

General Tab You may provide the following information on the General tab:

Fig 4.2

Data Description

Name An alphanumeric description of the scenario (e.g. Power Failure). Up to 40 characters are accepted.

System Back Pressure The system back pressure at the flare tip exit. This will normally be atmospheric pressure, but can be set to represent system design conditions at the exit point. If left empty, the value on the Calculation Options Editor view will be used. The minimum value is 0.01 bar abs.

4 Scenarios 43

Page 44: FLARENET Reference Manual

Constraints Tab The Constraints tab requires the following information for both headers and tailpipes.

Fig 4.3

Tailpipes are indicated by the Tailpipe field on the Connections tab of the Pipe Editor view.

Data Description

Mach Number The maximum allowable Mach number for all pipe segments. Calculated values that exceed this number will be highlighted in the results.

Vapor Velocity

The maximum allowable vapor velocity. Calculated velocities that exceed this value will be indicated in the results.

Liquid Velocity

The maximum allowable liquid velocity. Calculated velocities that exceed this value will be indicated in the results.

Rho V2 It is the density times the velocity square. This value is normally used as a limiting factor to prevent erosion.

Noise The maximum allowable sound pressure level at a distance of 1 meter for all pipe segments. This is an average value over the length of the pipe. Calculated values that exceed this specification will be highlighted in the results.

You may provide different design information (Mach Number, Noise at 1 m, Vapor Velocity, Liquid Velocity) for the Headers and Tailpipes.

Any field may be left empty, in which case they will be ignored.

Note: Whilst rating the network you may define a Mach number constraint of 1.00, in order to highlight only choked flow conditions. This is not recommended for design calculations where a more reasonable value such as 0.5 or 0.7 will lead to a more rapid solution towards the maximum allowable back pressure constraints.

4 Scenarios 44

Page 45: FLARENET Reference Manual

Sources Tab When you select the Sources tab, you will see a view similar to the one shown in Figure 4.4. All sources are displayed on this tab.

If a source is ignored, the MABP constraint is ignored by sizing calculations.

Note: If you are setting up a new case, the Sources tab will not show any sources.

Fig 4.4

This tab is useful in that you can easily toggle whether or not individual sources are to be included in the current scenario, without having to either unnecessarily delete sources or set the flow of a source to zero.

Estimates Tab The Estimates tab allows some control over the selection and initialization of flowrates for pipes which are to be used as tears in the solution of looped systems. The use to which each field is put is dependant upon the Structure Analyzer setting on the Solver tab of the Calculation Options Editor view.

The checkboxes in the No Tear column of the table allow you to prevent pipes from being used as tears - select the checkbox to prevent a pipe from being used as a tear or clear it to allow it. This setting has no effect if the Simultaneous structural analyzer is used.

When the Convergent structural analyzer is used, the Molar Flow column recommends a tear location and initial value for the flow at the tear location. If the structural analyzer does find that the pipe may be a valid tear location then this value is ignored.

4 Scenarios 45

Page 46: FLARENET Reference Manual

When the Simultaneous structural analyzer is used, the Molar Flow column is used to seed the analyzer. This value will always impact the initialization as long as the structural analysis succeeds but the pipe will not necessarily be selected as a tear pipe. In the event that the structural analysis fails with any Molar Flow estimates then the model will be initialized by the default values.

Fig 4.5

Since the Simultaneous structural analyzer generally offers better performance than the Convergent analyzer it will rarely be necessary to specify information on the Estimates tab other than for the purpose of improving the speed of convergence of the model. In the event that a model proves problematic to converge, a number of additional columns are available to tune the convergence algorithms. These may be exposed by stretching the view horizontally.

4 Scenarios 46

Page 47: FLARENET Reference Manual

Fig 4.6

The Max. Step column defines the maximum change to the flow in a tear pipe over a single iteration whilst the Max. Flow and Min. Flow columns constrain the flow in a tear pipe. Not all these values are used by all the Loop Solver algorithms. Max. Step Max. Flow Min. Flow

Newton-Raphson 3 3 3

Brogden 3 3 3

Force Convergent

Levenberg-Marquardt 3 3

Conjugate Gradient Minimization

Quasi-Newton Minimization

Scenario Tools The complete analysis of a flare system should ideally include analysis of the system for the scenarios in which each source relieves on its own. For a large network with many sources, it can become tedious to define each of these scenarios. These can automatically be added to your model as follows.

Adding Single Source Scenarios Select Add Single Source Scenarios from the Tools menu or use the hot key combination ALT T N.

This will analyze your model and add a scenario for each source that has a non-zero flow rate defined in at least one scenario. Source data will be copied from the scenario in which it has the highest flow rate.

4 Scenarios 47

Page 48: FLARENET Reference Manual

5 Pipe Network

The pipe network comprises a series of interconnected pipes. These pipes can be added, edited and deleted from the Pipe Manager.

Pipe Manager To access the Pipe Manager, select Pipes from the Build menu.

Fig 5.1

The following buttons are available:

Button Description

Add Adds a new pipe. This new pipe will be named with a number depending upon the number of pipes already added.

Edit Allows you to edit the currently highlighted pipe.

Delete Allows you to remove the currently highlighted pipe.

Sort Sort the pipes list alphabetically (in descending order) either by name or location.

Up and Down Arrow

Move the highlighted pipes up and down the list.

Swap Swap the two selected pipes in the list.

OK Closes the view.

5 Pipe Network 48

Page 49: FLARENET Reference Manual

Ignoring/Restoring Pipes You can ignore single or multiple pipes within the model. When you ignore a single pipe, all upstream nodes are automatically ignored. This enables you to do what if type calculations, where part of the network can be excluded from the calculation without the need for deletion and reinstallation of the appropriate nodes.

When you ignore a single pipe, all upstream pipes are automatically ignored.

To ignore a pipe:

1 Open the pipe editor view of the pipe that you want to ignore.

2 On the Connections tab, activate the Ignore checkbox.

Fig 5.2

To restore a pipe that has previously been ignored:

1 Open the pipe editor view of the pipe that you want to restore.

2 On the Connections tab, deactivate the Ignore checkbox.

5 Pipe Network 49

Page 50: FLARENET Reference Manual

Connections Tab The name of the pipe segment and connectivity information is specified here.

Fig 5.3

The following fields are available on this tab:

Input Data Description

Name An alphanumeric description of the pipe segment. Up to 30 characters are accepted.

Location An alphanumeric description of the location within the plant for the segment. This is a useful parameter for grouping pipes together via the Sort command.

Upstream Node This is the name of the node upstream of the pipe. The drop-down list allows you to select from a list of existing unconnected nodes in the model. Alternatively the name of a new node can be entered. If this is done you will be asked to specify the type of node through a pop-up list when you move to the next entry.

Downstream Node

This is the name of the node upstream of the pipe. The drop-down list allows you to select from a list of existing unconnected nodes in the model. Alternatively the name of a new node can be entered. If this is done you will be asked to specify the type of node through a pop-up list when you move to the next entry.

Tailpipe This drop-down list allows you to select whether the pipe should be treated as a tailpipe. If set to Yes and the Rated Flow for Tailpipes calculation option is selected in the Calculation Options view, the pressure drop for this pipe will be calculated using the rated flow in place of the relieving flow rate.

Ignore This checkbox may be selected to remove the pipe from calculations temporarily. When selected the pipe and all upstream nodes and pipes will be ignored during calculations.

5 Pipe Network 50

Page 51: FLARENET Reference Manual

You have the option of modeling a pipe segment as a main header or a tailpipe. The ability to classify a pipe as either a tailpipe or a header allows us to perform calculations in which the pressure drop for tailpipes is determined by the rated flow and that for headers is determined by the nominal flow. This is in accordance with API-RP-521.

In the Scenario Editor view, you can set design limits for the Mach Number, Vapor and Liquid Velocities, Rho V2 and Noise separately for the main headers and the tailpipes.

Dimensions Tab The physical dimensions and characteristics of the pipe segment are specified here.

Fig 5.4

5 Pipe Network 51

Page 52: FLARENET Reference Manual

The following fields are available on this tab:

Input Data Description

Length

The physical length of the pipe segment. This length is used in association with the fittings loss coefficients to calculate the equivalent length of the pipe. If you have equivalent length data for your network, enter this data here as the sum of the actual length plus the equivalent length of the fittings and enter zero for the fittings loss coefficients.

Elevation Change A positive elevation indicates that the outlet is higher than the inlet.

Material The pipe material, either Carbon Steel or Stainless Steel.

Roughness

The surface roughness of the pipe segment. Whenever a material is selected, the absolute roughness is initialized to the default value for the material as defined on the Preferences view. Valid values are between 0.00001 inches and 0.1 inches.

Thermal Conductivity

The thermal conductivity of the pipe wall. This is used by the heat transfer calculations when these are enabled.

Nominal Diameter

The nominal pipe diameter used to describe the pipe size. For pipes with a nominal diameter of 14 inches or more, this will be the same as the outside diameter of the pipe.

Schedule Number

If a pipe schedule other than "-" is selected, you will be able to select a nominal pipe diameter from the pipe databases. It will not be necessary to specify the internal diameter or the wall thickness for the pipe.

If you select "-" you will be unable to select a nominal pipe diameter from the pipe databases and you will then have to specify both the internal diameter and wall thickness for the pipe.

Internal Diameter The pipe diameter used for the pressure drop calculations.

Wall Thickness The thickness of the pipe wall. Valid values are any positive number or zero.

Pipe Class and Sizeable drop-down list

If you want the pipe segment to be resized by sizing calculations, the Sizeable option should be set to Yes. You might set the Sizeable option to No when debottlenecking an existing plant containing sections of the flare network that would be difficult to change. Setting sizeable to No for these pipes would prevent sizing calculations from changing their size.

Set the Use Pipe Class option to Yes to restrict the pipe sizes to those defined by the Pipe Class tool.

Schedule Numbers:

Carbon Steel:

10, 20, 30, 40, 60, 80, 100, 120, 140, 160, STD, XS, XXS

Stainless Steel:

5S, 10S, 40S, 80S

5 Pipe Network 52

Page 53: FLARENET Reference Manual

Fittings Tab A list of pipe fittings may be added to the pipe segment. These fittings will be modeled as an additional equivalent length applied linearly over the physical length of the pipe segment.

Fig 5.5

The following fields are available on this tab:

Input Data Description

Length Multiplier The length of the pipe is multiplied by this value to determine the equivalent length used for the pressure drop calculation. If left blank then the value on the Calculation Options Editor is used. This option is useful for making an allowance for bends and other fittings if these are not known.

Fittings Loss

The fittings "K" factor is calculated from the following equation in which Ft is the friction factor for fully developed turbulent flow:

K = A + BFt

Valid values are any positive number or 0.

External HTC This is the outside heat transfer coefficient.

5 Pipe Network 53

Page 54: FLARENET Reference Manual

From the Database Fitting list, select the appropriate type of fitting, and then click the Add button to move the selection to the Selected Fitting list. You can select as many fittings as required. The final fitting loss equation, which will be a sum of all the selected fittings, will appear in a display field underneath the Selected Fitting list. Click Link to transfer the coefficients for this equation into the Fittings Loss field, while maintaining the list of fittings. Click Paste to transfer the coefficients for the fitting equation into the Fittings Loss field on the Pipe Editor view. The selected list of fittings will not be retained. To remove the selected fitting individually, select the fitting and click the Delete button.

Note: The network cannot be sized correctly if you specify equivalent length data to model fittings losses, since the equivalent length of any pipe fitting is a function of the pipe diameter and will therefore be incorrect when the diameters change.

Heat Transfer Tab The pipe segment may perform calculations taking into account heat transfer with the external air.

Fig 5.6

5 Pipe Network 54

Page 55: FLARENET Reference Manual

The following fields are available on this tab:

Input Data Description

External Conditions Group

Temperature Enter the temperature of the external air. If this field is left blank then the global value set via the Calculation Options view is used.

Wind Velocity Enter the velocity of the external air If this field is left blank then the global value set via the Calculation Options view is used.

Heat Transfer Enabled This drop-down list selects whether heat transfer calculations are to be performed for the pipe. Furthermore, setting only enables heat transfer calculations if the Enable Heat Transfer option is also selected in the Calculation Options view.

External Radiative HTC This drop-down list selects whether or not the external Radiative heat transfer coefficient is included within the heat transfer calculations

Emissivity Enter the fractional Emissivity to be used for Radiative heat transfer calculations.

Multiple Element Calculation This drop-down list selects whether the heat transfer calculation is done using a single element or the same number of elements as the pressure drop calculation. If Yes is selected then the heat transfer calculation sues the same number of elements as the pressure drop calculation

Insulation Group

Description A brief description to identify the type of pipe insulation.

Thickness Supply the insulation thickness.

Thermal Conductivity Enter the insulation thermal conductivity.

Heating Group

Outlet Temp You can explicitly set an outlet temperature for this segment, or leave it blank. A heater in a flare knockout drum is an example of process equipment that may require a fixed outlet temperature. Valid values are between -260oC and 999 oC.

Duty Enter the heating duty and the outlet temperature will be calculated based on the inlet temperature and the defined duty.

5 Pipe Network 55

Page 56: FLARENET Reference Manual

Methods Tab Calculation methods are specified here.

Fig 5.7

The following fields are available on this tab:

Input Field Description

VLE Method Group

VLE Method

The options for the Vapor-Liquid Equilibrium calculations are as follows (see Appendix A - Theoretical Basis for more details):

Compressible Gas - Real Gas relationship

Peng Robinson - Peng Robinson Equation of State

Soave Redlich Kwong - Soave Redlich Kwong Equation of State

Vapor Pressure - Vapor Pressure method as described in API Technical Data Book Volume 113.

Model Default - If this is selected, the Default method for the VLE method (as defined on the Calculation Options Editor view) will be used.

Pressure Drop Group

Horizontal and Inclined Pipes

The Horizontal/Inclined methods apply only when you have selected Two-Phase pressure drop. The options are:

Isothermal Gas - This is a compressible gas method that assumes isothermal expansion of the gas as it passes along the pipe. FLARENET uses averaged properties of the fluid over the length of the pipe. The outlet temperature from the pipe is calculated by adiabatic heat balance either with or without heat transfer. Pressure losses due to change in elevation are ignored.

The two phase methods are really meant for incompressible fluids. If the pressure drop is greater than 10% of the inlet pressure then the compressibility effects become significant you can approximate compressible elements in the pipe.

continued

5 Pipe Network 56

Page 57: FLARENET Reference Manual

Input Field Description

Adiabatic Gas - This is a compressible gas method that assumes adiabatic expansion of the gas as it passes along the pipe. As with the Isothermal Gas method, pressure losses due to changes in elevation are ignored.

Beggs & Brill - The Beggs and Brill method is based on work done with an air-water mixture at many different conditions, and is applicable for inclined flow. For more details, see Appendix A - Theoretical Basis.

Dukler - Dukler breaks the pressure drop in two-phase systems into three components - friction, elevation and acceleration. Each component is evaluated independently and added algebraically to determine the overall pressure drop. For more details, see Appendix A - Theoretical Basis.

Lockhart Martinelli – Lockhart Martinelli correlations models the two phase pressure drop in terms of a single phase pressure drop multiplied by a correction factor. Acceleration changes are not included.

Beggs and Brill (No Acc.) – The Beggs and Brill methods without the acceleration term.

Beggs and Brill (Homog.) – The Beggs and Brill methods with a homogeneous acceleration term.

Model Default - If this is selected, the Default method for the Horizontal/Inclined method (as defined on the Calculation Options Editor view) will be used.

Vertical Pipes The Vertical method applies only when you have selected Two-Phase pressure drop. The options are:

Isothermal Gas - This is a compressible gas method that assumes isothermal expansion of the gas as it passes along the pipe. FLARENET uses averaged properties of the fluid over the length of the pipe. The outlet temperature from the pipe is calculated by adiabatic heat balance either with or without heat transfer. Pressure losses due to change in elevation are ignored.

Adiabatic Gas - This is a compressible gas method that assumes adiabatic expansion of the gas as it passes along the pipe. As with the Isothermal Gas method, pressure losses due to changes in elevation are ignored.

Beggs & Brill - Although the Beggs and Brill method was not originally intended for use with vertical pipes, it is nevertheless commonly used for this purpose, and is therefore included as an option for vertical pressure drop methods. For more details, see Appendix A - Theoretical Basis.

Dukler - Although the Dukler method is not generally applicable to vertical pipes, it is included here to allow comparison with the other methods.

Orkiszewski - This is a pressure drop correlation for vertical, two-phase flow for four different flow regimes - bubble, slug, annular-slug transition and annular mist. For more details, see Appendix A - Theoretical Basis.

Lockhart Martinelli – Lockhart Martinelli correlations models the two phase pressure drop in terms of a single phase pressure drop multiplied by a correction factor. Acceleration changes are not included.

Beggs and Brill (No Acc.) – The Beggs and Brill methods without the acceleration term.

Beggs and Brill (Homog.) – The Beggs and Brill methods with a homogeneous acceleration term.

Model Default - If this is selected, the Default method for the Vertical method (as defined on the Calculation Options Editor view) will be used.

Two Phase Elements

For two-phase calculations, the pipe segment is divided into a specified number of elements. On each element, energy and material balances are solved along with the pressure drop correlation. In simulations involving high heat transfer rates, many increments may be necessary, due to the non-linearity of the temperature profile. Obviously, as the number of increments increases, so does the calculation time; therefore, you should try to select a number of increments that reflects the required accuracy.

continued

5 Pipe Network 57

Page 58: FLARENET Reference Manual

Input Field Description

Friction Factor Method

The Friction Factor Method applies only when you have entered a value for friction factor. The options are:

Round - This method has been maintained primarily for historical purposes in order for older FLARENET calculations to be matched. It tends to over predict the friction factor by up to 10% in the fully turbulent region.

Chen - It should always be the method of preference since it gives better predictions at the fully turbulent flow conditions normally found within flare systems.

Model Default - If this is selected, the Default method for the Friction Factor Method (as defined on the Calculation Options Editor view) will be used.

Ignore Downflow Head Recovery

The Elevation Pressure change may be ignored for downflow (negative elevation change).

Solver Group

Damping Factor

The damping factor used in the iterative solution procedure. If this is left blank, the value in the Calculation Options Editor view is used.

Summary Tab The results of the calculation are displayed.

Fig 5.8

5 Pipe Network 58

Page 59: FLARENET Reference Manual

Multiple Editing You can edit multiple pipe segments simultaneously by highlighting them in the Pipe Manager with the mouse cursor while keeping the SHIFT key pressed. After you have finished selecting pipe segments, double click any of them to open the common Pipe Editor view.

The common pipe editor view differs from that of the single pipe editor view in the following respects:

• Only fields that can be edited in multiple mode are displayed.

• Drop-down list boxes have an additional entry, *. This entry indicates that the value should remain at the pre edit value.

In the following figure of the Dimensions tab; we enter * for the Length and Elevation Change fields to indicate that these must not be changed. We specify new values for the Roughness and the Thermal Conductivity. We select * for the Use Class and Sizeable drop down lists to indicate that these must be changed.

Fig 5.9

5 Pipe Network 59

Page 60: FLARENET Reference Manual

Pipe Class Editor The Pipe Class Editor allows you to edit the allowable schedules for each nominal diameter, for both Carbon Steel and Stainless Steel, during sizing calculations. It also allows you to restrict the range of pipe sizes that may be selected by FLARENET during design calculations.

To access the Pipe Class Editor, select Pipe Class from the Tools menu.

Fig 5.10

Note: If you have selected Use Pipe Class When Sizing in the Run Options view, these are the schedules which will be used.

5 Pipe Network 60

Page 61: FLARENET Reference Manual

6 Nodes

Pipes are connected via nodes, which can be added, edited and deleted from the Node Manager. Sources are also added through the Node Manager view.

Node Manager To access the Node Manager, select Nodes from the Build menu.

Fig 6.1

6 Nodes 61

Page 62: FLARENET Reference Manual

The following buttons are available:

Button Description

Add You will be prompted to select the type of node. This new node will be named with a number depending upon the number of nodes of that type already added.

Edit Allows you to edit the currently highlighted node. The form varies, depending on the type of node, as discussed below.

Delete Allows you to remove the currently highlighted node.

Sort Sort the nodes list alphabetically (in descending order) either by name or location or type of node.

Up and Down Arrow

Move the highlighted nodes up and down the list.

Swap Swap the two selected nodes in the Node list.

OK Closes the view.

Ignoring/Restoring Nodes You can ignore single or multiple nodes within the model. When you ignore a single node, all upstream nodes are automatically ignored. This enables you to do what if type calculations, where part of the network can be excluded from the calculation without the need for deletion and reinstallation of the appropriate nodes.

When you ignore a single node, all upstream nodes are automatically ignored.

To ignore a node:

1 Open the node editor view of the node that you want to ignore.

2 On the Connections tab, activate the Ignore checkbox. The following figure shows this for a connector node

Fig 6.2

To restore a node that has previously been ignored:

1 Open the node editor view of the node that you want to restore.

6 Nodes 62

Page 63: FLARENET Reference Manual

2 On the Connections tab, deactivate the Ignore checkbox.

Connection Nodes The following types of connection nodes are available in FLARENET. A connection node is one that links two or more pipe segments.

• Connector.

• Flow Bleed.

• Horizontal Separator.

• Orifice Plate.

• Tee.

• Vertical Separator.

Connector The connector is used to model the connection of two pipes. The diameters of each pipe may be different.

Connections Tab The name of the connector and connectivity information is specified here.

Fig 6.3

The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

The following fields are available on this tab:

Field Description

Name The alphanumeric description of the node (e.g. - HP Connect 1).

Location You may want to specify the location of the node in the plant.

Upstream/ Downstream

Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached to the connector.

Ignore Select the ignore checkbox to ignore this connector in the calculations. Clear the checkbox to re-enable it.

6 Nodes 63

Page 64: FLARENET Reference Manual

Calculations Tab Calculation methods are specified here.

Fig 6.4

The following fields are available on this tab:

Field Description

Theta

Specify the connector expansion angle. If not defined, it will be calculated to the length.

Length Enter the connector length. If not defined, it will be calculated from theta.

Fitting Loss Method

The available options are;

Equal Static Pressure – Pressure drop calculation is ignored and static pressure is balanced.

Calculated – Pressure drop is calculated in accordance with the Swage method.

Equal Total Pressure - Pressure drop calculation is ignored and total pressure is balanced.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the connector will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The connector will do one size change calculation between the inlet and outlet diameters selecting expansion or contraction as appropriate.

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Swage Group

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogenous properties of the fluid will be used in calculating the pressure loss coefficient.

continued

6 Nodes 64

Page 65: FLARENET Reference Manual

Field Description

Swage Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Summary Tab The result of the calculations at each of the pipe connections is displayed.

Fig 6.5

Flow Bleed The Flow Bleed is a simple calculation block that allows you to;

• Specify a fixed pressure drop

• Specify a constrained flow offtake where the flow offtake is calculated from the following equation

Offtake = Multiplier x Inlet Flow + Offset

The calculated Offtake is constrained to maximum and minimum values.

6 Nodes 65

Page 66: FLARENET Reference Manual

Connections Tab The name of the flow bleed and connectivity information is specified here.

Fig 6.6

The following fields are available on this tab:

Field Description

Name The alphanumeric description of the Flow Bleed (e.g. - HP Connect XX).

Location You may want to specify the location of the Flow Bleed in the plant.

Upstream/ Downstream

Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached to the Flow Bleed.

Ignore Select the ignore checkbox to ignore this flow bleed in the calculations. Clear the checkbox to re-enable it.

Calculations Tab Calculation methods are specified here.

Fig 6.7

6 Nodes 66

Page 67: FLARENET Reference Manual

The following fields are available on this tab:

Field Description

Offtake Multiplier Specify the Offtake multiplier. The default value is 0.

Offtake Offset Specify the Offset for the Offtake to compensate for the changes in the inlet flow.

Offtake Minimum Specify the minimum value for the Offtake.

Offtake Maximum Specify the maximum value for the Offtake.

Pressure Drop Enter the pressure drop across the Flow Bleed.

Summary Tab The result of the calculations at each of the pipe connections is displayed.

Fig 6.8

Horizontal Separator Horizontal separators are used to allow liquid to separate from the feed stream so that it can be removed from the flare system. The liquid phase in the Horizontal Separator feed is removed from network. In FLARENET, the Horizontal Separator has one primary inlet, one secondary inlet/ outlet, and one vapor outlet stream.

6 Nodes 67

Page 68: FLARENET Reference Manual

Connections Tab The name of the horizontal separator and connectivity information is specified here.

Fig 6.9

The following fields are available on this tab:

Field Description

Name The alphanumeric description of the Horizontal Separator (e.g. - HP KO Drum).

Location You may want to specify the location of the Horizontal Separator in the plant.

The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

Primary Inlet/Secondary Inlet/Vapor Outlet

Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached to the horizontal separator.

Ignore Select the ignore checkbox to ignore this horizontal separator in the calculations. Clear the checkbox to re-enable it.

You only need to provide 2 of 3 connections to be able to solve the separator. This allows for solution(s) to partially built networks.

6 Nodes 68

Page 69: FLARENET Reference Manual

Calculations Tab Calculation methods are specified here.

Fig 6.10

The following fields are available on this tab:

Field Description

Diameter The internal diameter of the vessel.

Liquid Level The liquid level in the vessel. Pressure drop is calculated based upon the vapor space above the liquid.

Methods Group

Fittings Loss Method

The available options are;

Equal Static Pressure – Pressure drop calculation is ignored and static pressure is balanced.

Calculated – Pressure drop is calculated in accordance with the Swage method.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the separator will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The horizontal separator does three size change calculations, one between each stream connection and the vessel body. Normally these will be expansion calculations for the primary and secondary inlets and a contraction calculation for the vapor outlet but they will automatically change if flows are reversed.

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Size Change Group

continued

6 Nodes 69

Page 70: FLARENET Reference Manual

Field Description

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogenous properties of the fluid will be used in calculating the pressure loss coefficient.

Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Body Dimension If this option is set to Full Body Area the calculation for the primary inlet/vessel and secondary inlet/vessel size change will use the whole vessel area. If the Partial Body Area on Flow option is selected the vessel area is reduced in proportion to the appropriate flow i.e. if the secondary inlet volumetric flow is 20% of the total volumetric flow in the tee then 20% of the body area will be used in the size change calculation. The use of the Partial Body Area on Flow option has the effect of increasing the pressure loss calculated by simple fixed K factors.

Summary Tab The result of the calculations at each of the pipe connections is displayed.

Fig 6.11

6 Nodes 70

Page 71: FLARENET Reference Manual

Orifice Plate An Orifice Plate is a thin plate, which has a clean-cut hole with straight walls perpendicular to the flat upstream face of the plate placed crossways in the pipe. Orifice plates are generally used to restrict the flow downstream of a blow down valve or restrict the flow from a high pressure section of a flare system to a low pressure section. They may also be used to allow flow measurement.

Connections Tab The name of the orifice plate and connectivity information is specified here.

Fig 6.12

The following fields are available on this tab:

Field Description

Name The alphanumeric description of the Orifice Plate (e.g. - HP OP).

Location You may want to specify the location of the Orifice Plate in the plant.

Upstream/Downstream Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached to the Orifice Plate.

Ignore Select the ignore checkbox to ignore this orifice in the calculations. Clear the checkbox to re-enable it.

6 Nodes 71

Page 72: FLARENET Reference Manual

Calculations Tab Calculation methods are specified here.

Fig 6.13

The following fields are available on this tab:

Field Description

Diameter The diameter of the orifice hole. Valid values are between 0 and 1000 mm.

Upstream Diameter Ratio

This is the ratio of the throat diameter to the Upstream pipe diameter.

Downstream Diameter Ratio

This is the ratio of the throat diameter to the Downstream pipe diameter.

Methods Group

Fittings Loss Method

The Fitting Loss drop-down list have the following three options available:

Ignored - If this option is selected, the fitting losses for the orifice plate would not be calculated. Static pressure is balanced.

Thin Orifice - The fitting losses for the orifice plate will be calculated using the equations for the thin orifice plate.

Contraction/Expansion - For this method, orifice plates will be modeled as a sudden contraction from the inlet line size to the diameter of the hole followed by a sudden expansion from the diameter of the hole to the outlet line size.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the orifice plate will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The orifice plate will do one contraction calculation and one expansion calculation if the Fittings Loss method is set to Contraction/Expansion.

You only need to provide 1 of 3 sizing parameters. For Example, if you entered the Diameter then FLARENET will calculate the Upstream Diameter Ratio and the Downstream Diameter Ratio.

continued

6 Nodes 72

Page 73: FLARENET Reference Manual

Field Description

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Size Change Group

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogeneous properties of the fluid will be used in calculating the pressure loss coefficient.

Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Summary Tab Fig 6.14

The result of the calculations at each of the pipe connections is displayed.

6 Nodes 73

Page 74: FLARENET Reference Manual

Tee The connector is used to model the connection of two pipes. The diameters of each pipe may be different.

Connections Tab The name of the tee and connectivity information is specified here.

Fig 6.15

The following fields are available on this tab:

Field Description

Name The alphanumeric description of the node (e.g. - HP Tee 1).

Location You may want to specify the location of the node in the plant. The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

Upstream/Downstream/Branch Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached with the tee.

Ignore Select the ignore checkbox to ignore this tee in the calculations. Clear the checkbox to re-enable it.

You only need to provide 2 of 3 connections to be able to solve the tee. This allows for solution(s) to partially built networks.

6 Nodes 74

Page 75: FLARENET Reference Manual

Calculations Tab Calculation methods are specified here.

Fig 6.16

The following fields are available on this tab:

Field Description

Theta Specify the angle of the branch to the inlet of the tee.

Body Specify the diameter of the body of the tee.

Allowable choices are:

Run - the diameter will be that of the inlet pipe.

Tail - the diameter will be that of the outlet pipe.

Branch - the diameter will be that of the branch pipe.

Auto - FLARENET will set the body diameter to be larger of the inlet and branch pipe diameters.

Methods Group

Fittings Loss Method

The available options are:

Ignored - FLARENET will not calculate the fitting loss if this is selected.

Simple - FLARENET uses a constant, flow ration independent K factor for the loss through the branch and run.

Miller - This method uses a K factor which is interpolated using Miller Curves, which are functions of the flow and area ratios of the branch to the total flow as well as the branch angle. Loss coefficients at low values of the branch are to body area are extrapolated from the data presented on the charts.

Miller (Area Ratio Limited) – This method uses a K factor which is interpolated using Miller Curves, which are functions of the flow and area ratios of the branch to the total flow as well as the branch angle. The ratio of the branch area to body area is constrained by the lower limit presented on the charts.

continued

6 Nodes 75

Page 76: FLARENET Reference Manual

Field Description

Connector If Incomplete

If this option is set to Yes, FLARENET will treat the Tee as a straight connector, ignoring the effect of the branch on pressure drop.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the tee will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

Swage Group

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogenous properties of the fluid will be used in calculating the pressure loss coefficient.

Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Body Dimension If this option is set to Full Body Area the calculation for the inlet/body and branch/body size change will use the whole body area. If the Partial Body Area on Flow option is selected the body area is reduced in proportion to the appropriate flow i.e. if the branch volumetric flow is 20% of the total volumetric flow in the tee then 20% of the body area will be used in the size change calculation. This option is ignored if the fittings loss method is set to Miller. The use of the Partial Body Area on Flow option has the effect of increasing the pressure loss calculated by simple fixed K factors bringing the results closer to those calculated by the ore accurate Miller K factors.

The tee will do three size change calculations between; inlet/body, branch/body and body/outlet selecting expansion or contraction calculations as appropriate.

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

6 Nodes 76

Page 77: FLARENET Reference Manual

Summary Tab The result of the calculations at each of the pipe connections is displayed.

Fig 6.16

Vertical Separator Vertical separators are used to allow liquid to separate from the feed stream so that it can be removed from the flare system. The liquid phase in the Vertical Separator feed is removed from network. In FLARENET, the Vertical Separator has only one inlet and one vapor outlet stream.

Connections Tab The name of the vertical separator and connectivity information is specified here.

Fig 6.17

6 Nodes 77

Page 78: FLARENET Reference Manual

The following fields are available on this tab:

The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

Field Description

Name The alphanumeric description of the Vertical Separator (e.g. - HP KO Drum).

Location You may want to specify the location of the Vertical Separator in the plant.

Inlet/Vapor Outlet

Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached to the Vertical Separator.

Ignore Select the ignore checkbox to ignore this vertical separator in the calculations. Clear the checkbox to re-enable it.

Calculations Tab Calculation methods are specified here.

Fig 6.18

The following fields are available on this tab:

Field Description

Diameter The internal diameter of the vessel.

Methods Group

Fittings Loss Method

The available options are;

Equal Static Pressure – Pressure drop calculation is ignored and static pressure is balanced.

Calculated – Pressure drop is calculated in accordance with the Swage method.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the separator will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The vertical separator will do one expansion calculation for the inlet stream entering the vessel and one contraction calculation for the flow from the vessel to the outlet. These will automatically change if flows through the vessel are reversed.

continued

6 Nodes 78

Page 79: FLARENET Reference Manual

Field Description

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Size Change Group

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogenous properties of the fluid will be used in calculating the pressure loss coefficient.

Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Summary Tab The result of the calculations at each of the pipe connections is displayed.

Fig 6.19

6 Nodes 79

Page 80: FLARENET Reference Manual

Boundary Nodes The following types of boundary nodes are available in FLARENET. A boundary node is one that is connected to only one pipe segment.

• Control Valve.

• Relief Valve.

• Flare Tip.

The relief valve and control valve node types represent sources or inflows into the system. The control valve, in particular, may also be used to model alternative types of sources such as; blow down valves, rupture disks, purge valves, etc.

Control Valve The control valve is used to model a constant flow source such as purge valves, bursting disks and blow down valves. The most significant difference to the relief valve is that the rated flow equals the nominal flow.

Connections Tab The name of the control valve and connectivity information is specified here.

6.20

6 Nodes 80

Page 81: FLARENET Reference Manual

The following fields are available on this tab:

Field Description

Name The alphanumeric description of the Control Valve (e.g. - FCV 1).

Location You may want to specify the location of the Control Valve in the plant.

Outlet Either type in the name of the pipe segment or select from the drop-down list.

At You can specify where the pipe segment is to be attached to the Control Valve.

Ignore Select the ignore checkbox to ignore this control valve in the calculations. Clear the checkbox to re-enable it.

The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

Conditions Tab Fluid conditions are specified here.

Fig 6.21

The following fields are available on this tab:

Field Description

Inlet Pressure The pressure of the source on the upstream side of the valve. Valid values are between 0.01 and 600 bar.

Inlet Temp Spec.

The temperature specification of the source on the upstream side of the relief valve. Valid values are between -250oC and 1500oC.

You can select the fluid condition from the drop-down list on the left side. The available option are:

Actual - it uses the given inlet temperature as the actual fluid temperature.

Subcool - If this option is selected, enter the amount of subcooling.

Superheat - If this option is selected, enter the amount of superheat.

Allowable Back Pressure

The Allowed Back Pressure is the pressure that is allowed to exist at the outlet of a pressure relief device as a result of the pressure in the discharge system. It is the sum of the superimposed and built-up back pressure. Clicking the Set button calculates the Allowable Back Pressure as a function of the Inlet Pressure. Checking the Auto checkbox will automatically calculate the

It is recommended that a value for Outlet Temperature which corresponds to an isenthalpic flash from the upstream conditions down to the Allowable Back Pressure. This will give the highest probable entry temperature into the system which will in turn give the highest velocities.

continued

6 Nodes 81

Page 82: FLARENET Reference Manual

Field Description

Allowable Back Pressure whenever the Inlet Pressure changes. Valid values are between 0.01 to 600 bar.

Outlet Temperature

This is the temperature of the source at the flange on the downstream side of the valve.

If the enthalpy method chosen is the Ideal Gas model, then this temperature is used to determine the enthalpy of the source at the entrance to the pipe network, otherwise this enthalpy is calculated from the upstream pressure and temperature. If the Set button was clicked and the enthalpy model is Peng Robinson, Soave Redlich Kwong or Lee Kesler then the outlet temperature will be calculated from the upstream temperature and pressure after isenthalpic expansion to the defined MABP. Valid values are between -250oC and 1500oC.

Mass Flow

This is the mass flow of the source. Valid values are between 0 and 100,000,000 kg/hr.

Flange Diameter

This is the diameter of the flange at the valve discharge.

The flange diameter may be left unknown in which case it will be assumed to be the same as the outlet pipe.

Composition Tab The fluid composition is specified here.

Fig 6.22

6 Nodes 82

Page 83: FLARENET Reference Manual

The following fields are available on this tab:

Field Description

Basis This is the composition basis, which may be either Mol. Wt., Mole Fraction or Mass Fraction.

Mol. Wt. It is the molecular weight of the fluid. You can only enter data here if the composition basis selected is Molecular Weight. Valid values are between 2 and 500.

If the composition basis selected is Mole or Mass Fraction, the molecular weight is updated when you enter or change the component fractions.

Fluid Type

If Molecular Weight is selected in the composition basis drop-down list, you need to select the Fluid Type to calculate a binary composition in order to match the molecular weight. If the two components of the specified fluid type are not found then the other components are used.

Component Fractions

This is the fluid composition in either mole or mass fractions. You can only enter data here if the composition basis selected is Mole or Mass Fraction.

When you exit the Source view, you will be prompted about the Invalid Composition if the sum of these fractions is not equal to one. You can normalize the composition by either manually editing the component fractions or by clicking the Normalize button.

If the composition basis selected is Molecular Weight, the component fractions are estimated when you change the molecular weight.

Methods Tab Calculation methods are specified here.

Fig 6.23

6 Nodes 83

Page 84: FLARENET Reference Manual

The following fields are available on this tab:

Fields Description

VLE Method The options for the Vapor-Liquid Equilibrium calculations are as follows (see Appendix A - Theoretical Basis):

Compressible Gas - Real Gas relationship.

Peng Robinson - Peng Robinson Equation of State.

Soave Redlich Kwong - Soave Redlich Kwong Equation of State.

Vapor Pressure - Vapor Pressure method as described in API Technical Data Book - Volume 1.

Model Default - If this is selected, the Default method for the VLE method (as defined on the Calculation Options view) will be used.

Swage Group

Fittings Loss Method

The available options are;

Equal Static Pressure – Pressure drop calculation is ignored and static pressure is balanced.

Calculated – Pressure drop is calculated in accordance with the Swage method.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the control valve will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The control valve will do one size change calculation from the defined flange diameter to the outlet pipe diameter. This will normally be an expansion.

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogeneous properties of the fluid will be used in calculating the pressure loss coefficient.

Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

continued

6 Nodes 84

Page 85: FLARENET Reference Manual

Fields Description

Estimated Properties at Header Conditions Group

Vapor Fraction

The initial estimates for the flow profile in looped systems are generated based on the assumption of vapor phase flow without any liquid knockout in the system. It is not uncommon for sources to pass through a knockout drum before connection to the main header (see Figure 6.17). Specification of an estimate of vapor fraction of the fluid at the knockout drum can considerably enhance the automatically generated flow profile.

If this value is not specified then it is assumed to be all vapor.

Vapor Mol. Wt. Specify the estimated vapor molecular weight for the vapor fraction given above.

If this value is not specified then it is assumed to be the same as that of the total fluid.

Inlet Piping Tab Details of the piping between the protected equipment and the inlet to the relief valve are specified here. This data is used to calculate the pressure drop in the inlet piping. The diameter of the inlet piping is also used to calculate the inlet velocity of the source fluid when the Include Kinetic Energy option is selected in the Calculation Options view.

Fig 6.24

6 Nodes 85

Page 86: FLARENET Reference Manual

The available fields are:

Fields Description

Length The length of the inlet piping.

Elevation Change

The change in elevation of the inlet piping. This cannot be greater than the length of the piping.

Properties Group

Material The material of the inlet pipe either Carbon Steel or Stainless Steel.

Roughness

The surface roughness of the inlet pipe. Whenever a material is selected, the absolute roughness is initialized to the default value for the material as defined on the Preferences view. Valid values are between 0.00001 inches and 0.1 inches.

Diameter

Nominal Diameter

The nominal pipe diameter used to describe the inlet pipe size. For pipes with a nominal diameter of 14 inches or more, this will be the same as the outside diameter of the pipe.

Schedule

If a pipe schedule other than “-” is selected, you will be able to select a nominal pipe diameter from the pipe databases. It will not be necessary to specify the internal diameter. If you select “-” you will be unable to select a nominal pipe diameter from the pipe databases and you will then have to specify both the internal diameter.

Internal Diameter

The pipe diameter used for the pressure drop calculations.

Use Pipe Class Select this checkbox to restrict the sizes of the inlet piping selected by FLARENET to those defined by the Pipe Class tool.

Fittings Groups

Loss Coefficient

Enter the A and B parameters for the following fittings “K” factor equation in which Ft is the friction factor for fully developed turbulent flow:

K = A + BFt .

Valid values are any positive number or 0.

Summary Tab The result of the calculations is displayed.

Fig 6.25

6 Nodes 86

Page 87: FLARENET Reference Manual

Copy Source Data The Copy To button may be used to copy source data to other scenarios. When this button is pressed you will see a view similar to the following:

Fig 6.26

Select the scenarios to which the data should be copied by activating the corresponding check box in the Copy column.

This technique for coping source data may also be applied to relief valves.

Relief Valve The Relief Valve source can be used to model types of spring loaded relief valves. Relief valves are used frequently in many industries in order to prevent dangerous situations occurring from pressure build-ups in a system.

6 Nodes 87

Page 88: FLARENET Reference Manual

Connections Tab The name of the relief valve and connectivity information is specified here.

Description

Fig 6.26

The following fields are available on this tab:

Field The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

Name The alphanumeric description of the Control Valve (e.g. - FCV 1).

Location

Outlet Either type in the name of the pipe segment or select from the drop-down list.

At

You may want to specify the location of the Control Valve in the plant.

You can specify where the pipe segment is to be attached to the Control Valve.

Ignore Select the ignore checkbox to ignore this control valve in the calculations. Clear the checkbox to re-enable it.

6 Nodes 88

Page 89: FLARENET Reference Manual

Conditions Tab Fluid conditions are specified here.

Fig 6.27

The following fields are available on this tab:

Field Description

Inlet Pressure The pressure of the source on the upstream side of the valve. Valid values are between 0.01 and 600 bar.

Inlet Temp Spec.

The temperature specification of the source on the upstream side of the relief valve. Valid values are between -250oC and 1500oC.

You can select the fluid condition from the drop-down list on the left side. The available option are:

Actual - it uses the given inlet temperature as the actual fluid temperature.

Subcool - If this option is selected, enter the amount of subcooling.

Superheat - If this option is selected, enter the amount of superheat.

Allowable Back Pressure

The Allowed Back Pressure is the pressure that is allowed to exist at the outlet of a pressure relief device as a result of the pressure in the discharge system. It is the sum of the superimposed and built-up back pressure. Clicking the Set button calculates the Allowable Back Pressure as a function of the Inlet Pressure. Checking the Auto checkbox will automatically calculate the Allowable Back Pressure whenever the Inlet Pressure changes. Valid values are between 0.01 to 600 bar.

Outlet Temperature

This is the temperature of the source at the flange on the downstream side of the valve.

If the enthalpy method chosen is the Ideal Gas model, then this temperature is used to determine the enthalpy of the source at the entrance to the pipe network, otherwise this enthalpy is calculated from the upstream pressure and temperature. If the Set button was clicked and the enthalpy model is Peng Robinson, Soave Redlich Kwong or Lee Kesler then the outlet temperature will be calculated from the upstream temperature and pressure after isenthalpic expansion to the defined MABP. Valid values are between -250oC and 1500oC.

It is recommended that a value for Outlet Temperature which corresponds to an isenthalpic flash from the upstream conditions down to the Allowable Back Pressure. This will give the highest probable entry temperature into the system which will in turn give the highest velocities.

continued

6 Nodes 89

Page 90: FLARENET Reference Manual

Field Description

Mass Flow

This is the mass flow of the source. Valid values are between 0 and 100,000,000 kg/hr.

Flange Diameter

This is the diameter of the flange at the valve discharge.

The flange diameter may be left unknown in which case it will be assumed to be the same as the outlet pipe.

Composition Tab The fluid composition is specified here.

Fig 6.28

The following fields are available on this tab:

Field Description

Basis This is the composition basis, which may be either Mol. Wt., Mole Fraction or Mass Fraction.

Mol. Wt. It is the molecular weight of the fluid. You can only enter data here if the composition basis selected is Molecular Weight. Valid values are between 2 and 500.

If the composition basis selected is Mole or Mass Fraction, the molecular weight is updated when you enter or change the component fractions.

Fluid Type

If Molecular Weight is selected in the composition basis drop-down list, you need to select the Fluid Type to calculate a binary composition in order to match the molecular weight. If the two components of the specified fluid type are not found then the other components are used.

Component Fractions

This is the fluid composition in either mole or mass fractions. You can only enter data here if the composition basis selected is Mole or Mass Fraction.

When you exit the Source view, you will be prompted about the Invalid Composition if the sum of these fractions is not equal to one. You can normalize the composition by either manually editing the component fractions or by clicking the Normalize button.

If the composition basis selected is Molecular Weight, the component fractions are estimated when you change the molecular weight.

6 Nodes 90

Page 91: FLARENET Reference Manual

Methods Tab Calculation methods are specified here.

Fig 6.29

The following fields are available on this tab:

Fields Description

VLE Method The options for the Vapor-Liquid Equilibrium calculations are as follows (see Appendix A - Theoretical Basis):

Compressible Gas - Real Gas relationship.

Peng Robinson - Peng Robinson Equation of State.

Soave Redlich Kwong - Soave Redlich Kwong Equation of State.

Vapor Pressure - Vapor Pressure method as described in API Technical Data Book - Volume 1.

Model Default - If this is selected, the Default method for the VLE method (as defined on the Calculation Options view) will be used.

Swage Group

Fittings Loss Method

The available options are;

Equal Static Pressure – Pressure drop calculation is ignored and static pressure is balanced.

Calculated – Pressure drop is calculated in accordance with the Swage method.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the control valve will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The control valve will do one size change calculation from the defined flange diameter to the outlet pipe diameter. This will normally be an expansion.

continued

6 Nodes 91

Page 92: FLARENET Reference Manual

Fields Description

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogeneous properties of the fluid will be used in calculating the pressure loss coefficient.

Method The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Sizing Group

Sizing Method

The two Sizing Method options available are:

API (1976) - American Petroleum Institute method in the 1976 edition of RP 520 pt 1

HEM - Homogeneous Equilibrium Model

API (2000) - American Petroleum Institute method in the 2000 edition of RP 520 pt 1

Back Pressure

Back pressure to be used for rating the relief valve. If this value is not specified then the maximum allowable back pressure is used.

Multiphase Cd Discharge coefficient to be used of relief valve in multiphase service

Liquid Cd Discharge coefficient to be used for relief valves in liquid service

Kb User defined back pressure correction factor. If this field is left blank then the back pressure correction factor is calculated. This value should only be specified in exceptional cases.

Estimated Properties at Header Conditions Group

Vapor Fraction

The initial estimates for the flow profile in looped systems are generated based on the assumption of vapor phase flow without any liquid knockout in the system. It is not uncommon for sources to pass through a knockout drum before connection to the main header (see Figure 6.17). Specification of an estimate of vapor fraction of the fluid at the knockout drum can considerably enhance the automatically generated flow profile.

If this value is not specified then it is assumed to be all vapor.

Vapor Mol. Wt.

Specify the estimated vapor molecular weight for the vapor fraction given above.

If this value is not specified then it is assumed to be the same as that of the total fluid.

6 Nodes 92

Page 93: FLARENET Reference Manual

Inlet Piping Tab Details of the piping between the protected equipment and the inlet to the relief valve are specified here. This data is used to calculate the pressure drop in the inlet piping to ensure that it does not exceed the recommended limit of 3% of the inlet pressure. The diameter of the inlet piping is also used to calculate the inlet velocity of the source fluid when the Include Kinetic Energy option is selected in the Calculation Options view.

Fig 6.30

The available fields are:

Fields Description

Length The length of the inlet piping.

Elevation Change

The change in elevation of the inlet piping. This cannot be greater than the length of the piping.

Properties Group

Material The material of the inlet pipe either Carbon Steel or Stainless Steel.

Roughness

The surface roughness of the inlet pipe. Whenever a material is selected, the absolute roughness is initialized to the default value for the material as defined on the Preferences view. Valid values are between 0.00001 inches and 0.1 inches.

Diameter

Nominal Diameter

The nominal pipe diameter used to describe the inlet pipe size. For pipes with a nominal diameter of 14 inches or more, this will be the same as the outside diameter of the pipe.

Schedule

If a pipe schedule other than “-” is selected, you will be able to select a nominal pipe diameter from the pipe databases. It will not be necessary to specify the internal diameter. If you select “-” you will be unable to select a nominal pipe diameter from the pipe databases and you will then have to specify both the internal diameter.

Internal Diameter

The pipe diameter used for the pressure drop calculations.

continued

6 Nodes 93

Page 94: FLARENET Reference Manual

Fields Description

Use Pipe Class Select this checkbox to restrict the sizes of the inlet piping selected by FLARENET to those defined by the Pipe Class tool.

Fittings Groups

Loss Coefficient

Enter the A and B parameters for the following fittings “K” factor equation in which Ft is the friction factor for fully developed turbulent flow:

K = A + BFt .

Valid values are any positive number or 0.

Summary Tab The result of the calculations is displayed.

Fig 6.31

Source Tools The initial sizing of a flare system is time consuming both in terms of time taken to build the model and the computation time. Using an Ideal Gas method can speed up the calculation during the initial sizing estimation. Speed is an important issue during sizing calculations especially for a complex multiple scenario case. Typically, the back pressure should be used for calculations. Rigorous rating calculation for all scenarios can be done by the Peng Robinson enthalpy method or any other enthalpy methods with pressure dependency and provides the down stream temperature.

Updating Downstream Temperatures The downstream temperatures are only used to define the system entry temperature when ideal gas enthalpies are used. After several cycles of rating and sizing calculations, the original values for each source may no longer be valid. These values may be updated to reflect the results of the last calculation using an equation of state enthalpy method as follows.

Select Refresh Source Temperatures from the Tools menu.

6 Nodes 94

Page 95: FLARENET Reference Manual

Adding Single Source Scenarios The thorough evaluation of a flare network will require the evaluation of many scenarios. In most systems, there will be the possibility of each relief valve lifting on its own. In the case of a petrochemical complex, this could have several hundred relief valves and the task of setting up the scenarios for each relief valve would be time consuming and error prone.

Once all the major scenarios have been defined, select Add Single Source Scenarios from the Tools menu. Click Yes to allow FLARENET to analyze the existing scenarios to determine the greatest flow rate for each relief valve and create a scenario using this data.

Flare Tip The Flare tip is used to model outflows from the system. It can model either ignited combustible gas flare tips or open vents. Non physical equipment such as a connection to a fixed pressure exit at a plant boundary can also be modeled.

Connections Tab The name of the flare tip and connectivity information is specified here.

Fig 6.32

The following fields are available on this tab: The location can have an alphanumeric name. This feature is useful for large flowsheets, because you can provide a different “location” name to different sections to make it more comprehensible.

Field Description

Name The alphanumeric description of the node (e.g. - HP Flare Tip).

Location You may want to specify the location of the node in the plant.

Inlet Either type in the name of the pipe segment or select from the drop-down list.

At You can specify the end of the pipe segment attached to the flare tip.

Ignore Select the ignore checkbox to ignore this flare tip in the calculations. Clear the checkbox to re-enable it.

6 Nodes 95

Page 96: FLARENET Reference Manual

Calculations Tab Calculation methods are specified here.

Fig 6.33

The following fields are available on this tab:

Field Description

Diameter You can specify a diameter for the tip.

If this value is not specified then the diameter of the connected pipe is used.

Methods Group

Use Curves Select this checkbox if you are supplying pressure drop curves to calculate the pressure drop of the flare tip. Data for these curves is entered on the Curves tab.

Fittings Loss Coefficient

The fitting loss coefficient will be used to calculate the pressure drop through the flare tip.

Fittings Loss Coefficient Basis

Select whether the supplied Fittings Loss Coefficient will calculate the Total Pressure loss including velocity pressure loss or Static Pressure loss only.

Isothermal Pressure Drop

If this option is set to Yes, the inlet temperatures used for the size change calculations in the flare tip will not update during iterative calculations for pressure loss i.e. a PT flash will be used to update the inlet properties. If the option is set to No then a more rigorous PH flash will be used to update the inlet properties.

The flare tip will do a one size calculation for the change in diameter between inlet pipe and the flare tip.

Setting this option to Yes can speed up calculations in some cases at cost of a minor loss of accuracy.

Pipe To Flare Tip Swage Group

Two Phase Correction

If this option is set to Yes then the pressure loss coefficient in two phase flow will be calculated using properties corrected for liquid slip. If set to No then the homogenous properties of the fluid will be used in calculating the pressure loss coefficient.

continued

6 Nodes 96

Page 97: FLARENET Reference Manual

Field Description

Method

The following options are available:

Compressible - pressure losses will be calculated assuming compressible flow through the connector at all times.

Incompressible (Crane) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using Crane coefficients.

Transition - pressure losses will be calculated initially using the assumption of incompressible flow. If the pressure loss expressed as a percentage of the inlet pressure is greater than the defined compressible transition value then the pressure drop will be recalculated using the compressible flow method.

Incompressible (HTFS) - pressure losses will be calculated assuming incompressible flow through the connector at all times. Loss coefficients are calculated using HTFS correlations

The Incompressible method calculations are faster but will be less accurate at higher pressure drops. The Transition method can cause instabilities in some cases if the calculated pressure drop is close to the transition value.

Compressible Transition

This entry defines the pressure drop as a percentage of the inlet pressure at which compressible flow pressure drop calculations should be used. It applies only when the Transition method is selected.

Curves Tab User specified pressure drop curves are specified here. These will only be used if the Use Curves field on the Calculation Tab is unchecked.

Fig 6.34

6 Nodes 97

Page 98: FLARENET Reference Manual

Field Description

Ref. Temp. Enter the reference temperature to which the pressure drop curves correspond. All curves must be for the same reference temperature.

Pressure Correction If checked then the static pressure correction takes into account density differences due to both the calculated inlet pressure and calculated inlet pressure. The temperature correction is automatically applied but this box must be checked in order for pressure effects to be modeled. This box should normally be checked

Mol. Wt. Enter the molecular weight at which the pressure drop curve applies. The Add Mol. Wt button can be used to add additional curves. The drop-down list can then be used to select which pressure drop curve is displayed. The Delete Mol. Wt button will delete the selected pressure drop curve.

Mass Flow/Pres. Drop

These pairs of data define points in the pressure drop curve. Points may be added and removed from the curve by using the Add and Delete buttons. Up to 10 data points can be supplied for each curve. Pressure drops for flows between those in the table are calculated using linear interpolation.

Mol. Wt. Extrapolation

If this field is checked then extrapolation beyond the range of supplied molecular weight curves is performed if necessary, otherwise the bounding molecular weight curve is used.

Flow Extrapolation If this field is checked then extrapolation beyond the range of supplied mass flow rates is performed if necessary, otherwise the bounding mass flow is used.

Summary Tab The result of the calculation is displayed.

Fig 6.35

6 Nodes 98

Page 99: FLARENET Reference Manual

7 Calculations

Calculation Options The selection of settings and options for the calculations is managed from the Calculation Options Editor view. To access the Calculation Options Editor view, select Options from the Calculations menu.

General Tab Global calculation parameters and calculation options are specified here.

Fig 7.1

7 Calculations 99

Page 100: FLARENET Reference Manual

The following fields are available on this tab:

Field Description

External Conditions Group

Atmospheric Pressure

Specify the atmospheric pressure. The default values are 1.01325 bar abs or 14.696 psia.

Ambient Temperature

The Ambient temperature must be in the range -100oC to 100oC.

Wind Velocity The average wind velocity.

Enable Heat Transfer

If checked, heat transfer calculations between pipe segments and the surroundings are performed for those pipe segments that have Heat Transfer with Atmosphere enabled.

External Radiative HTC

If checked, heat transfer calculations between pipe segments and the surroundings will include the external radiative heat transfer coefficient for those pipe segments that have External Radiative HTC enabled

Energy Balance Group

Include Kinetic Energy

If checked the kinetic energy of the fluids entering and leaving each node is included in the energy balance. Specifically:

If checked the energy balance equation is 2

2

0vHH += , which is

constant across each node.

If not checked the energy balance is HH =0 , which is constant across

each node.

Where:

H0 = stagnation enthalpy

H = fluid enthalpy

v = fluid velocity

Inlet Velocity This entry selects the velocity to be used to determine the kinetic energy of the fluids entering the flare system when required. The choices are:

Inlet Pipe Velocity - The inlet pipe diameter defined for each relief valve and control valve is used to determine the inlet velocity.

Zero Velocity - The velocity of the fluid at the inlet to each relief valve and control valve is 0.0.

Mode Group

Calculation Mode This drop-down list selects and displays the current calculation mode. The options are:

Rating - It is used to check the existing flare system in a plant. This method calculates the pressure profile for the existing pipe network.

Design - It is used to design a new flare system for the plant. During calculation it adjusts the diameters of all pipes until all the design constraints of MABP, velocity, etc, have been met. These diameters can be smaller than the initially defined data.

Debottleneck - It is used to determine sections of the flare system that must be increased in size due to either the uprating of the existing plant and hence flare loading, or the tie-in of new plant. It can only increase existing pipe sizes, not reduce them.

The calculation mode can also be set using the selector on the main toolbar.

continued

7 Calculations 100

Page 101: FLARENET Reference Manual

Field Description

Calculate Ignored Sources with Zero

If checked this causes sources that have been ignored to be treated as if they have a zero flow. This will result in the back pressure being calculated and limit checked against the source MABP even if the source has been ignored.

Use MABP for Inactive Sources When Sizing

If checked this causes the back pressure for inactive sources to be calculated and then used to trigger pipe size changes during design calculations. Otherwise these sources will be ignored when determining required pipe sizes. An inactive source is one that is ignored or has a zero flow.

Ignore Source to Pipe Pressure Loss in Design Mode

If checked this causes the pressure loss resulting from the size change between flange diameter of control or relief valves and the outlet pipe to be ignored during design calculations. Selecting this option will speed up calculations and reduce instability in cases where the flange diameter has been set to an unrealistically small value.

Choked Flow Check If left unchecked, velocities will not be limited to the sonic condition. This is useful in sizing calculations since the mach number limitations will still be met by the time the final solution is reached. Calculation speed is greater at the risk of numerical instability and convergence failure.

Rated Flow for Tailpipes

If checked, the rated flow will be used in the pressure drop calc calculations for the tailpipes (as opposed to the actual flowrates). The API guide for the Pressure-Relieving and Depressuring Systems recommends that tailpipes be sized based on the rated capacity.

Rated Flow For Nodes Attached To Tailpipes

If checked, the rated flow will be used in the pressure drop calc calculations for the nodes attached to tailpipes (as opposed to the actual flowrates

Rated Flow For Inlet Pipes

If checked, the pressure loss in the inlet piping to relief valves will be based upon the rated flow for the valve rather than the nominal flow.

Warn At A warning will be issued if the non recoverable pressure loss in the inlet piping to a relief valve exceeds this percentage of the maximum allowable working pressure (set pressure)

7 Calculations 101

Page 102: FLARENET Reference Manual

Scenarios Tab The Scenarios tab allows the selection of the scenarios that will be calculated. The options provided by the Calculate drop-down list are Current Scenario, All Scenarios and Selected Scenarios.

Fig 7.2

If the option is set to Selected Scenarios the only scenarios calculated will be those where the checkbox is selected in the Calculate column next to the scenario name.

The scenario selection setting is also used to determine which scenario data will be exported by the Data Export option i.e. only those scenarios which are selected for calculation will be exported.

Note: The current scenario is displayed in the scenario selector on the main FLARENET toolbar. The current scenario may be changed either using the Scenario Selector on the main toolbar or by selecting a scenario in the Scenario Manager and clicking the Current. See Selecting Components.

7 Calculations 102

Page 103: FLARENET Reference Manual

Methods Tab Global calculation methods are specified here.

Fig 7.3

The following fields are available on this tab:

Input Field Description

Properties Group

VLE Method (Overall)

The options for the Vapor-Liquid Equilibrium calculations are as follows:

Compressible Gas - Real Gas relationship.

Peng Robinson - Peng Robinson Equation of State.

Soave Redlich Kwong - Soave Redlich Kwong Equation of State.

Vapor Pressure - Vapor Pressure method as described in API Technical Data Book - Volume 113.

Enthalpy Method (Overall)

The following calculation method for the determination of fluid enthalpies are available:

Ideal Gas - This method uses the specified downstream temperature of a source to calculate the heat balance within the network.

Peng Robinson - The Peng Robinson enthalpy is determined rigorously.

Soave Redlich Kwong - The Soave Redlich Kwong enthalpy is determined rigorously.

Lee-Kesler - This method uses the specified upstream temperature and pressure of a source to calculate the heat balance within the network. The Lee Kesler enthalpies may be more accurate than the Property Package enthalpies, but they require solution of a separate model.

Refer to Appendix A – Theoretical Basis for more details.

continued

7 Calculations 103

Page 104: FLARENET Reference Manual

Input Field Description

VLE Method (Source Outlet Temperature Estimation)

The VLE method that will be used for the estimation of the temperature at the downstream flange for source nodes. The options are the same as for the Overall VLE Method.

Enthalpy Method (Source Outlet Temperature Estimation)

The enthalpy method that will be used for the estimation of the temperature at the downstream flange for source nodes. The options are the same as for the Overall enthalpy Method.

Pressure Drop Group

Horizontal and Inclined Pipes

The options are:

Isothermal Gas - This is a compressible gas method that assumes isothermal expansion of the gas as it passes along the pipe. FLARENET uses averaged properties of the fluid over the length of the pipe. The outlet temperature from the pipe is calculated by adiabatic heat balance either with or without heat transfer. Pressure losses due to change in elevation are ignored.

Adiabatic Gas - This is a compressible gas method that assumes adiabatic expansion of the gas as it passes along the pipe. As with the Isothermal Gas method, pressure losses due to changes in elevation are ignored.

Beggs & Brill - The Beggs and Brill method is based on work done with an air-water mixture at many different conditions, and is applicable for inclined flow. For more details, see Appendix A - Theoretical Basis.

Dukler - Dukler breaks the pressure drop in two-phase systems into three components - friction, elevation and acceleration. Each component is evaluated independently and added algebraically to determine the overall pressure drop. For more details, see Appendix A - Theoretical Basis.

Lockhart Martinelli – Lockhart Martinelli correlations models the two phase pressure drop in terms of a single phase pressure drop multiplied by a correction factor. Acceleration changes are not included.

Beggs and Brill (No Acc.) – The Beggs and Brill methods without the acceleration term.

Beggs and Brill (Homog.) – The Beggs and Brill methods with a homogeneous acceleration term.

Model Default - If this is selected, the Default method for the Horizontal/Inclined method (as defined on the Calculation Options Editor view) will be used.

Vertical Pipes

The options are:

Isothermal Gas - This is a compressible gas method that assumes isothermal expansion of the gas as it passes along the pipe. FLARENET uses averaged properties of the fluid over the length of the pipe. The outlet temperature from the pipe is calculated by adiabatic heat balance either with or without heat transfer. Pressure losses due to change in elevation are ignored.

Adiabatic Gas - This is a compressible gas method that assumes adiabatic expansion of the gas as it passes along the pipe. As with the Isothermal Gas method, pressure losses due to changes in elevation are ignored.

Beggs & Brill - Although the Beggs and Brill method was not originally intended for use with vertical pipes, it is nevertheless commonly used for this purpose, and is therefore included as an option for vertical pressure drop methods. For more details, see Appendix A - Theoretical Basis.

Dukler - Although the Dukler method is not generally applicable to vertical pipes, it is included here to allow comparison with the other methods.

continued

7 Calculations 104

Page 105: FLARENET Reference Manual

Input Field Description

Orkiszewski - This is a pressure drop correlation for vertical, two-phase flow for four different flow regimes - bubble, slug, annular-slug transition and annular mist. For more details, see Appendix A - Theoretical Basis.

Lockhart Martinelli – Lockhart Martinelli correlations models the two phase pressure drop in terms of a single phase pressure drop multiplied by a correction factor. Acceleration changes are not included.

Beggs and Brill (No Acc.) – The Beggs and Brill methods without the acceleration term.

Beggs and Brill (Homog.) – The Beggs and Brill methods with a homogeneous acceleration term.

Model Default - If this is selected, the Default method for the Vertical method (as defined on the Calculation Options Editor view) will be used.

Two Phase Elements

For two-phase calculations, the pipe segment is divided into a specified number of elements. On each element, energy and material balances are solved along with the pressure drop correlation. In simulations involving high heat transfer rates, many increments may be necessary, due to the non-linearity of the temperature profile. Obviously, as the number of increments increases, so does the calculation time; therefore, you should try to select a number of increments which reflects the required accuracy.

Friction Factor Method

The Friction Factor Method applies only when you have entered a value for friction factor. The options are:

Round - This method has been maintained primarily for historical purposes in order for older FLARENET calculations to be matched. It tends to over predict the friction factor by up to 10% in the fully turbulent region.

Chen - It should always be the method of preference since it gives better predictions at the fully turbulent flow conditions normally found within flare systems.

7 Calculations 105

Page 106: FLARENET Reference Manual

Warnings Tab You can set the level of detail of the warnings by checking the appropriate checkboxes. By default, they are all checked.

There are three groups available on the Warnings tab:

• Design Problems.

• Calculation Problems.

• Sizing Status.

Fig 7.4

Design Problems Group The following options can be selected in this group:

• Mach Number.

• Velocity.

• Rho V2.

• Noise.

• Back Pressure.

• Choked Flow.

• Slug Flow.

• Temperature.

• Carbon Steel Min./Max Temp.

• Carbon Steel Min./Max Temp.

7 Calculations 106

Page 107: FLARENET Reference Manual

Calculation Problems Group The Calculation Problems group contains the following checkboxes:

• Physical properties Failure.

• Heat Balance Failure.

• Choke Pressure Failure.

• Pressure Drop Failure.

• Liquid With Vapor Only Method.

Sizing Status Group The checkboxes available in this group are:

• Initialization.

• Size Change.

• Limited Reached.

Solver Tab Solver control parameters are specified here.

Fig 7.5

7 Calculations 107

Page 108: FLARENET Reference Manual

The following fields are available on this tab:

Field Description

Tolerances Group

Properties Pressure

This is the tolerance for the maximum difference between the pressure used to calculate physical properties and the calculated inlet and outlet pressures across the network. It should be tighter (i.e. smaller) than the Unit Operations pressure tolerance and the Loop pressure tolerance.

Unit Operations Pressure

This is the tolerance for the difference in pressure drop when iterating to calculate the pressure drop for each individual unit operation.

Loop Pressure This is the tolerance for the maximum pressure difference between two streams converging or diverging in a looped flare network. It should be slacker (i.e. higher) than the properties pressure tolerance and unit operations pressure tolerance.

Loop Mass Balance

This is the tolerance for the maximum error in the mass balance over a node where streams converge or diverge in looped system calculations. Valid values are between 0.00001% and 10%; the default is 0.01%.

Iteration Limits Group

Properties This is the maximum number of iterations allowed for converging the inner properties pressure loop of a looped flare system, or for overall convergence of a convergent flare system. The default of 25 should be adequate for most cases.

Loop This is the maximum number of iterations allowed for overall convergence of a looped flare system. The default is 500.

Damping Factors Group

Properties This is the damping factor applied to the pressure step when solving the inner properties pressure loop. Values less than 1.0 may be specified to prevent oscillation in the properties pressure loop to improve convergence.

Loop This is the damping factor applied to the steps taken when solving the outer pressure / flow loop when solving looped systems. Values less than 1.0 may be specified to prevent oscillations in the pressure / flow loop to improve convergence.

Loop Solver The following methods are available:

Newton-Raphson - provides the best combination of solution speed vs convergence success.

Broyden - provides a faster solution than Newton-Raphson since the Jacobian matrix computation is required less frequently, but requires better initial guesses.

Force Convergent - this option may be used if you are modeling a convergent flare system with two flare tips. This type of system is commonly found on offshore production facilities. Use of the Newton-Raphson solver with the Simultaneous structural analyzer may be faster for these systems.

Conjugate Gradient Minimization, Quasi-Newton Minimization - provide a very robust but slow solution method. These methods can be useful if many Recycle warnings appear in the Trace number.

One Step - performs a single iteration using user estimates for the molar flows.

Structural Analyzer This option selects the analyzer used by FLARENET to detect and initialize looped systems. The options are:

continued

7 Calculations 108

Page 109: FLARENET Reference Manual

Field Description

Convergent - this uses a heuristic forwards and backwards algorithm to detect loops in the flare system and identify which pipes to use as tears. It allows the user to control the initialization of the loop solver by specifying the set of pipes that may be used as tears and flow estimates through the Estimates tab of the Scenario Edit view.

Simultaneous - this generates a simplified linear model of the flare system and solves it to identify a set of tear stream. It will use the flow estimates supplied by the user but will repeat its calculation ignoring these if it does not find a valid solution. This analyzer always ignores any specification of pipes to be used as tears.

In general the Simultaneous loop analyzer is faster and more reliable than the Convergent analyzer and will calculate better initial estimates. The Convergent analyzer should be used for compatibility with legacy FLARENET cases or when the user wishes to force a particular set of pipes to be used as tears and/or flow estimates.

Echo Error History When checked, it will generate additional messages giving details of intermediate calculations. This should be left unchecked unless you have convergence problems.

Preserve Unconverged Results for Looped Calculations

When checked, failure of calculations will not erase the results after the final iteration. This can be useful for the diagnosis of difficult problems.

Estimates Upon completion of the calculations, the tear flow estimates for the scenario can be automatically updated. The options are:

Do Not Update – The estimates will not be updated.

Update If Converged – The estimates will only be updated if the calculations have fully converged.

Always Update – The estimates will be updated regardless of the convergence status.

The Simultaneous Structural Analyzer should always be used for new models.

Initialization Tab Global parameters that can enhance convergence speed and reliability are specified here:

Fig 7.6

7 Calculations 109

Page 110: FLARENET Reference Manual

Field Description

Pressure This specifies the initial value for the pressure for physical property calculations. It should be at least equal to the system exit pressure.

Length Multiplier This specifies a global length multiplier to be applied to all the pipes in the system. It is useful in the early stages of flare system design to allow for bends and other fittings losses that will not be known until later. This global value is overridden by Length Multipliers defined for individual pipes.

Design Mode Initialization

This drop-down list provides the following options:

Multiphase - FLARENET will assume that two phase flow is possible in the flare system when determining the initial pipe sizes in Design mode.

Vapor - FLARENET will assume that all flows are vapor phase when determining the initial pipe size in Design mode.

Selection of the Vapor option will initialize calculations with larger pipe diameters than those selected for multiphase flow. This will speed up design calculations but there will be a risk that some pipes will be oversized.

Check Model The Check Model menu option allows the user to check the current status of the model to identify rapidly any data items that are likely to cause problems during calculations or invalidate the results. Any items that are identified as potential problems are displayed in the Model Check pop up view as shown below.

Fig 7.7

The major checks carried out are:

• Ignored Pipes and Connector Nodes. A check is made for pipes and connector nodes that have the ignored option selected to remove them from the calculations. Since an ignored pipe or connector node will cause all upstream sources, pipes and nodes to be excluded from in calculations it is important that the user be aware of them. Source nodes are commonly ignored so they are not included in this check.

• Zero Length Pipes. A check is made for pipes with a length of 0.0. While it is legitimate to set a pipe length to 0.0 to temporarily eliminate its pressure loss in a model, it is more likely that this indicates an oversight on the part of the user or an incomplete data import.

7 Calculations 110

Page 111: FLARENET Reference Manual

• Zero Diameter Pipes. A check is made for pipes with a diameter of 0.0. A pipe diameter of 0.0 is likely to cause a calculation failure in all or part of the model and is a problem that should be corrected by the user.

• Incomplete Connectivity. A check is made that all nodes and pipes are completely connected without any dangling connections. While FLARENET may be able to solve the incomplete network, it is likely that any missing connections are a result of them being overlooked by the user or left unspecified during data import from an external file.

• Damaged Connectivity. A check is made that all nodes and pipes have specified connection points. Omission of these may result in a model that will not solve correctly. This problem is more likely to arise from an incomplete data import than normal interactive use of the program.

The Memory Button displays a view that shows memory usage and instance counts for the components that comprise the model. This can be useful for diagnosing performance related issues.

Fig 7.8

Starting The Calculations To start the calculations, select Calculate from the Calculations menu. Alternatively, you could select the Start Calculations icon on the toolbar. The following words

before the object on the status bar show the type of calculation being performed:

B = Mass and Energy Calculations

P = Pressure Drop Calculations

The status of the rating calculations is shown on the status bar. In the following screen shot, the second display field on the status bar shows that the node mass and energy balance calculations have been performed for Tee 1. The third display field shows firstly the inner properties loop iteration number, then the maximum pressure error for that iteration and finally the name of the pipe segment responsible for the error.

The fourth display field shows firstly the number of iterations taken by the loop solver and then the error in the objective function being solved by the loop solver.

7 Calculations 111

Page 112: FLARENET Reference Manual

Fig 7.9

To abort calculations, click the Stop Calculations icon, which takes the place of the Start Calculations icon during calculations.

Note: Due to speed considerations, it is recommended that sizing calculations be performed subject to the constraints:

• Compressible Gas VLE

• Ideal Gas Enthalpy Method • No Heat Transfer Calculations

Efficient Modeling Techniques Efficient modeling of a flare network requires some forethought in order to meet the primary objectives which are in general:

1 Definition of the design constraints for the flare system. These will usually be defined by company standards or by local health and safety regulations. If unavailable, standard texts such as API-RP-521 can be used to select preliminary acceptable values.

2 Efficient acquisition of the data for the piping configuration and layout.

3 Definition of the scenarios or contingencies which should be evaluated. Grass roots design will require analysis of a far wider range of scenarios to those required by the simple expansion of a flare system to incorporate a new relief valve.

4 Rapid construction of the computer model of the flare system.

5 Fast and efficient calculation of the computer model of the flare system.

Objectives 1 to 3 can only be achieved by the use of engineering skill and judgment. Once complete, the efficient use of FLARENET can lead to a satisfactory project conclusion.

7 Calculations 112

Page 113: FLARENET Reference Manual

Data Entry FLARENET has a wide range of methods for entering the data for each object within the model. In general, you should use the method that you are most comfortable with, but experience has shown that use of the PFD environment for definition of the piping configuration and layout can save many man days of labor with large flare networks.

Although there is no set order in which the model must be built, the recommended sequence of data entry for building the model is:

1 Define the project description, user name, etc. by selecting Description under File in the menu bar.

2 Set preferences for the default piping materials, type of tee, composition basis, etc. from the Preferences view, accessed via the File command in the menu bar. These may be overwritten on an object by object basis at any stage. Ensure that the Edit Objects On Add checkbox is active if you want to edit the object data as each new flowsheet object is created.

3 Define a pipe class if appropriate. This will ensure that you only use pipe sizes as allowed by your project. Open the Pipe Class Editor using the Tools command in the menu bar.

4 With the Calculation Options Editor, define default calculation methods for VLE, Pressure drop, etc. To open this view, select Options under the Calculations menu.

5 Define all the source nodes (relief valves and control valves) for the first scenario. The first scenario should be the one that has the greatest level of common data amongst the complete set of scenarios. The recommended method of creation is to drag the nodes from the toolbox to the PFD.

6 Define the design constraints on Mach number, noise, etc for the first scenario using the Scenario Manager. To access this view, select the Build menu, then Scenarios from the drop-down list.

7 Define the pipe network (common to all scenarios). If the network is to be sized, some care must be taken in defining reasonable estimates for the pipe diameters.

8 Add the next scenario by clicking the Add button on the Scenario Manager. The data for the sources should be cloned from the previously defined scenario that has the most similar data. Edit the design constraints of this scenario if necessary.

9 Make the new scenario current. Highlight it on the Scenario Manager and click the Current button.

10 Edit the source data for each source for the new scenario. Double click sources on the PFD

Repeat steps #8 through #10 for all scenarios

7 Calculations 113

Page 114: FLARENET Reference Manual

Calculation Speed Calculation time will often be only a small percentage of the time taken to construct the computer model. However, on low specification personal computers, a sizing calculation for a complex multiple scenario model could take several hours, if not days, if care is not taken in the selection of the thermodynamic models or in the definition of the component slate.

When considering the desired accuracy for the calculations, due consideration must be given to the fact that you are modeling a system that will rarely if ever come close to a steady state condition, with a steady state modeling tool.

Component Slate As a rule of thumb you can assume that the calculation time is proportional to the square of the number of components. This is especially true when the VLE is calculated by an equation of state instead of treating the fluids as a simple compressible gas.

Flare systems generally operate at conditions in which heavy components such as hexane or heavier will stay in the liquid phase throughout the system. You should therefore endeavor to characterize the heavy ends of petroleum fluids by as few components as possible. The properties that you use for the characterization should be optimized to:

• Ensure the component stays in the liquid phase.

• Match the liquid phase density.

VLE Method Source compositions may be modeled either by definition of a molecular weight or by a detailed component by component analysis. When a composition is defined solely by molecular weight FLARENET analyzes the user defined component slate to select a pair of components whose molecular weights straddle the defined value. A binary composition is then calculated to match this value. This type of fluid characterization is only suitable for network analyses in which the fluids are assumed to be vapor, since the VLE behavior cannot be reasonably predicted from this level of detail. Thus the Compressible Gas VLE method is the only one that should ever be used in association with molecular weight modeling.

When modeling using a detailed component by component analysis, if you are confident that the system will be liquid free then the Compressible Gas VLE method should be used since it does not have the overhead of determining the vapor/liquid equilibrium split. The computation time for the fluid properties then becomes several orders of magnitudes faster that those involving a liquid phase.

When modeling a system in which two phase effects are important, consideration must be given to the pressures both upstream of the sources and within the flare piping. The Vapor Pressure VLE method, which is the fastest of the multiphase methods, is, strictly speaking, only valid for pressures below 10 bar. The reduced temperature of the fluid should also be greater than 0.3. Experience has shown that it also works to an acceptable degree of accuracy for flare system analysis at pressures well beyond this. If

7 Calculations 114

Page 115: FLARENET Reference Manual

speed is an issue, then it is recommended that a scenario with as many active sources as possible be rated both using one of the cubic equations of state and this method. If acceptable agreement between the results is achieved then it may be reasonably assumed that the extrapolation is valid.

Sizing Calculations The final calculations upon which a flare system is built should of course be made using the most detailed model consistent with the quality of data available, but for initial sizing calculations a number of points should be considered when selecting appropriate calculation methods.

• There is not generally a great deal of difference between the pressure drops calculated for a two phase system, whether calculated by treating the system as a compressible gas or as a two phase fluid. This occurs since as the fluid condenses the velocities will decrease but the two-phase friction factor will increase.

• Unless choked flow is allowed in the system, the back pressure on each source should not vary greatly with line size. The specification of a reasonable fixed downstream temperature for each source for use with the ideal gas enthalpy model should therefore give reasonable results.

The recommended procedure for performing sizing calculations is as follows:

1 Build the network using reasonable estimates for the pipe diameters. Estimate the diameters from:

PMWd

300=

d = Diameter (m)

W = Mass flow (kg/s)

P = Tip pressure (bar abs)

M = Design mach number

2 Rate the network for all the scenarios with your desired detailed model for the VLE and enthalpies. This will give reasonable temperatures downstream of each source.

3 Copy the calculated temperatures downstream of each source to the source data by the Refresh Source Temperatures option under the Tools menu.

4 Size the network for all scenarios using Compress Gas VLE and Ideal Gas enthalpies.

5 Rate the network for all the scenarios with your desired detailed model for the VLE and enthalpies. If there are any design violations, make a debottlenecking calculation with these methods.

7 Calculations 115

Page 116: FLARENET Reference Manual

8 Databases

Overview The data for the various installable components of the model are stored in user-modifiable database files.

The database files are:

• SCHEDULE.MDB - The pipe schedule database. This contains data for both carbon steel and stainless steel pipe.

• FITTINGS.MDB - The pipe fittings database.

• COMPS.MDB - The pure component database.

These files are initially installed to the Database sub-directory in your main FLARENET directory.

Note: You may add and edit your own data to the databases. However, you cannot edit or delete any of the original data.

The databases may be password protected by a single password common to each. If the password has been disabled, or an incorrect access password has been entered, the databases may be reviewed in read-only mode. You must have defined an access password before any database can be edited.

Note: Original data is always read-only.

8 Databases 116

Page 117: FLARENET Reference Manual

Database Features

Selection Filter The Selection Filter may be used to restrict the data which is shown. You may use the following wildcard characters:

• ? - Represents a single character.

• * - Represents a group of characters of undefined length.

• Any filter string has an implied * character at the end.

Some examples are shown below:

Filter Application Result

*0 Pipe Schedule 10, 20, 30, 40, 60, 80, 100, 120, 140, 160

1?0 Pipe Schedule 100, 120, 140, 160

1* Pipe Schedule 10, 100, 120, 140, 160

*90* Fittings All 90 degree bends and elbows

*Entrance* Fittings All Pipe Entrance fittings

*thane Components Methane, Ethane

M* Components Methane, Mcyclopentane, etc.

As you navigate through the table, you will see that the standard database records are shown in black. User-defined records, which may be edited, are shown in blue.

8 Databases 117

Page 118: FLARENET Reference Manual

Maneuvering Through the Table Click the table to select a record, and then navigate through the table using the navigator and scroll bar controls.

Fig 8.1

Printing Click the Print All button to print the pipe schedule, fittings or component data, depending on which editor you are currently using. FLARENET prints formatted output using the default printer settings.

Adding/Deleting Data When the Add button is clicked, the cursor will move to the last record on the table and insert a new record that contains dummy data. You should override this data with your actual data.

Note: User-defined data is shown in blue.

When you add items, they will then become immediately available to the simulation.

Click the Delete button to delete the current record.

Note: You can only delete your own data.

Click OK to close the Database Editor view.

8 Databases 118

Page 119: FLARENET Reference Manual

Setting The Password To set or modify the password:

1 Select Set Password from the Database menu on the menu bar.

The Password Editor view will now be displayed.

Fig 8.2

If you have already set your password, you first need to enter the existing password before supplying the new one.

2 Enter your existing password in the Old Password field.

3 Enter your new password in both the New Password and Confirm New Password field and then click OK, or Cancel to abort the procedure.

Pipe Schedule Database Editor The Pipe Schedule Database Editor allows you to view the pipe schedule data for all pipes in the database, and to add and edit user-defined entries.

To use the Pipe Schedule Database Editor, select Pipe Schedule from the Database menu. After you enter the password, the Pipe Schedule Database Editor view will be displayed, as shown in Fig 8.3.

8 Databases 119

Page 120: FLARENET Reference Manual

Fig 8.3

If you have already set your password, you will need to enter the password before accessing the databases.

Select the material you want to view using the Material drop-down list. This may be either Carbon Steel or Stainless Steel.

The Nominal Diameter, Schedule, Internal Diameter, Wall Thickness and Group for each entry is tabulated.

The database can be modified by either adding or deleting the entries using the Add or Delete button, respectively. Click the Print All button to print the database to the printer defined in the Printer Setup view.

For information on the Database view features that are common to the Pipe Schedule, Fittings and Components Databases, see Database Features.

8 Databases 120

Page 121: FLARENET Reference Manual

Fittings Database Editor The Fittings Database Editor allows you to view the pipe fittings data for all fittings types in the database, and to add and edit user-defined entries.

To display the Fittings Database Editor, select Pipe Fittings from the Database menu. After you enter the password, the Fittings Database Editor view will be displayed, as shown in Fig 8.4.

Fig 8.4

The description of each fitting, as well as the A and B term in the pipe fitting equation is tabulated. The Reference defines the literature source for the data.

The pipe fitting equation is:

tBFAK +=

For information on the Database view features that are common to the Pipe Schedule, Fittings and Components Databases, see Database Features.

8 Databases 121

Page 122: FLARENET Reference Manual

Component Database Editor The Component Database Editor allows you to view the component data for all the pure components in the database, and to add and edit user defined entries.

To display the Component Database Editor, select Component from the Database menu. After you enter the password, the Component Database Editor view will be displayed, as shown in Fig 8.5.

Fig 8.5

The data for each component in the database is tabulated.

For information on the Database view features that are common to the Pipe Schedule, Fittings and Components Databases, see Database Features.

Importing Component Data Additional components may be added to the database via an ASCII file whose format is given in Appendix B – File Format.

The component data file can be read into FLARENET by clicking the Import button on the Component Database Editor view.

The Import button is unique to the Component Database Editor. This feature allows you to specify the text file, which must be created previously within HYSIM, on the Select Import File view.

8 Databases 122

Page 123: FLARENET Reference Manual

Fig 8.6

A utility to create this file from a HYSIM case is supplied. Two steps are necessary in order to import component data from HYSIM Version 2.60 into the component database.

1 Export the component data from HYSIM. A calculator program must be executed within HYSIM in order to convert the component data to the proper format.

2 Import the component data into FLARENET, via the component database editor.

In order to create the HYSIM transfer file:

1 Load the HYSIM case containing the component data into HYSIM.

2 At the main HYSIM command line prompt, type the command !EXPORT. You must previously have copied the file EXPORT.HCL into the HYSIM working directory from the \HYSIM directory under your main program directory. This need be done only once.

3 When prompted for the name of the export file, enter the file name. This file will be given the extension .TXT. The transfer file will now be created (in your HYSIM directory).

8 Databases 123

Page 124: FLARENET Reference Manual

9 Viewing Data and Results

Tabulated Data and Results can be viewed from the View menu in the menu bar.

Note: For all of these views, columns can be resized and moved as described in Changing Column Width and Changing Column Order.

Components Data Properties for all components in the current case can be viewed by selecting Data-Components from the View menu. Alternatively, you can use the key combination ALT V D C.

Fig 9.1

Hypothetical components can be edited and database components viewed in the Component Editor view, by double clicking on any cell in the appropriate row. For more information on editing the components see Adding/Editing Components.

9 Viewing Data and Results 124

Page 125: FLARENET Reference Manual

Scenarios Data Scenario data for all the scenarios in the case can be viewed by selecting Data-Scenarios from the View menu. Alternatively, you can use the key combination ALT V D C.

Fig 9.2

The Scenario Editor can be accessed by double clicking on any cell in the appropriate row. See Adding/Editing Scenarios for more information on editing scenarios.

Pipes Data Properties of the pipe network on a segment-by-segment basis can be viewed by selecting Data-Pipes from the View menu. Alternatively, you can use the key combination ALT V D P.

Fig 9.3

9 Viewing Data and Results 125

Page 126: FLARENET Reference Manual

You can edit an individual segment by double clicking on any cell in the appropriate row. See Pipes Network for more information on editing pipe segments.

Segments that are resizable are displayed in black and segments that are not resizable are displayed in blue. Once calculations are performed (and convergence is achieved), all segments whose size has been changed are displayed in magenta.

Sources Data Source data can be viewed by selecting Data-Sources from the View menu. Alternatively, you can use the key combination ALT V D P.

Fig 9.4

To change scenarios, you could select the appropriate scenario tab, or select one from the Scenario Manager.

You can edit an individual source by double clicking on any cell in the appropriate row. See Boundary Nodes for more information on editing sources.

To view source data for a different scenario select the appropriate scenario in the scenario selector on the toolbar, and the Sources view will change accordingly.

9 Viewing Data and Results 126

Page 127: FLARENET Reference Manual

Nodes Data Properties for all the nodes in the current case can be viewed by selecting Data and then Nodes from the View menu. Alternatively, you can use the key combination ALT V D N.

Fig 9.5

You can edit an individual node by double-clicking on any cell in the appropriate row. For information on editing nodes see Node Manager.

The messages that are displayed depend on the Message options you have selected (see Warnings Tab).

Messages Messages can be viewed by selecting Results-Messages from the View menu. Alternatively, you can use the key combination ALT V R M.

Note: The result messages can be viewed only after you have run the calculations.

9 Viewing Data and Results 127

Page 128: FLARENET Reference Manual

Problems Tab Any violations of the design constraints are shown on this tab.

Fig 9.6 The following design constraints will be checked for violations:

Mach Number Velocity pv2 Noise Back Pressure Temperature Slug Flow Ice Formation

Data Echo Tab The Data Echo tab shows the options chosen for the calculation.

Fig 9.7

9 Viewing Data and Results 128

Page 129: FLARENET Reference Manual

Solver Tab This tab displays any complications encountered by the solver.

Fig 9.8

Sizing Tab This tab displays the sequence of line size changes during sizing calculations.

Fig 9.9

9 Viewing Data and Results 129

Page 130: FLARENET Reference Manual

Loops tab This tab displays the solution history for looped network calculations.

Fig 9.10

The following variables are shown: Mass Flowrate Molar Flowrate Rated Flowrate Static Pressure Drop Noise Static Source Back Pressure Upstream (US) Static Pressure US Temperature US Velocity US Mach No. US Rho V2 US Energy Downstream (DS) Static Pressure DS Temperature DS Velocity DS Mach No. DS Rho V2 DS Energy Flow Regime Static Pipe Acceleration Loss Static Pipe Elevation Loss Static Pipe Fittings Loss Friction Factor Reynolds Number Duty Overall HTC External HTC Internal HTC Equivalent Length Physical Length

Pressure/Flow Summary After running the case, you can view the Pressure/Flow Summary by selecting Results-Pressure/Flow Summary from the View menu.

Fig 9.11

9 Viewing Data and Results 130

Page 131: FLARENET Reference Manual

If any value violates a design limitation (e.g. - a Mach number is greater than the maximum allowable Mach number), it is displayed in emboldened red.

Compositions After running the case, you can view the Compositions for each pipe segment by selecting Results-Compositions from the View menu. You can also use the ALT V R C key combination to access the view.

Fig 9.12

The Compositions view may not be available if Save Phase Properties is not active on the General tab of the Preferences Editor view.

9 Viewing Data and Results 131

Page 132: FLARENET Reference Manual

Physical Properties After running the case, you can view the Physical Properties for each pipe segment by selecting Results-Physical Properties from the View menu.

Alternatively, you can use the key combination ALT V R R. The following properties are displayed (Upstream and Downstream): Density Enthalpy Entropy Phase Fraction Heat Capacity Molecular Weight Surface Tension Thermal Conductivity Viscosity Z Factor

Fig 9.13

The Physical Properties view may not be available if Save Phase Properties is not active on the General tab of the Preferences Editor view.

You can view properties for different fluid phases by double-clicking anywhere inside the view. Each line expands to display properties for the various phases.

Fig 9.14

F = Fluid (Overall) V = Vapor Phase L = Liquid Phase W = Water Phase M = Mixed (Water & Liquid)

9 Viewing Data and Results 132

Page 133: FLARENET Reference Manual

Double clicking again, inside the view, will contract the view to its original state.

Profile After running the case, you can view the properties profile by selecting Results-Profile from the View menu or by pressing the key combination ALT

V R P.

Fig 9.15

The following properties profiles are available:

Pressure Temperature Mass Flow Molar Flow Mach No. Noise Rho V2

You can select the property type from the drop-down list. The Profile displays the profile from the selected Source (which may be chosen from the drop-down list at the top of the view) to the Flare.

9 Viewing Data and Results 133

Page 134: FLARENET Reference Manual

Five icons are available:

Name Icon Description

Print

Print the graph using the current printer settings. The output also includes important information such as the name of the file, the scenario, and the model statistics.

Preview Print Summary

Previews a summary of what the print out will look like.

Save

Save the graph to a windows metafile .wmf. You will be prompted for the file name and path.

Copy

Copy the graph to the Windows clipboard. It can then be pasted in other applicable Windows applications (such as your word processor).

Toggle View Type

Switch display from graph to table.

The plot can be modified by the 2D Chart Control Properties which is available on right clicking the mouse in the plot area. See Graph Control for more information on 2D Chart Control Properties view.

Flow Map The flow map available in FLARENET displays the flow pattern correlation of Gregory Aziz and Mandhane which is currently the most widely used method. It was based on almost 6,000 flow pattern observations, from a variety of systems, and many independent studies and it is strictly applicable only to horizontal flow. Typically, the superficial gas and liquid velocities in a horizontal pipe are the most important single parameters influencing the flow pattern.

After running the case, you can view the Gregory Aziz and Mandhane flow map by selecting Results-Flow Map from the View menu or by pressing the key combination ALT V R W.

9 Viewing Data and Results 134

Page 135: FLARENET Reference Manual

Fig 9.16

You can display the flow map for each pipe segment by selecting the desired pipe segment from the drop-down list on the top of the view. The upstream and downstream conditions are marked with a red dot and a label on the flow map. Unless the pipe segment has a single phase flow with a large pressure drop, both upstream and downstream pipe conditions will generally be close to each other.

Four icons are available:

Name Icon Description

Print

Print the graph using the current printer settings. The output also includes important information such as the name of the file, the scenario, and the model statistics.

Preview Print Summary

Previews a summary of what the print out will look like.

Save

Save the graph to a windows metafile .wmf. You will be prompted for the file name and path.

Copy

Copy the graph to the Windows clipboard. It can then be pasted in other applicable Windows applications (such as your word processor).

9 Viewing Data and Results 135

Page 136: FLARENET Reference Manual

Scenario Summary After running the case, you can view the Scenario Summary by selecting Results-Scenario Summary from the View menu.

Fig 9.17

You can select a source from the drop-down menu at the top of the view.

Three icons are also available:

Name Icon Description

Print

Print the results using the current printer settings. The output also includes important information such as the name of the file, scenario, and the model statistics.

Preview Print Summary

Previews a summary of what the print out will look like.

Save

Save the results to an ASCII text file .txt. You will be prompted for the file name and path.

9 Viewing Data and Results 136

Page 137: FLARENET Reference Manual

Graph Control You can customize each individual plot in FLARENET using the Chart Control tool. You can modify many of the plot characteristics, which are categorized into the six tabs of the 2D Chart Control Properties view: Control, Axes, ChartStyles, Legend, ChartArea and PlotArea.

The number of Pipe Segments, Nodes, Sources, Components and Scenarios is displayed, as well as the name and path of the current file.

Fig 9.18

You can open the 2D Chart Control Properties view by object inspecting any spot on an active plot.

9 Viewing Data and Results 137

Page 138: FLARENET Reference Manual

Control Tab The Control tab is used to specify the background border, background and foreground colors and background image.

Fig 9.19

The inner tabs available on the Control tab are:

Inner Tab

Option Description

IsBatched When checked, changes to the chart are not displayed on the screen.

IsDoubleBuffered When checked, changes to the chart are buffered so the screen is updates as smoothly as possible.

General

Load/Save buttons Click the Load button to load a new chart description file.

You can save the current chart to a chart description file, using the Save button.

Type Select the border type drawn around the area from the drop-down list.

Border

Width Enter the boarder type width in pixels. Valid values are between 0 and 20 pixels.

Background Color RGB

The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the background color for the graph. The color of the button shows the current selection.

Interior

Background Color Name

Select the color name from the drop-down list.

You can specify the color in three ways:

Enter the hexadecimal number in the RGB box. Select the color from the Name drop-down list. Click on the color button and select the desired color from the Windows Color view by either double clicking on the color or clicking once and then clicking the OK button. The color button displays the current color

continued

9 Viewing Data and Results 138

Page 139: FLARENET Reference Manual

Inner Tab

Option Description

Foreground Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the background color for the graph. The color of the button shows the current selection.

Foreground Color Name

Select the Color name from the drop-down list.

File Specifies the background image file either by entering the file path or by clicking the extension button and then selecting the appropriate file from the File Open view.

Layout Select the way you want the image to be displayed in the background.

IsEmbedded When checked, the image is embedded into the chart. When unchecked, the chart looks for the image in the specified location.

Image

Reset button Click this button to return the chart element background to its default.

When the Name drop-down list displays:

Automatic. The background is transparent. Undefined. There is no matching color name for the specified color.

Axes Tab The Axes tab allows you to customize the plot area, using the following inner tabs:

Fig 9.20

9 Viewing Data and Results 139

Page 140: FLARENET Reference Manual

Inner Tab Option Description

IsShowing Displays or hides the selected axis.

IsLogarithmic When checked, the selected axis will be interpreted logarithmically (log base 10) instead of linearly.

IsReversed If checked, the selected axis will be displayed in reverse direction.

General

Is100Percent When checked, each series in a Stacking Bar chart is scaled to represent 100 percent, and each value within the series is a given percentage of the total.

Annotation Method

Specifies how the axis is annotated. Click the button on the right to specify additional information for this annotation method.

Annotation Place

Specifies where to place the annotation. If this option is disabled, it does not apply to the selected axis.

Origin Place Specifies where to place the origin. If this option is disabled, it does not apply to the selected axis.

Annotation Rotation

Rotates annotation text at the angle you specify.

Numerical Method

You can specify whether to round axis numbering.

Y Multiplier Creates values for a second Y-axis (Y2) by multiplying Y-axis numbering by this value. This option is only enabled for the Y2-axis.

Annotation

Y Constant Add this value to Y2-axis numbering generated by Y Multiplier. This option is only enabled for Y2-axis.

Data Maximum Specify the highest possible data value for the selected axis.

Data Minimum Specify the lowest data value for the selected axis.

Maximum Specify the maximum axis value.

Minimum Specify the minimum axis value.

Scale

Origin Specify the origin of the selected axis.

Text Enter the title text for the selected axis. Title

Title Rotation Rotates title text at the angle you specify. The x-axis title text cannot be rotated.

IsStyleDefault When checked, the GridStyle returns to the default. If this option is disabled, it does not apply to the selected axis.

Grid

Spacing Specifies the grid increment. If this option is disabled, it does not apply to the selected axis.

Pattern List the available line patterns.

Width Specify the width of the line, in pixels.

Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the selected axis and its label. The color of the button shows the current selection.

AxisStyle & GridStyle

Color name List the name of the specified line color. To choose a new color by its name, click the down arrow or type the name of the color here.

When displaying Undefined, there is no matching color name for the specified color.

Description List the current font setting for the text. Click the button on the right to choose a new font, size, or style.

Font Sample Shows a sample of how text will appear with the specified font setting.

Origin Base Specify where on the y-axis the x-axis is located. Polar/Radar

Annotation Angle

Specify the angle from the origin where the axis is annotated.

9 Viewing Data and Results 140

Page 141: FLARENET Reference Manual

ChartGroup Tab This tab allows you to customize ChartGroups attributes, such as the chart type and the data itself.

Fig 9.21

The inner tabs available on the ChartGroup tab are:

Inner Tab Option Description

ChartType Select the chart type, from the drop-down list, for the selected ChartGroup.

General

DrawingOrder Specifies the order that the selected ChartGroup is drawn.

Layout Specifies the format of the chart data.

Hole Specifies the value that represents the missing data values or holes.

NumSeries Specifies the number of series in the data.

NumPoints Specifies the number of points in the data.

XValue Lists an editable X data value at ThisSeries and ThisValue.

YValue Lists an editable Y data value at ThisSeries and ThisValue.

ThisSeries Selects a data series to view or edit. Use with ThisPoint to select a particular data point. XValue and YValue display the X and Y coordinates at this series/point.

Data

ThisPoint Selects a data point to view or edit. Use with ThisSeries to select a particular data point. XValue and YValue display the X and Y coordinates at this series/point.

continued

9 Viewing Data and Results 141

Page 142: FLARENET Reference Manual

Inner Tab Option Description

Load button Load new data into the ChartGroup.

Save button Save the selected ChartGroup’s data to a file.

Edit button Edit chart data

Series button Select the series you want to display.

Sort button Sort the points in each series from lowest to highest X value.

Text Enter the label text for the currently-defined Point-Label and Series-Label.

Add button Add a label after the selected Label in the list.

Labels

Remove button Remove the selected Label from the list.

Internet Datapath Specify a URL to load a chart description form.

Field Specifies which field from the bound database is drawn.

Add button Add a bound database to the chart.

Remove button Remove a bound database from the chart.

Binding

Set Applies the field name typed in the Field drop-down list.

ClusterOverlap Specifies the spacing within each bar cluster. Positive values overlap the bars, negative values space the bar apart.

Bar

ClusterWidth Specifies the percentage of space used by each bar cluster.

Candle IsComplex When checked, the chart displays as a complex Candle type.

Polar IsHalfRange When checked, the X-axis is represented as 180 degrees. X values that are greater than 180 degrees are represented as negative.

IsShowingOpen When checked, the chart displays the Open value line.

IsShowingClose When checked, the chart displays the Close value line.

HiLoOpenClose

IsOpenCloseFullWidth When checked, the chart displays the Open and Close value lines.

SortOrder Specifies the order that pie slices are displayed.

ThresholdMethod Specifies the method used to group low values into the other slice.

ThresholdValue Provides a place for you to enter the value used with ThresholdMethod. To disable creation of the other slice, set this to 0.

Pie

MinSlices Specifies the minimum number of pie slices to display before grouping values into the other slice.

Text Change the text used to label the other pie slice.

Pattern Lists the available fill patterns.

Color RGB Lists the RGB value of the fill color. Valid values are between #000000 and #ffffff.

OtherSlice

Color Name Lists the name of the specified fill color. To choose a new color by its name, click the down arrow or type the name of the color here.

When displaying Undefined, there is no matching color name for the specified color.

9 Viewing Data and Results 142

Page 143: FLARENET Reference Manual

ChartStyles Tab The ChartStyles tab allows you to customize how data series look in the chart. The inner tabs available on the ChartStyles tab are:

Fig 9.22 Click the Add button to add a ChartStyle after the selected Style in the list.

Click the Remove button to remove the selected ChartStyle from the list.

Inner Tab Option Description

Pattern This drop-down list lists the available fill patterns.

Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the selected fill. The color of the button shows the current selection.

FillStyle

Color Name Lists the name of the specified fill color. To choose a new color by its name, click the down arrow or type the name of the color here.

When displaying Undefined, there is no matching color name for the specified color.

Pattern Lists the available line patterns.

Width Specifies the width of the line, in pixels.

Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the selected line. The color of the button shows the current selection.

LineStyle

Color Name Lists the name of the specified fill color. To choose a new color by its name, click the down arrow or type the name of the color.

When displaying Undefined, there is no matching color name for the specified color.

Shape Lists the available symbol shapes. SymbolStyle

Size Specifies the size of the symbol.

continued

9 Viewing Data and Results 143

Page 144: FLARENET Reference Manual

Inner Tab Option Description

Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the selected symbol. The color of the button shows the current selection.

Color Name Lists the name of the specified symbol color. To choose a new color by its name, click the down arrow or type the name of the color here.

When displaying Undefined, there is no matching color name for the specified color.

Titles Tab You can customize the header and footer on the following inner tabs of the Title tab.

Fig 9.23

9 Viewing Data and Results 144

Page 145: FLARENET Reference Manual

Inner Tab Option Description

Adjust You can specify how to align multiple lines of header or footer.

General

IsShowing Displays the header or footer, if its label contains text.

Label Text Provides a place for you to enter or change the text of this label. You can enter multiple lines of test by pressing enter at the end of each line.

Left Specifies the distance from the left edge of the chart to the area, in pixels. If this option is disabled, you cannot change the position of this area.

Top Specifies the distance from the top edge of the chart to the area, in pixels. If this option is disabled, the distance cannot be changed.

Width Specifies the width of the area in pixels. If this option is disabled, the width cannot be changed.

Location

Height Specifies the height of the area in pixels. If this option is disabled, the height cannot be changed.

Type Specifies the type of border drawn around the area. If this option is disabled, you cannot change the border type.

Border

Width Specifies the width of the border in pixels.

Background Color RGB

Enter the RGB value for the specified background color. Valid values are between #000000 and #ffffff.

Background Color Name

List the name of the specified background color. To choose a new color by its name, click the down arrow or type the name of the color.

Foreground Color RGB

Enter the RGB value for the specified foreground color. Valid values are between #000000 and #ffffff.

Interior

Foreground Color Name

List the name of the specified foreground color. To choose a new color by its name, click the down arrow or type the name of the color.

Description List the current font setting for the text. Click the button on the right to choose a new font, size, or style.

Font

Sample Shows a sample of how text will appear with the specified font setting.

File Specifies the file name and path of the image you want to load into the chart element.

Layout Select the way you want the image to be displayed in the background.

IsEmbedded When checked, the image is embedded into the chart. When unchecked, the chart looks for the image in the specified location.

Image

Reset button Click this button to return the chart element background to its default.

9 Viewing Data and Results 145

Page 146: FLARENET Reference Manual

Legend Tab The Legend tab allows you to customize the legend on the following inner tabs:

Fig 9.24

9 Viewing Data and Results 146

Page 147: FLARENET Reference Manual

Inner Tab Option Description

Anchor Specifies where the legend is positioned, relative to the ChartArea. You can fine-tune the positioning with the Location inner tab.

Orientation Specifies the layout of items in the Legend.

General

IsShowing Displays the label, if Series-labels have been defined.

Left Specifies the distance from the left edge of the chart to the area, in pixels. If this option is disabled, you cannot change the position of this area.

Top Specifies the distance from the top edge of the chart to the area, in pixels. If this option is disabled, the distance cannot be changed.

Width Specifies the width of the area in pixels. If this option is disabled, the width cannot be changed.

Location

Height Specifies the height of the area in pixels. If this option is disabled, the height cannot be changed.

Type Specifies the type of border drawn around the area. If this option is disabled, you cannot change the border type.

Border

Width Specifies the width of the border in pixels.

Background Color RGB

The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the legend background. The color of the button shows the current selection.

Background Color Name

List the name of the specified background color. To choose a new color by its name, click the down arrow or type the name of the color.

Foreground Color RGB

The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the legend label text. The color of the button shows the current selection.

Interior

Foreground Color Name

List the name of the specified foreground color. To choose a new color by its name, click the down arrow or type the name of the color.

Description List the current font setting for the text. Click the button on the right to choose a new font, size, or style.

Font

Sample Shows a sample of how text will appear with the specified font setting.

File Specifies the file name and path of the image you want to load into the chart element.

Layout Select the way you want the image to be displayed in the background.

IsEmbedded When checked, the image is embedded into the chart. When unchecked, the chart looks for the image in the specified location.

Image

Reset button Click this button to return the chart element background to its default.

9 Viewing Data and Results 147

Page 148: FLARENET Reference Manual

ChartArea Tab The ChartArea tab allows you to customize the chart area in detail.

Fig 9.25

9 Viewing Data and Results 148

Page 149: FLARENET Reference Manual

Inner Tab Option Description

IsHorizontal Reverses the orientation of X- and Y-axis, making the chart appear horizontal.

IsShowingOutlines When checked the chart outlines each series.

General

AngleUnit For Polar, Radar and Filled Radar charts, specifies the angle of measurement.

Left Specifies the distance from the left edge of the chart to the area, in pixels. If this option is disabled, you cannot change the position of this area.

Top Specifies the distance from the top edge of the chart to the area, in pixels. If this option is disabled, the distance cannot be changed.

Width Specifies the width of the area in pixels. If this option is disabled, the width cannot be changed.

Location

Height Specifies the height of the area in pixels. If this option is disabled, the height cannot be changed.

Type Specifies the type of border drawn around the area. If this option is disabled, you cannot change the border type.

Border

Width Specifies the width of the border in pixels.

Background Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the chart area background. The color of the button shows the current selection.

Background Color Name List the name of the specified background color. To choose a new color by its name, click the down arrow or type the name of the color.

Foreground Color RGB The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the chart axes. This selection will be overridden by any axis setting (see Axes Tab). The color of the button shows the current selection.

Interior

Foreground Color Name List the name of the specified foreground color. To choose a new color by its name, click the down arrow or type the name of the color.

File Specifies the file name and path of the image you want to load into the chart element.

Layout Select the way you want the image to be displayed in the background.

IsEmbedded When checked, the image is embedded into the chart. When unchecked, the chart looks for the image in the specified location.

Image

Reset button Click this button to return the chart element background to its default.

9 Viewing Data and Results 149

Page 150: FLARENET Reference Manual

Plot Area Tab The plot area can be customized on the PlotArea tab using the following inner tabs:

Fig 9.26

9 Viewing Data and Results 150

Page 151: FLARENET Reference Manual

Inner Tab Option Description

IsBoxed Draws a box around the plot area.

Top Specifies the distance from the top of the chart area to the axis. Positive values allow space for axis labels; negative values let you “zoom in” on a chart.

Bottom Specifies the distance from the bottom of the chart area to the axis. Positive values allow space for axis labels; negative values let you “zoom in” on a chart.

Left Specifies the distance from the left side of the chart area to the axis. Positive values allow space for axis labels; negative values let you “zoom in” on a chart.

General

Right Specifies the distance from the right side of the chart area to the axis. Positive values allow space for axis labels; negative values let you “zoom in” on a chart.

Background Color RGB

The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the plot area background. The color of the button shows the current selection.

Background Color Name

List the name of the specified background color. To choose a new color by its name, click the down arrow or type the name of the color.

Foreground Color RGB

The colored square button labeled “...” provides access to the standard Windows color picker dialogue view to allow selection of the color used for the plot area foreground. The color of the button shows the current selection.

Interior

Foreground Color Name

List the name of the specified foreground color. To choose a new color by its name, click the down arrow or type the name of the color.

File Specifies the file name and path of the image you want to load into the chart element. The button labeled “...” allows you to use the standard Windows file browser to search for and select the file.

Layout Select the way you want the image to be displayed in the background.

IsEmbedded When checked, the image is embedded into the chart. When unchecked, the chart looks for the image in the specified location.

Image

Reset button Click this button to return the chart element background to its default.

9 Viewing Data and Results 151

Page 152: FLARENET Reference Manual

ChartLabel Tab The ChartLabel tab allows you to customize chart labels and text annotation which you can add to the chart.

Fig 9.27

The inner tabs available on this tab are:

Inner Tab Option Description

Name Enter the name of the selected ChartLabel.

Offset Specifies the distance between the ChartLabel and its attachment point.

Anchor Specifies where the ChartLabel is positioned, relative to where it is attached.

IsShowing Displays the selected ChartLabel, if the text is displayed on the Label tab.

Adjust Specifies how to align multiple lines of text in the selected ChartLabel.

IsConnected Draw a line connecting the ChartLabel to its attachment location.

Rotation Specifies the degree of rotation for the selected ChartLabel.

General

AttachMethod Click this to set how and where to attach the selected ChartLabel to the chart.

ChartLabels can be attached to screen coordinates, graph coordinates, a series and point in the data, or a Y-value at a series/point.

continued

9 Viewing Data and Results 152

Page 153: FLARENET Reference Manual

Inner Tab Option Description

Label Text Provides a place for you to enter or change the text of this label. You can enter multiple lines of text by pressing enter at the end of each line.

Type Specifies the type of border drawn around the area. If this option is disabled, you cannot change the border type.

Border

Width Specifies the width of the border in pixels.

Background Color RGB

Enter the RGB value for the specified background color. Valid values are between #000000 and #ffffff.

Background Color Name

List the name of the specified background color. To choose a new color by its name, click the down arrow or type the name of the color.

Foreground Color RGB

Enter the RGB value for the specified foreground color. Valid values are between #000000 and #ffffff.

Interior

Foreground Color Name

List the name of the specified foreground color. To choose a new color by its name, click the down arrow or type the name of the color.

Description List the current font setting for the text. Click the button on the right to choose a new font, size, or style.

Font

Sample Shows a sample of how text will appear with the specified font setting.

Left Specifies the distance from the left edge of the chart to the area, in pixels. If this option is disabled, you cannot change the position of this area.

Top Specifies the distance from the top edge of the chart to the area, in pixels. If this option is disabled, the distance cannot be changed.

Width Specifies the width of the area in pixels. If this option is disabled, the width cannot be changed.

Location

Height Specifies the height of the area in pixels. If this option is disabled, the height cannot be changed.

File Specifies the file name and path of the image you want to load into the chart element.

Layout

Select the way you want the image to be displayed in the background.

IsEmbedded When checked, the image is embedded into the chart. When unchecked, the chart looks for the image in the specified location.

Image

Reset button Click this button to return the chart element background to its default.

9 Viewing Data and Results 153

Page 154: FLARENET Reference Manual

View3D tab The View3D tab allows you to customize 3D effect you can use with bar, sticking bar, or pie charts.

Fig 9.28

Inner Tab Option Description

Depth Specifies depth of bar/pie 3D effect, as a percentage of the total width of the chart. This must be greater than zero to display any 3D effect.

Elevation Specifies the elevation angle of the 3D effect, as degrees above the X-axis.

Rotation Specifies the rotation angle of the 3D effect, as degrees to the right of the Y-axis. This is not applicable to the pie charts.

General

Shading Specifies the shading method for the 3D portions of the graph. The Dithering shading method uses the graph color and uses either white or blacks dots to make the resulting color lighter or darker, respectively. The Color shading method uses either a darker or lighter shade of the graph color to create the 3D effect.

9 Viewing Data and Results 154

Page 155: FLARENET Reference Manual

Markers Tab The Markers tab allows you to add and customize markers on the chart using the following inner tabs:

Fig 9.29

Inner Tab Option Description

IsShowing Display the marker, if a location has been specified on the Attach tab.

General

IsStyleDefault When checked, the LineStyle returns to default.

By Value Locates the selected marker at graph coordinates. Use X, Y, and Group to specify the graph coordinates.

X Specifies the X coordinate at which to locate the marker. If this option is disabled, it does not apply to the selected marker.

Y Specifies the Y coordinate at which to locate the marker. If this option is disabled, it does not apply to the selected marker.

Group Specifies which ChartGroup’s data to use for the coordinates.

By Data Locates the selected marker at a data point (X marker only). Use Series, Point and Group to specify the data point.

Series Specifies the series at which to locate the marker. This option is only enabled for the X marker.

Point Specifies the point at which to locate the marker. This option is only enabled for the X marker.

Attach

Group Specifies which ChartGroup’s data to use for the value. This option is only enabled for the X marker.

continued

9 Viewing Data and Results 155

Page 156: FLARENET Reference Manual

Inner Tab Option Description

Pattern Lists the available line patterns.

Width Specifies the width of the line, in pixels.

Color RGB Lists the RGB value of the fill color. Valid values are between #000000 and #ffffff.

LineStyle

Color Name

Lists the name of the specified fill color. To choose a new color by its name, click the down arrow or type the name of the color.

When displaying Undefined, there is no matching color name for the specified color.

Trace Window The Trace window is opened using the Trace option from the View menu. When open, it is used by FLARENET to list the progress of calculations as they are carried out. It may also be used to list the actions taken during import of data from an Access, Excel or XML data file through the Import Wizard. The Trace window must be opened prior to starting calculations or the import process. The number of entries held in the Trace window can be set using the Trace Buffer option in the Preferences Editor view.

9 Viewing Data and Results 156

Page 157: FLARENET Reference Manual

10 PFD

Overview One of the key benefits of the Process Flow Diagram (PFD) is that it provides the best representation of the flare system model as a whole. From this one location, you have an immediate reference to your current progress in building the Flare network.

The PFD has been developed to satisfy a number of functions. In addition to the graphical representation, you can build your flowsheet within the PFD using the mouse to install objects and make connections. You can also reposition objects, resize icons and reroute connections.

The PFD also possesses analytical capabilities in that you can access the Edit views for nodes, pipe segments, and sources which are displayed.

10 PFD 157

Page 158: FLARENET Reference Manual

Each object has a specific icon to represent it:

Object Icon

Pipe-Segment

Flare Tip

Connector

Tee

Relief Valve

Control Valve

Vertical Separator

Horizontal Separator

Orifice Plate

Flow Bleed

10 PFD 158

Page 159: FLARENET Reference Manual

To open the PFD, select PFD-Open from the View menu. A separate view with its own tool bar is opened.

Fig 10.1

Object Inspection One of the key features of the FLARENET PFD is the ability to inspect objects in the flowsheet. If you double-click on any pipe-segment, source or node, the appropriate edit view will be opened for that object.

PFD Toolbar There are several tools that help to simplify your interaction with the PFD. The most basic tools relate to what is displayed in the PFD view.

PFD Toolbar Icons The PFD toolbar icons are arranged as follows:

Fig 10.2

10 PFD 159

Page 160: FLARENET Reference Manual

These icons perform the functions explained below:

Name Icon Description

Print PFD

Print the PFD to the Printer.

Preview Print PFD

Previews a summary of what the print out will look like.

Save Image as Windows Metafile

Save the PFD to file. It is saved in .emf format (Enhanced Metafile).

Copy Image to Clipboard

Copies the PFD to the clipboard, allowing you to paste it into other applications.

Toggle Grid Display

Toggle the grid on and off. When the grid is on, this icon will be faded.

Coarser Grid

This icon increases grid spacing. All objects you move or add "snap to" the current grid spacing.

Finer Grid

This icon decreases grid spacing. All objects you move or add "snap to" the current grid spacing.

Toggle Snap To Grid On/Off

Toggles the snap to grid option on and off. When the snap to grid is on all pipe segments and nodes will be snapped to the closest grids.

Zoom In

This icon zooms the display in.

Zoom Out

This icon zooms the display out.

Zoom to Fit

Fit PFD in the view. When you click this icon, the entire PFD will be reduced and enlarged to fit the PFD view.

Zoom Full

Zoom to the normal size (100%). At this size, all text and icons are easily readable.

Rotate Selected PFD Objects

Rotate the selected pipe segments and nodes.

Toggle Direct/Orthogonal connections

Toggle between bent and straight connections. All current connections (and any connections you subsequently make) will conform to the connection method you have selected.

Toggle Connect/Arrange Mode

Toggle between Arrange and Connect modes. Arrange mode allows you to move icons and labels. Connect mode allows you to graphically connect compatible objects. The status bar on the PFD shows which mode is activated.

Add Annotation

The Add Annotation icon allows you to add blocks of text or notes to the PFD. Clicking it displays the Annotation Editor view shown below as Figure 10.3.

Toggle Palette Display

This icon toggles the Toolbox view.

The CTRL SHIFT S hot key snaps the objects to the grid. While in the snap mode, the Status bar displays the word Snap.

10 PFD 160

Page 161: FLARENET Reference Manual

Fig 10.3

The data entry items and buttons on the Annotation Editor are as follows:

Item Description

Text This panel allows you to enter the text to be displayed on the PFD. The text entered will not word wrap, but line breaks can be inserted using the shift enter key combination.

Alignment This drop-down list allows selection of the alignment of the annotation. The options are Left, Right and Center.

Font Button The Font button allows selection of the font to be used to display the annotation using the Windows Font Picker. The default font face and size that will be used may be set through the PFD tab of the Preferences Editor view see PFD Tab.

OK Button Click this button to close the annotation view and display the annotation.

Print Options You can specify the area of the PFD that you desire to print by selecting the following options available on the PFD toolbar.

Option Description

Print Visible Print part of the PFD visible on the screen.

Print All Print the whole PFD.

Print Selected Print only the selected part of the PFD. You can highlight the part of the PFD by clicking once on the PFD and than dragging the section of PFD. The PFD is printed without the page header and footer to allow compilation of a multiple tiled image.

10 PFD 161

Page 162: FLARENET Reference Manual

Stream Label Options The following properties are available:

Energy Flow Length Mach Number Mass Flow Molecular Weight Molar Flow Noise Nominal Diameter Pressure Rho V2 Temperature Vapor Fraction Velocity Velocity (Liq) Velocity (Vap) Pressure / Mass Flow option Pressure / Temperature Pressure / Mach No. Length / Nom. Diam MABP Approach.

By default, each object on the PFD has a label that displays its name. You can change all object name labels so that the current value of a key variable is shown in the place of each object name.

You can choose between the type of labels for the pipe segments and nodes by selecting the property drop-down list on the PFD toolbar.

Fig 10.4

The display field on the right side of the property drop-down list displays the default units for the chosen property.

If the object label is red in color it indicates that the object violated the limits setup in the Scenarios Editor or the fluid is in the slug region. Some of the possible causes are ice formation, slug flow, temperature violation and source back pressure. If the object label is gray in color it indicates that the object is ignored for calculation by activating the Ignore checkbox on the object property view.

Viewports Option You have the option to change the PFD viewports. By default, a single PFD viewport is defined as Overall. You can specify a different setting for each viewport including percent zoom and stream labels.

Add a New Viewport New viewports can be added to the PFD by right clicking the title bar of the PFD view and selecting Add Viewport from the displayed menu. The new viewport is created with the default PFD settings i.e. 100% size and No property labels but will show the same view as the PFD. The Viewport Selector on the PFD toolbar will show that a new view has been created.

Once multiple viewports have been created, the Viewport Selector drop-down list on the PFD toolbar can be used to select the view required.

Delete an Existing Viewport You can delete an existing viewport from the PFD by right clicking the PFD view title bar and selecting the Delete Viewport from the menu.

10 PFD 162

Page 163: FLARENET Reference Manual

Print Viewport Visible viewports can be printed to a selected printer by right clicking on the PFD view title bar and choosing the Print Window from the menu.

Installing Objects The PFD can be used to install objects into the flowsheet, as well as connect compatible objects. Object specifications are then supplied via the appropriate Property view which can be accessed by double-clicking the object icon.

The PFD Toolbox is used to install operations. The Toolbox can be accessed by doing one of the following:

• Open the View menu and then open the PFD sub-menu. Select Toolbox.

• Press the F4 key.

• Click the Toolbox icon on the PFD toolbar.

Fig 10.5

The procedure for installing operations via the Toolbox is as follows: If the Edit Objects on Add checkbox is activated in the Preferences editor, the Object editor view will be open for each new object which is added to the PFD.

1 Click the desired object in the PFD Toolbox. You will see the icon being depressed.

2 Click in the specific area in the PFD where you want to place the object icon. The object then appears in the PFD.

3 Drag and drop the desired object using the secondary mouse key.

To delete an object, select the object you want to delete, and then press the DELETE key.

10 PFD 163

Page 164: FLARENET Reference Manual

Connecting Objects To connect objects:

1 Enter connect mode by clicking the Connect icon on the toolbar. This toggles between connect and arrange modes.

2 Click on the source object to select it.

3 Move the mouse pointer over the central handle point (blue fill instead of white for this handle point) then press the left mouse button.

4 Drag off the source object and over the destination object.

5 Release the left mouse button.

The current mode is displayed on the left of PFD status bar.

Manipulating the PFD

Note: FLARENET allows you to select single objects as well as multiple objects, but in order to select an object, you must be in Arrange mode.

There are a number of features built into the PFD interface to modify its appearance. The manipulations apply to all objects that are installed in the PFD.

Selecting PFD Objects To select a single object, position the mouse pointer on top of the object, and then click once with the left mouse button. The selected object will have eight small boxes outlining its border. These small boxes are used to size an object.

Note: The text must be selected separately; that is, when you select an object, the corresponding text is not also automatically selected.

There are two methods you can use to select multiple objects:

Method One 1 If the objects are all contained within the same area, the quickest and

easiest way is to marquee select that group. Press the left mouse button (outside the group), and drag the mouse so that a box appears.

2 Continue dragging until this box contains all the objects that you want selected.

3 When you release the mouse button, each object will have its own rectangular box surrounding it, indicating it has been selected.

10 PFD 164

Page 165: FLARENET Reference Manual

Method Two 1 Position the mouse pointer on the first object in the PFD you want to

select.

2 Press the left mouse button to select this object.

3 To select a second object, hold down the SHIFT key or CTRL key, and then click on the second object with the left mouse button. Two objects will now be selected.

4 Continue this method for the remainder of the objects you want to select.

Unselecting Objects The following methods can be used:

• Click on an empty spot in the PFD with the left mouse button.

• To unselect only one item, press the SHIFT key and click on the object with the left mouse button.

Moving Objects You can move objects individually, or as a group.

If the grid is on, all objects which are moved will "snap to" the grid. Their movement will be constrained to the grid spacing.

1 Select the item or items you want to move.

2 Position the mouse pointer on one of the objects and press the left mouse button.

3 Drag the mouse to the new position on the PFD and release the mouse button. All selected items will move to the new location.

Locating Objects on the PFD You can locate individual objects on the PFD by pressing the CTRL SHIFT F hot keys, which displays the Locate Object view. You can select individual objects from the list by clicking on them using the primary mouse key. The object will be highlighted on the PFD.

Regenerate PFD Use this function to reposition all objects in a logical manner. Select PFD-Regenerate from the View menu.

This feature is a great time-saver especially when you have not laid out the PFD as you were building the case. Rather than placing all objects yourself, regenerate the PFD in this manner. You can then make additional changes to further fine-tune your PFD. Regenerate PFD option places all the objects along a vertical path in the best possible manner. It is not recommended to regenerate well laid out PFDs.

10 PFD 165

Page 166: FLARENET Reference Manual

Printing and Saving the PFD Image The first three toolbar icons are used to transfer the PFD to the printer, Windows Metafile and to memory.

To print the PFD using the current Print Setup, click the Print PFD icon. For more information on the Print Setup, see Printer Setup.

To save the PFD in .emf format (Enhanced Metafile), click the Save PFD icon. You will be prompted to enter a file name:

Fig 10.6

Enter the file name and path and click OK. To view the PFD, you can then use a program which is capable of reading .emf files (such as Corel DrawTM).

To copy the PFD to the clipboard, click the Copy PFD icon. You can then paste it into other Windows applications as you would with any Windows object.

10 PFD 166

Page 167: FLARENET Reference Manual

Changing the PFD View Options When in the PFD view, FLARENET allows you to select several view options, namely, Grid, Rotate, and Connection. All of these options are available via toolbar. The following is a description of each icon:

Toolbar Object Description

Toggle Grid Display icon

When the Grid toolbar icon is selected, a grid is superimposed upon the existing PFD. There are also 3 icons beside the Grid toolbar icon. These icons allow you to either increase or decrease the grid density as well as snap the elements to grid.

Rotate Selected PFD Objects icon

You can select to rotate or mirror (flip) the selected object about its center in one of the following five ways:

Rotate 90 Rotate 180 Rotate 270 Flip Y Flip X

Zoom There are four buttons associated with the Zoom feature of the PFD, Zoom in, Zoom out, Zoom to Fit and Zoom to Full Size. When the Zoom In Button is pressed, the current PFD view's resolution is increased, while its scope is decreased. Alternatively, when the Zoom Out button is pressed, the resolution is decreased while the scope is increased. When the Zoom to Fit button is selected, the view is redrawn in such a way as to include the entire PFD in one view. If the Zoom to Full Size button is pressed, the view will regenerate to its full size.

All objects you move or add "snap to" the current grid spacing. The grid spacing is independent of the zoom.

Toggle Direct/Orthogonal Connections

These icons allow you to toggle between direct and orthogonal connecting lines.

10 PFD 167

Page 168: FLARENET Reference Manual

11 Printing, Importing and Exporting

Data can be either exported to, or imported from a number of external sources. The printing of data and results is included as an export function since the printing functionality incorporated within FLARENET can also be used to export data and results in a number of industry standard formats.

The following data may be exported from FLARENET:

• All data and results may be printed on any Windows-compatible printer.

• All data and results may be saved as either ASCII text, Comma-separated text, or Tab-separated text.

• The Export Wizard allows selected data and results to be exported to Access database files, Excel spreadsheet files or XML data files.

The following data may be imported into FLARENET:

• Source data from the HYSIM and HYSYS process simulators. This data is transferred via an ASCII file. Consequently, it should be possible to import source data from any external source provided it conforms to this file format.

• Component data from the HYSIM process simulator, which is discussed in Importing Component Data. This data is transferred via an ASCII file. Consequently, it should be possible to import component data from any external source provided it conforms to this file format.

• The Import Wizard allows selected data to be imported from Access databases, Excel spreadsheets or XML data files.

11 Printing, Importing

and Exporting 168

Page 169: FLARENET Reference Manual

Printing In order to print either model data or calculation results that are not specific to a single source, select Print from the File menu. The Print view will be displayed.

Fig 11.1

Select the items that you want to print by checking the appropriate checkboxes in the Database, Data and Results group.

By default, the printout is only for the current scenario. Check the All Scenarios checkbox if you want printouts for all of the scenarios.

If you want the results to be saved as an ASCII text file, check the Print To File checkbox. You will then be able to select the file format via the Text File Format drop-down menu. The following file formats are supported:

• Text - Saves the data in ASCII format, with all values separated by spaces.

• CSV, Comma Separated - Saves the data in ASCII format, with all values separated by commas.

• TSV, Tab Separated - Saves the data in ASCII format, with all values separated by tabs.

If you checked the Print To File checkbox, the Print To File view will be displayed when you click OK.

11 Printing, Importing

and Exporting 169

Page 170: FLARENET Reference Manual

Fig 11.2

Select or directly enter the file, then click OK.

If you did not check the Print To File checkbox, the results will immediately be printed when you click OK on the Print view.

FMT Files The printouts can be customized to a limited extent using a series of ASCII text files with the extension ".fmt". These files may be edited using any ASCII text editor such as the NOTEPAD application distributed with Microsoft Windows.

The default ".fmt" files for each printed report are:

Report .fmt File

Component Database DbComps.fmt

Pipe Fittings Database DbFittings.fmt

Pipe Schedules Database DbSchedules.fmt

Components Comps.fmt

Scenarios Scenarios.fmt

Pipes Pipes.fmt

Source Sources.fmt

Nodes Nodes.fmt

Messages Messages.fmt

Pressure/Flow Summary Summary.fmt

Compositions MoleFracs.fmt

Physical Properties Properties.fmt

Scenario Summary ScenSum.fmt

11 Printing, Importing

and Exporting 170

Page 171: FLARENET Reference Manual

By default, these files are located in the FLARENET program directory. You can change the location and ".fmt" file for each report via the Reports tab on the Preferences Editor view.

Fig 11.3

These files conform to the format shown in Appendix B - File Format.

11 Printing, Importing

and Exporting 171

Page 172: FLARENET Reference Manual

Location-Specific Printing Results that are specific to a single source must be printed individually. The Profile, Flow Map and Scenario Summary views each have a Print icon which can be clicked to print the displayed data. The Profile view is shown here:

Fig 11.4

11 Printing, Importing

and Exporting 172

Page 173: FLARENET Reference Manual

Printer Setup To edit the printer setup, select Printer Setup from the File menu or press the ALT F R key combination. This is used to select the default/ specific printer, print orientation, paper size, paper source, and any other settings applicable to your printer. It is similar to the Printer Setup commands in other Windows applications.

The Print Setup Options vary for different printers.

Fig 11.5

Import Wizard The Import Wizard is a general data import utility that allows FLARENET to import data from Access databases, Excel Spreadsheets or XML data files. The Import Wizard allows you full control over the data to be imported whether a complete FLARENET model or just a set of updated source flow rates. Customized import definitions can be created and saved for later use.

Import Data Layouts The Import Wizard is capable importing data from a fairly wide range of data layouts within a particular data file type. The general rules for successful importing of data are:

• Import data must be grouped by data type e.g. data for all pipes must appear in one Access database table, on one Excel spreadsheet page or in within a single XML group element.

• Import data for a given type must be defined in a consistent layout e.g. in an Excel spreadsheet all the pipe data could be specified in 3 rows per pipe spaced one row apart.

11 Printing, Importing

and Exporting 173

Page 174: FLARENET Reference Manual

Samples of the type of data layout that can be imported and the corresponding import definition file formats are given in Import/Export Examples. A detailed description of the import definition file structure is given in FMT Files Format.

Using the Import Wizard You start the Import Wizard by selecting the Import Wizard option from the File menu. This may be done either immediately after starting FLARENET in order to import the data to create a FLARENET model from an external data source or after loading a FLARENET case to extend and modify it with data from the external source.

Once started the Import Wizard presents you with a 4 step dialogue to allow you to specify the data you want to import. Three buttons are common to each step:

• Next – moves the Import Wizard to the next stage. If the data on the current step is incomplete the Next button may be disabled i.e. grayed out. Clicking Next can also generate validation messages that prevent you moving to the next step. If this happens you will need to fix the problem described before continuing.

• Prev – move the Import Wizard back to the previous stage. You can use this option to go back and change your mind about the type of file you want to import or change the definition settings.

• Cancel – this button abandons the import process, closes the Import Wizard and returns you to the standard FLARENET environment.

11 Printing, Importing

and Exporting 174

Page 175: FLARENET Reference Manual

Import Wizard - Step 1 Fig 11.6

The view for the first step of the Import Wizard is shown in Fig 11.6. This view asks you to enter the name of the data file containing the information you want to import. You may either type the name or use the Browse button to select it using the file browser view shown in Fig 11.7.

Fig 11.7

11 Printing, Importing

and Exporting 175

Page 176: FLARENET Reference Manual

The file selected must be one of the following types:

File Type Extension Description

Access .MDB A Microsoft Access database file. Import of data from all versions of Access up to version 4.0 (Access 2000) is supported. You do not need a copy of Access on the PC that is running FLARENET in order to use this option.

Excel .XLS A Microsoft Excel spreadsheet file. Import of data from all versions of Excel up to Excel 2000 is supported. The PC that is running FLARENET must have an installed copy of Excel.

XML .XML An XML data file. XML data files that comply with the XML 1.0 reference document from W3C are supported.

Once the file name has been entered click the Next button to move to the next step.

Import Wizard – Step 2 Fig 11.8

Step 2 of the Import Wizard view is shown in Figure 11.8. This view asks you to define the import definition file that will be used to control this import. Three options are provided

• Use Default Definition File. This option selects the default import definition file that has been defined through the Preferences view, Import/Export tab.

• Create New Definition File. This option selects a blank definition file ready for you to begin creating a new import definition. The default blank definition file that will be selected is defined through the Preferences view, Import/Export tab.

11 Printing, Importing

and Exporting 176

Page 177: FLARENET Reference Manual

• Use Following File. This option allows you to enter the name of the definition file to be use. The Browse button allows you to select the file using the standard file browser view. The extension for an import definition file is .fni. The definition file selected must have been created for the type of import file you are using.

Whichever import definition file option you use, you will be given the opportunity to update the definition in the next step. When you have selected the definition file option click the Next button to move to the next step of the import process.

Import Wizard – Step 3

Fig 11.9

Step 3 of the Import Wizard is shown in Figure 11.9. This view allows you to update the import definition to define precisely which data items and data fields are to be imported. The view is divided into three sections:

• Object selector.

• Source tab.

• Field Details tab.

Object selector This is a tree view showing the different data objects that may be imported to a FLARENET model. Selecting a data object in the tree by either clicking on it or using the up or down arrow keys displays the import definition settings for that object on the Source and Field Details tab.

Some data objects have subsections for which import options may be defined separately from the parent data object. These are indicated in the tree by a

11 Printing, Importing

and Exporting 177

Page 178: FLARENET Reference Manual

small + symbol. The tree will automatically expand to show the subsections when the parent data object is selected.

The Object Selector view also provides a rapid overview of which data objects have been selected for import by displaying these with a bold font.

Source Tab The precise layout of the Source tab will vary with the type of data file that is being imported.

If an Access database file is being imported the following fields will be displayed:

Field Description

Import this type of data

This checkbox allows you to define whether this type of data object should be imported. If not selected then all objects of this type will be ignored during the import.

Data is contained in parent

This checkbox is only enabled for data subsections. If selected then the import process will expect to find all the data for this subsection in the same database table as the parent object and the remaining fields on the form will be disabled. Clearing this checkbox allows you to specify a different database table for the subsection data fields. E.g. All pipes and nodes allow PFDLayout data to be held in a separate table.

Select Table This drop-down list allows you to select the database table that contains the data for this object type. The list displays the tables found in the Access data file that you specified in step 1.

Select This field allows you to define selection criteria that may be used to select this type of data object from the defined database table. E.g. if the database you are importing contains data for all node types in a single table, it would require a field to identify the node type and you would define selection criteria based on that field.

If an Excel spreadsheet file is being imported the following fields will be displayed:

Field Description

Import this type of data

This checkbox allows you to define whether this type of data object should be imported. If not selected then all objects of this type will be ignored during the import.

Data is contained in parent

This checkbox is only enabled for data subsections. If selected then the import process will expect to find all the data for this subsection in the same worksheet as the parent object and the remaining fields on the form will be disabled. Clearing this checkbox allows you to specify a different worksheet within your spreadsheet workbook for the subsection data fields. E.g. All pipes and nodes allow PFDLayout data to be held on a separate worksheet.

Select Worksheet

This drop-down list allows you to select the worksheet that contains the data for this object type. The list displays the worksheets found in the Excel spreadsheet file that you specified in step 1. This entry is ignored when importing data organized by Sheet - see below.

Select

continued

This field allows you to define selection criteria that may be used to select this type of data object from the defined worksheet. E.g. if the spreadsheet workbook you are importing contains data for all node types on a single worksheet, it would require a row or column to identify the node type and you would define selection criteria based on that row or column.

11 Printing, Importing

and Exporting 178

Page 179: FLARENET Reference Manual

Field Description

Data in Rows, Columns, Sheets

These radio buttons allow you to specify whether the spreadsheet data for this item is organized by Row, Column or Sheet.

Row means the import process will expect to find the data for this object in sets of one or more rows for each object.

Column means the data is expected as a set of one or more columns for each object.

Sheet means the import process will expect to find each data object on a dedicated worksheet.

Start At This field is visible when the data is organized by Row or Column. It defines the starting row or column for the data.

This field is visible when the data is organized by Row or Column. It defines the number of rows or columns occupied by a single data object. This number should include any blank rows or columns used to space out data.

Sheet Tag This field is visible when the data is organized by Sheet. It defines the name tag by which worksheets containing this type of data object can be identified. E.g. for a workbook containing pipe data worksheets Pipe-123A40, Pipe-456A40, Pipe-789A40 you would set the Sheet Tag to “Pipe-“

Per Item

If an XML data file is being imported the following fields will be displayed:

Field Description

Import this type of data

This checkbox allows you to define whether this type of data object should be imported. If not selected then all objects of this type will be ignored during the import.

Data is contained in parent

This checkbox is only enabled for data subsections. If selected then the import process will expect to find all the data for this subsection in the same group tag as the parent object and the remaining fields on the form will be disabled. Clearing this checkbox allows you specify a different group tag for the subsection data fields. E.g. All pipes and nodes allow PFDLayout data to be held in a separate group.

Select Group Tag

This drop-down list allows you to select the XML group tag or element that contains the data for this object type. The list displays the top level elements found in the XML data file that you specified in step 1.

Item Tag This field allows you to specify the item tag or element name used for each individual data object.

Select This field allows you to define selection criteria that may be used to select this type of data object from the defined Group Tag. E.g. if the XML file you are importing contains data for all node types in a single group of elements, it would require an element to identify the node type and you would define selection criteria based on that element.

11 Printing, Importing

and Exporting 179

Page 180: FLARENET Reference Manual

Field Details Tab Fig 11.10

The Field Details tab provides a table that allows you to specify which data fields are to be imported and where they can be found in the import data source. The columns of the table are:

Column Description

Data Item This column lists the individual data items that may be imported for this object. The items in this column cannot be changed.

Import This column of checkboxes allows you to select which data items are imported. Check the checkbox to import an item, clear it to ignore the data item. The Import All and Clear All buttons at the bottom of the table allow you to set or clear all of the Import checkboxes with a single click.

Location

The actual heading of this column and its contents will depend on the type of data file being imported.

Access Files. The column will be headed Database Field and allows you to specify the database field name that corresponds to the data item. The drop-down list contains a list of the default field names from the definition file or you can type in the name if it is not in the list.

Excel Files. The column will be headed Row/Column Offset. It allows you to specify the Row/Column offset of the data item in the spreadsheet in the format R#,C#. i.e. the row and column number separated by a comma. If the data is contained in a single Row then just the column number can be specified or if the data is contained in a single Column the row number alone can be supplied.

XML Files. The column will be headed ItemTag and allows you to specify the element tag that corresponds to the data item. The drop-down list contains a list of the default item tag names from the definition file or you can type in the name if it is not in the list.

The letter number format (A1 etc) is not supported.

11 Printing, Importing

and Exporting 180

Page 181: FLARENET Reference Manual

When you have finished updating the import definition, click the Next button to move to the final step of the Import Wizard.

Import Wizard - Step 4 Fig 11.11

The final step of the Import Wizard is shown in Figure 11.11. This view allows you to specify whether the definition file is to be saved and whether you want to create a log file detailing the results of the import process. The fields on this view are:

Entry Description

Select Import Options

This set of radio buttons allows you to select whether the import definition file is to be saved and whether to run the import. The options are:

Save import definition file then import data. If this option is selected you will be prompted to save the import definition file before the import process runs.

Import data without saving import definition file. Select this option if you do not want to save changes to the definition file before running the import process.

Save import definition file without importing data. Select this option if you want to save the definition file without running the import process.

Log Import Actions to File

Select this checkbox if you want to record the details of the import process to file.

Log File Name Enter the name of the file to be used to log details of import actions. The Browse button may be used to select this through the standard Windows file browser if required.

Import actions will be recorded in the Trace window if the checkbox was checked before starting the Import Wizard.

Once you have completed the entries on this form click the Finish button to complete the Import Wizard and start the import process.

11 Printing, Importing

and Exporting 181

Page 182: FLARENET Reference Manual

Import Process If you have asked to save the import definition file, FLARENET will display the standard Windows file browser to allow you to specify where the import definition file is to be stored. This option can be cancelled through the file browser if required.

Then if you have asked to run the import process the progress view will be displayed as shown in Figure 11.12. The Cancel button can be used to interrupt and terminate the import process as required. When the import is complete the progress view will be closed and you will be returned to the normal FLARENET views.

Fig 11.12

During the import process FLARENET reads each data object in turn from the import data source and checks its name. If the object already exists in the FLARENET model then the import data will be used to update the existing object. If not then a new data object will be created. Source data associated with relief valves and control valves will be assigned to the scenario that is active when the import process is run. If any data item cannot be found then it will be left set to the current value or default value in the case of new data objects.

Importing Source Data In addition to the Import Wizard features, FLARENET allows you to import source data from a specially formatted text file. Utilities are provided to export data in this format from the HYSYS process simulator or the HYSIM process simulator. FLARENET also allows you to import data directly from the HYSYS process simulator.

11 Printing, Importing

and Exporting 182

Page 183: FLARENET Reference Manual

ASCII Text Files To access the ASCII text files containing the source data, select Import Sources from the File menu and then select Text File Sources from the Import submenu.

The Text Import of Source Data view will be displayed:

11.13

Fig

The following objects are available on this view:

Object Description

File Specify the file from which the source data will be imported. Clicking the Browse button opens the Text File For Source Data view. Select the text file from this view and click the OK button. Click the Open button to load the source data file in FLARENET.

P/T Location Specify the pressure and temperature location for the source. If Upstream is selected from the drop-down list, the relieving pressure and the actual Inlet temperature specification is copied from the source data file. If Downstream is selected from the drop-down list, the allowable back pressure and the outlet temperature is copied from the source data file.

Component Data

Specify the action to be taken if similar components exist in the text file and the FLARENET case. The Ignore Existing selection does not copy the same components from the text file to the FLARENET case, whereas the Overwrite Existing copies all the component data from text file to the FLARENET case.

Stream List all the streams available to be imported in FLARENET.

Source Select the source to which the source data will be imported.

Scenarios List all the scenarios available in the FLARENET case. You can select the scenarios to which the data will be copied.

11 Printing, Importing

and Exporting 183

Page 184: FLARENET Reference Manual

Example 1: Importing From HYSYS Two steps are necessary in order to import source data from HYSYS though an ASCII text file.

1 Export the source data from HYSYS. A program must be executed externally to HYSYS in order to convert the source data to the proper format.

2 Import the source data into FLARENET, using the File Import feature.

In order to create the HYSYS transfer file:

1 Run the FNETEXPT.EXE program. This is initially installed in the HYSIM sub-directory under your main FLARENET program directory. The following view will be displayed.

Fig 11.14

2 Enter the name of the HYSYS file containing the streams of interest, then click Open. The Flowsheet Streams list will then contain a list of all the material streams in the file.

3 Select the streams to export as well as the location that the pressure and temperature represent (P&T Location).

4 Click Export. Select a name for the transfer file then click OK. The transfer file will now be created.

11 Printing, Importing

and Exporting 184

Page 185: FLARENET Reference Manual

In order to import the HYSYS transfer file:

1 Select Import-Text File Sources from the File menu. When prompted for the Text Import File as shown below, enter the file name.

Fig 11.15

Blank source name fields means that the stream data is not imported.

2 On the Text Import Of Source Data view, enter the source number for the selected scenario within the FLARENET model that corresponds to each HYSYS stream. Specify the P/T Location and the Component Data from the drop-down list.

Example 2: Importing from HYSIM Two steps are necessary in order to import source data from HYSIM Version 2.6 or later through an ASCII text file.

1 Export the source data from HYSIM. A calculator program must be executed within HYSIM in order to convert the source data to the proper format.

2 Import the source data into FLARENET, using the File Import feature.

In order to create the HYSIM transfer file:

1 Load the HYSIM case containing the source data into HYSIM.

2 At the main HYSIM command line prompt, type the command !FNW26 as shown below. You must previously have copied the file FNW26.HCL into the HYSIM working directory from the \HYSIM program directory under your main program directory. This need be done only once.

11 Printing, Importing

and Exporting 185

Page 186: FLARENET Reference Manual

Fig 11.16

3 When prompted for the name of the export file as shown below, enter the file name. This file will be given the extension .PRN.

Fig 11.17

4 When prompted for the pressure and temperature location as shown below, define whether the conditions for the streams within the simulation case represent either conditions upstream or downstream of the source valve.

Fig 11.18

5 When prompted for the streams to export as shown below, select as many streams as you want (do not select energy streams), by using the standard HYSIM stream selection methods.

Fig 11.19

The transfer file will now be created (in your HYSIM directory).

11 Printing, Importing

and Exporting 186

Page 187: FLARENET Reference Manual

In order to import the HYSIM transfer file:

1 Select Import-Text File Sources from the File menu. When prompted for the Text Import File as shown below, enter the file name.

Fig 11.20

2 On the Text Import Of Source Data view, enter the source number for the selected scenario within the FLARENET model that corresponds to each HYSIM stream. Specify the P/T Location and the Component Data from the drop-down list.

Importing HYSYS Source Data The Source data can also be imported directly from HYSYS. To access the HYSYS files containing the source data, select Import Sources from the File menu and then select HYSYS Sources from the submenu. The HYSYS Import of Source Data view will be displayed:

Note: You must have a copy of HYSYS installed on the PC on which you are running FLARENET to use this option.

11 Printing, Importing

and Exporting 187

Page 188: FLARENET Reference Manual

Fig 11.21

The following objects are available on this view:

Object Description

File Specify the HYSYS file from which the source data will be imported. Clicking the Browse button opens the HYSYS File For Source Data view. Select the HYSYS file from this view and click the OK button. Click the Open button to load the source data file in FLARENET.

P/T Location Specify the pressure and temperature location for the source. If Upstream is selected from the drop-down list, the relieving pressure and the actual Inlet temperature specification is copied from the source data file. If Downstream is selected from the drop-down list, the allowable back pressure and the outlet temperature is copied from the source data file.

Component Data Specify the action to be taken if similar components exist in the HYSYS file and the FLARENET case. The Ignore Existing selection does not copy the same components from the HYSYS file to the FLARENET case, whereas the Overwrite Existing copies all the component data from the HYSYS file to the FLARENET case.

Stream List all the streams available in HYSYS file which can be imported in FLARENET.

Source Select the source to which the source data will be imported.

Scenarios List all the scenarios available in the FLARENET case. You can select the scenarios to which the data will be copied.

11 Printing, Importing

and Exporting 188

Page 189: FLARENET Reference Manual

Export Wizard The Export Wizard is a general data export utility that allows FLARENET to export data to Access databases, Excel Spreadsheets or XML data files. The Export Wizard allows you full control over the data to be exported whether a complete FLARENET model for archive purposes, a set of data sheets for a particular data type or a selected set of results. The Export Wizard also provides a mechanism for merging FLARENET cases. Customized export definitions can be created and saved for later use.

Export Data Layouts The Export Wizard is capable of creating output of a fairly wide range of data layouts within a particular data file type. The general limits when exporting data are:

• Export data will be grouped by data type e.g. data for all pipes will appear in one Access database table, on one Excel spreadsheet page or in within a single XML group element.

• Export data for a given type will be output in a regular layout e.g. in an Excel spreadsheet all the pipe data could be output as 3 rows per pipe spaced one row apart.

Samples of the type of data layouts that can be generated and the corresponding definition file formats are given in Import/Export Examples. Detailed descriptions of the definition file structure are given in FMT Files Format.

Using the Export Wizard The Export Wizard exports data from the FLARENET model that is currently loaded. You start the Export Wizard by selecting the Export Wizard option from the File menu.

Once started the Export Wizard presents you with a 4 step dialogue to allow you to specify the data you want to export. Three buttons are common to each step:

• Next - moves the Export Wizard to the next stage. If the data on the current step is incomplete the Next button may be disabled i.e. grayed out. Clicking Next can also generate validation messages that prevent you moving to the next step. If this happens you will need to fix the problem described before continuing.

• Prev - move the Export Wizard back to the previous stage. You can use this button to go back and change your mind about the type of file you want to export to or change the definition settings.

• Cancel - this button abandons the export process, closes the Export Wizard and returns you to the standard FLARENET environment.

11 Printing, Importing

and Exporting 189

Page 190: FLARENET Reference Manual

Export Wizard - Step 1 Fig 11.22

The view for the first step of the Export Wizard is shown in Fig 11.22.

This view asks you to enter the name of the data file which you want to export data to. You may either type the name or use the Browse button to select it using the file browser view shown in Fig 11.23.

Fig 11.23

11 Printing, Importing

and Exporting 190

Page 191: FLARENET Reference Manual

The file selected must be one of the following types:

File Type Extension Description

Access .MDB A Microsoft Access database file. Export of data to either Access version 3.0 (Access 97) or Access version 4.0 (Access 2000) is supported. You do not need a copy of Access on the PC that is running FLARENET in order to use this option.

Excel .XLS A Microsoft Excel spreadsheet file. The export of data will be made to the version of Excel that is installed on the PC that is running FLARENET.

XML .XML An XML data file. XML data files that comply with the XML 1.0 reference document from W3C are generated.

Selecting the Clear all... option will clear ALL data even if it did not originate from a previous FLARENET export. The clearing of data will not take place until the export process runs.

The remaining fields on this form are as follows:

Entry Description

Clear all existing data before export

Select this checkbox if you want to clear the target file of all existing data before exporting the new values from FLARENET.

Create new Access files as

These radio buttons allow you to specify whether a new Access database will be created as a version 3.0 file or a version 4.0 file. Existing databases are used at their current version level.

Once you have made these entries click the Next button to move to the next step.

Export Wizard - Step 2 Fig 11.24

11 Printing, Importing

and Exporting 191

Page 192: FLARENET Reference Manual

Step 2 of the Export Wizard view is shown in Figure 11.24. This view asks you to define the export definition file that will be used to control this export. Three options are provided

• Use Default Definition File. This option selects the default export definition file that has been defined through the Preferences view, Import/Export tab.

• Create New Definition File. This option selects a blank definition file ready for you to begin creating a new export definition. The default blank definition file that will be selected is defined through the Preferences view, Import/Export tab.

• Use Following File. This option allows you to enter the name of the definition file to be used. The Browse button allows you to select the file using the standard file browser view. The extension for an export definition file is .fne. The definition file selected must have been created for the type of export file you selected at step 1.

Whichever export definition file option you use, you will be given the opportunity to update the definition in the next step. When you have selected the definition file option click the Next button to move to the next step of the export process.

Export Wizard - Step 3 Fig 11.25

Step 3 of the Export Wizard is shown in Figure 11.25. This view allows you to update the export definition to define precisely which data items and data fields are to be exported.

The view is divided into four elements:

• Object selector.

• Target tab.

11 Printing, Importing

and Exporting 192

Page 193: FLARENET Reference Manual

• Field Details tab.

• Force default composition basis checkbox.

Object selector This is a tree view showing the different data objects that may be exported from a FLARENET model. Selecting a data object in the tree by either clicking on it or using the up or down arrow keys displays the export definition settings for that object on the Target and Field Details tab.

Some data objects have subsections for which export options may be defined separately from the parent data object. These are indicated in the tree by a small + symbol. The tree will automatically expand to show the subsections when the parent data object is selected.

The object selector view also provides a rapid overview of which data objects have been selected for export by displaying these with a bold font.

Target Tab The precise layout of the target tab will vary with the type of data file that is being exported.

If an Access database file is being exported the following fields will be displayed:

Field Description

Export this type of data

This checkbox allows you to define whether data for this type of object should be exported. If not selected then all objects of this type will be ignored during the export.

Data is contained in parent

This checkbox is only enabled for data subsections. If selected then the export process will write all the data for this subsection to the same database table as the parent object and the remaining fields on the form will be disabled. Clearing this checkbox allows you specify a different database table for the subsection data fields. E.g. All pipes and nodes allow PFDLayout data to be output to a separate table.

Table Name This entry allows you to define the database table that will contain the data for this object type. The table will be created if it does not already exist in the database.

If an Excel spreadsheet file is being exported the following fields will be displayed:

Field Description

Export this type of data

This checkbox allows you to define whether data for this type of object should be exported. If not selected then all objects of this type will be ignored during the export.

Data is contained in parent

This checkbox is only enabled for data subsections. If selected then the export process will write all the data for this subsection in the same worksheet as the parent object and the remaining fields on the form will be disabled. Clearing this checkbox allows you to specify a different worksheet within your spreadsheet workbook for the subsection data fields. E.g. All pipes and nodes allow PFDLayout data to be written to a separate worksheet.

continued

11 Printing, Importing

and Exporting 193

Page 194: FLARENET Reference Manual

Field Description

Worksheet name

This entry allows you to specify the worksheet that will contain the data for this object type. The worksheet will be created if it does not already exist in the workbook. This entry is ignored when exporting data by Sheet but a dummy name must be entered - see below.

Data in Rows, Columns, Sheets

These radio buttons allow you to specify whether the spreadsheet data for this item is output by Row, Column or Sheet.

Row means the export process will write data for this object in sets of one or more rows for each object.

Column means the data will be written as a set of one or more columns for each object.

Sheet means the export process will write each data object on a dedicated worksheet.

Start At This field is visible when the data is output by Row or Column. It defines the starting row or column for the data.

Per Item This field is visible when the data is output by Row or Column. It defines the number of rows or columns occupied by a single data object. This number should include any blank rows or columns used to space out data.

Sheet Tag

This field is visible when the data is output by Sheet. It defines the name of a “format” worksheet that should be copied when creating a new worksheet to output data for the selected data object. These “format” worksheets must have a name that begins with a “%” character to allow them to be identified and preserved in the event that the Export Wizard is asked to clear a workbook before output.

If an XML data file is being exported the following fields will be displayed:

Field Description

Export this type of data

This checkbox allows you to define whether this type of data object should be exported. If not selected then all objects of this type will be ignored during the export.

Data is contained in parent

This checkbox is only enabled for data subsections. If selected then the export process will write all the data for this subsection in the same group tag as the parent object and the remaining fields on the form will be disabled. Clearing this checkbox allows you to specify a different group tag for the subsection data fields. E.g. All pipes and nodes allow PFDLayout data to be held in a separate group.

Group Tag This entry allows you to define the XML group tag or element that will contain the data for this object type.

Item Tag This field allows you to specify the item tag or element name used for each individual data object.

11 Printing, Importing

and Exporting 194

Page 195: FLARENET Reference Manual

Field Details Tab Fig 11.26

The Field Details tab provides a table that allows you to specify which data fields are to be exported and where they should be written in the target output file. The columns of the table are:

Column Description

Data Item This column lists the individual data items that may be exported for this object. The items in this column cannot be changed.

Export This column of checkboxes allows you to select which data items are exported. Check the checkbox to export an item, clear it to ignore the data item. The Export All and Clear All buttons at the bottom of the table allow you to set or clear all of the Export checkboxes with a single click.

Location

The heading of this column and its contents will depend on the type of data file being exported.

Access Files. The column will be headed Database Field and allows you to specify the database field name that will hold the data item.

Excel Files. The column will be headed Row/Column Offset. It allows you to specify the Row/Column offset of the data item in the spreadsheet in the format R#,C#. i.e. the row and column number separated by a comma. If the data is contained in a single Row then just the column number can be specified or if the data is contained in a single Column the row number alone can be supplied.

XML Files. The column will be headed Item Tag and allows you to specify the element tag that corresponds to the data item.

The letter number format (A1 etc) is not supported.

11 Printing, Importing

and Exporting 195

Page 196: FLARENET Reference Manual

Force Default Composition Basis Checkbox This checkbox provides a single global setting that tells the Export Wizard how to write composition data. Selecting this option will write out all compositions using the Composition Basis set in the Default tab of the Preferences Editor. If the option is clear the composition of each source will be written using the basis that it is currently set to.

Note: There is a potential trap here. If you clear this checkbox and then omit to export the data item that defines the composition basis the exported file might contain compositions with an inconsistent basis i.e. mixed mole and mass fraction data with no way to distinguish which is which.

When you have finished updating the export definition, click the Next button to move to the final step of the Export Wizard.

Export Wizard – Step 4 Fig 11.27

The final step of the Export Wizard is shown in Fig 11.27. This view allows you to specify whether the definition file is to be saved and whether you want to create a log file detailing the results of the export process.

11 Printing, Importing

and Exporting 196

Page 197: FLARENET Reference Manual

The fields on this view are:

Entry Description

Select Export Options

This set of radio buttons allows you to select whether the export definition file is to be saved and whether to run the export. The options are:

Save definition file then perform data export. If this option is selected you will be prompted to save the export definition file before the export process runs.

Export data without saving definition file. Select this option if you do not want to save changes to the definition file before running the export process.

Save definition file without performing data export. Select this option if you want to save the definition file without running the export process.

Once you have completed the entries on this form click the Finish button to complete the Export Wizard and start the export process.

Export Process If you have asked to save the export definition file, FLARENET will display the standard Windows file browser to allow you to specify where the export definition file is to be stored. This option can be cancelled through the file browser if required.

Then if you have asked to run the export process the progress view will be displayed as shown in Fig 11.28. The Cancel button can be used to interrupt and terminate the export process as required. When the export is complete the progress view will be closed and you will be returned to the normal FLARENET views.

11 Printing, Importing

and Exporting 197

Page 198: FLARENET Reference Manual

Fig 11.28

During the export process FLARENET works through each data object to be written in turn and checks for its name in the output file. If the object already exists in the output file then the current FLARENET data will be used to overwrite it. If not then a new entry for the data object will be created.

Scenario data and results data will only be output for those scenarios that are set to be active in the Calculation Options view, Scenarios tab. E.g. if All Scenarios is set here, data will be exported for all scenarios. Source data associated with relief valves and control valves will be taken from the scenario that is active when the export process is run.

Import/Export Examples A number of sample data files and the corresponding import or export definition files have been supplied in the samples directory. These examples show how different data source types and layouts can be read by the Import Wizard or generated by the Export Wizard.

Default XML Import In this example we are going to import a complete FLARENET model from an XML data file. The structure of XML data file is the same as the default layout assumed by FLARENET. The steps are:

1 Start up FLARENET or, if FLARENET is already running with a case loaded, click the New Case button on the toolbar and then click the OK button to close both the Case Description and Component Manager views that will appear without entering any information.

11 Printing, Importing

and Exporting 198

Page 199: FLARENET Reference Manual

2 Start the Import Wizard by selecting it from the File menu.

3 In Import Wizard Step 1 either type in the name of the XML file to be imported:

<Your FLARENET Directory>\Samples\ImportExport\Sample1.xml

or use the Browse button to look for and select this file using the Windows file browser. Then click the Next button.

4 In Import Wizard Step 2 select the Use the default definition file radio button then click the Next button.

5 In Import Wizard Step 3 you will see that all of the data objects listed in the tree view to the left of the screen are displayed in bold type indicating that import of all these data objects is selected. The default import definition files shipped with FLARENET are configured to import all data objects. In this case this is what we want to do so simply click the Next button to move to the next stage.

6 In Import Wizard Step 4 select the second radio button, Import data without saving definition file. We will also select the checkbox Log import actions to file so that we will have a record of the data objects that will be imported. The log file name may be left at the default name; the file will be created in the default FLARENET working directory. Finally click Finish.

7 You will see the Import Progress view report progress as the data objects are imported though it will probably update too quickly to read. When the import process is finished the view closes and you are returned to the main FLARENET environment from where you can use the various manager views and summary views to inspect the data that has been imported. You might also want to view or print the log file.

Note: Only data items are imported and you will need to run the case to view the results.

Access Database Import Using Select Criteria In this example we are going to import a flare system model from an Access database file. The structure of the database we are importing is different to the default database structure assumed by FLARENET so it will be necessary to create a new customized import definition file.

The database to be imported is:

<Your FLARENET Directory>\Samples\ImportExport\Sample2.mdb.

11 Printing, Importing

and Exporting 199

Page 200: FLARENET Reference Manual

It contains the following 4 tables:

Components Table Component Name Boiling Point Std Density Mole Weight

Methane 111.63 299.39 16.043

Ethane 184.55 355.68 30.07

Propane 231.05 506.68 44.097

n-Butane 272.65 583.22 58.124

n-Pentane 309.21 629.73 72.151

n-Hexane 341.88 662.66 86.178

Pipes Table Name Length Elevation Nominal

Diameter Fittings Loss

Inlet Outlet

TP-123A 15 0 12 inch 0.5 PSV-123A T1

TP-145A 15 0 8 inch 0.5 PSV-145A T1

TP-112B 5 0 12 inch 0.1 BDV-112B RO-112B

BD-101A 50 0 16 inch 0.1 T1 T2

BD-112B 20 0 12 inch 0.5 RO-112B C1

BD-103A 60 0 24 inch 0.1 T2 C2

BD-104A 200 0 24 inch 0.2 C2 C3

FS-100A 50 50 24 inch 0.3 C3 FT-100

BD-102A 40 0 12 inch 0.1 C1 T2

Nodes Table Node Type Node Name Param1 Param2

PSV PSV-123A 0 0

PSV PSV-145A 0 0

BDV BDV-112B 0 0

RO RO-112B 0.85 0

Manifold T1 0 0

Join C1 0 0

Manifold T2 0 0

Join C2 0 0

Join C3 0 0

Tip FT-100 574.65 1

11 Printing, Importing

and Exporting 200

Page 201: FLARENET Reference Manual

FlowData Table SourceName

Pres-sure

Inlet Temp

MABP Mass Flow

Frac 1

Frac 2

Frac 3

Frac 4

Frac 5

Frac 6

PSV-123A

10 20 0.75 4 50000 0.1 0.06 0.05 0.03 0.01

PSV-145A

8 15 3.5 40000 0.8 0.05 0.1 0.05 0 0

BDV-112B

5 15 3 30000 0.8 0.2 0 0 0 0

The steps required to import this database are:

1 Start up FLARENET or, if FLARENET is already running with a case loaded, click the New Case icon on the toolbar and then click the OK button to close both the Case Description and Component Manager views that will appear without entering any information.

2 Open the Preferences Editor and ensure that the default Composition Basis is set to Mole Fractions.

The Import Wizard is capable of reading composition basis during the import process but in this case our database does not have entries defining this. Therefore we must set an appropriate default for the data we are importing.

3 Start the Import Wizard by selecting it from the File menu.

4 In Step 1 either type in the name of the Access file to be imported:

<Your FLARENET Directory>\Samples\ImportExport\Sample2.mdb

or use the Browse button to look for and select this file using the Windows file browser. Then click the Next button.

5 In Step 2 select the Create a new import definition file radio button then click the Next button. When the Step 3 view appears you will see that no data objects have been selected for import i.e. all object names in the tree view are displayed in normal type. We now need to specify which objects will be imported.

As an alternative you could select the pre-built import definition file for this sample:

<Your FLARENET Directory>\Samples\ImportExport\Sample2.fni

which contains the results of steps 6 to 19. If you do this it is still worth reading through these steps to see how the settings in the import definition file are used to tell the Import Wizard about the database we are importing.

6 Click on Components in the Object Selector tree view. On the Source tab select the checkbox Import this type of data and confirm that the Select Table drop-down list is displaying Components.

7 Click on the Field Details tab.

11 Printing, Importing

and Exporting 201

Page 202: FLARENET Reference Manual

8 On the Field Details tab we need to select the import checkboxes and specify the database field names as follows:

Data Item Database Field

Name ComponentName

MolWt MoleWeight

StdDensity StdDensity

NBP BoilingPoint

9 Next click on Connectors in the Object Selector tree view. On the Source tab select the checkbox Import this type of data and then select Nodes as the source table using the Select Table drop-down list.

Since the Nodes table we are importing contains data for multiple node types we have to tell this Import Wizard which entries are connectors. This is done by typing selection criteria into the Select entry. In our case the Nodes database has a NodeType field that identifies Connectors as a Join so the select entry we need is:

NodeType=’Join’

10 Now click on the Field Details tab and make the following entry, remembering to select the Import checkbox.

Data Item Database Field

Name NodeName

11 Next click ControlValves in the Object Selector tree view. On the Source tab check the Import checkbox and select the Nodes table from the Select Table drop-down list. In the Select entry type NodeType=’BDV’.

12 In the Field Details define the entries to import the name field as in step 9.

13 Next click on the SourceData subsection entry beneath ControlValves in the Object Selector tree view. On the Source tab check the Import checkbox and select the FlowData table from the Select Table dropdown.

Since our FlowData data table contains entries for all the sources we need to enter selection criteria to allow the import process to select the appropriate record for each control valve as we import it. This is done by entering the following selection criteria in the Select field.

SourceName=.Name

Here we are using a code “.dataitem” where dataitem is the name of a data item in the parent data object. The code tells the import process to substitute the value of that data item in the search string. Here the dataitem is set to Name so that the import process will substitute the name of the control valve it has read and use that to find the appropriate record in the FlowData table.

11 Printing, Importing

and Exporting 202

Page 203: FLARENET Reference Manual

14 Still with the SourceData object selected move to the Field Details tab and define the following data items.

Data Item Database Field

SourceName SourceName

MassFlow MassFlow

RelievingPressure Pressure

InletTemperatureSpec InletTemp

AllowableBackPressure MABP

15 Next click on the Composition subsection entry beneath the SourceData subsection under the ControlValves. On the Select tab check the Import checkbox and the Data is contained in parent checkbox. This latter checkbox indicates to the Import Wizard that the composition data for each source is in the same record as parent SourceData record.

16 On the Field Details tab for the Composition subsection make the following entry.

Data Item Database Field

Fraction Frac+%Composition

The entry in the Database Field column is a code that tells the Import Wizard that this is a repeating data item and tells it how to build the field name. In this case the base field name is “Frac” to which we add the index number of the component. The “%Composition” part of the entry specifies that we want to work through our component list one by one.

As an aside, if the composition entries were defined by name e.g. FracMethane, FracEthane etc. we would use the code “Frac+?Composition” to substitute each component name in turn instead of component index numbers.

17 The remaining entries are similar. Select OrificePlates and make the following entries:

Source tab

Select Table = Nodes

Select entry = NodeType=’RO’

Field Details tab

Data Item Database Field

Name NodeName

UpstreamDiameterRatio Param1

11 Printing, Importing

and Exporting 203

Page 204: FLARENET Reference Manual

18 Select Pipes and make the following entries:

Source tab

Select Table = Pipes

Select entry = <blank>

Field Details tab

Data Item Database Field

Name Name

UpstreamConnection Inlet

DownstreamConnection Outlet

Length Length

ElevationChange Elevation

NominalDiameter NominalDiameter

FittingLossOffset FittingsLoss

19 Select ReliefValves and its SourceData and Composition subsections in turn to setup the same entries as for the ControlValves data object, the only change being that the Select entry should read NodeType=’PSV’.

20 Select Tees and make the following entries:

Source tab

Select Table = Nodes

Select entry = NodeType=’Manifold’

Field Details tab

Data Item Database Field

Name NodeName

21 Select Tips and make the following entries:

Source tab

Select Table = Nodes

Select entry = NodeType=’Tip’

Field Details tab

Data Item Database Field

NodeName

Diameter Param1

FittingLoss Param2

Name

11 Printing, Importing

and Exporting 204

Page 205: FLARENET Reference Manual

22 At this point our import definition is complete so click Next to move to the next step of the Import Wizard. On this step select the Save import definition file then Import Data radio button. Then check the Log import actions to file checkbox and either accept the default log file name or specify an alternative name. Finally we are ready to click Finish to begin the import.

23 The Import Wizard will then display the windows File Browser view to allow us to specify where we want to save our import definition file. Enter your preferred location and name and click OK to continue. The import process itself will then run and then close the Import Wizard on completion.

At this point we have completed the import process. You can view or print the log file that you specified in step 20 to confirm that it has imported all the data objects that you were expecting. A reference log file:

<Your FLARENET directory>\Samples\ImportExport\Sample2.log

is provided for comparison.

24 The final step is to review the data that has been imported. First open the PFD. You will see that all the data objects are displayed one on top of the other since the data we imported did not contain any PFD layout information. While you could manually arrange the objects, it is simpler to use the PFD - Regenerate option on the View menu to automatically layout the PFD. After regeneration the system should look something like Fig 11.29.

Fig 11.29

You should also review the Pipe and Node data for the model through the summary views.

Note: Notice how the standard FLARENET default values have been used where the data was not available in the imported database.

11 Printing, Importing

and Exporting 205

Page 206: FLARENET Reference Manual

This sample may seem rather long. However the setup of the import definition file is a one off task for each data format we want to import. Should we have another database with the same layout our saved import definition file will allow us to import it using the same few steps as Sample 1.

Import of Updated Source Data from Excel In this example we are going to use the Import Wizard to update an existing FLARENET model with new source data from an Excel workbook. The workbook contains source data for multiple scenarios organized so that there is one Excel worksheet for each scenario.

The workbook we will be importing is called:

<Your FLARENET Directory>\Samples\ImportExport\Sample3.xls

The layout of data on each worksheet is shown in Fig 11.30:

Fig 11.30

The steps required to import the workbook are:

1 Start up FLARENET and load the model that we are updating:

<Your FLARENET Directory>\Samples\ImportExport\Sample3.fnw.

2 Open the Preferences Editor and ensure that the default composition basis is set to Mole Fractions.

The Import Wizard is capable of reading composition basis during the import process but in this case the workbook does not have entries defining this. Therefore we must set an appropriate default for the data we are importing.

11 Printing, Importing

and Exporting 206

Page 207: FLARENET Reference Manual

3 Start the Import Wizard by selecting it from the File menu.

4 In Step 1 either type in the name of the Excel file to be imported:

<Your FLARENET Directory>\Samples\ImportExport\Sample3.xls

or use the Browse button to look for and select this file using the Windows file browser. Then click the Next button.

5 In Step 2 select the Create a new import definition file radio button then click the Next button. When the Step 3 view appears you will see that no data objects have been selected for import i.e. all object names in the tree view are displayed in normal type. We now need to specify which objects will be imported

As an alternative you could select the pre-built import definition file for this sample:

<Your FLARENET Directory>\Samples\ImportExport\Sample3.fni

which contains the results of steps 6 to 19. If you do this it is still worth reading through these steps to see how the settings in the import definition file are used to tell the Import Wizard about the Excel workbook we are importing.

6 Click the Scenarios object in the Object Selector tree view. On the Source tab, check the Import this type of data checkbox. Next select the first of the available worksheets in the Select Worksheet dropdown list. Then select the Data is in Sheets radio button since the data we are importing is organized as one scenario per sheet. Finally on this tab, enter Scenario- in the Sheet Tag field.

When we tell the Import Wizard that data is organized in Sheets, it needs to know how to recognize the worksheets that contain the right type of data (scenario data in this case). The Import Wizard does this by assuming that the appropriate sheets have a name that begins with the text defined in the Sheet Tag entry. Although our workbook only contains scenario worksheets we still need to enter a tag by which they can be recognized. In our case they all begin with the tag Scenario-.

Note: Any worksheet can be specified in the Select Worksheet dropdown when you select the Data is in Sheets option is selected since the import process will work through all worksheets with the appropriate tag. You cannot leave this field blank however.

7 Now click the Field Details tab. On this tab select the Import checkboxes against the following data items and enter their location as follows:

Data Item Row, Column Offset (#,#)

Name 3,2

Pressure 5,2

HeaderMach 6,2

HeaderNoise 7,2

TailpipeMach 6,2

TailpipeNoise 7,2

11 Printing, Importing

and Exporting 207

Page 208: FLARENET Reference Manual

Note: It is possible to read the same data item into more than one FLARENET data field. Here the Mach number and Noise values from the worksheet will be imported to both the Header and Tailpipe limits for each scenario.

8 Now click the SourceData subsection under the Scenario object in the Object Selector tree view. On the Source tab, check the Import this type of data checkbox and check the Data is contained in parent checkbox. This latter entry tells the Import Wizard that the source data is located on the same worksheet as the base scenario data and as a result the remaining fields on this tab are automatically set to the parent values and disabled to prevent them being independently modified.

9 Still on the SourceData subsection, select the Field Details tab. Check the Import checkboxes for the following data items and make the following Row, Column entries:

Data Item Row, Column Offset (#,#)

SourceName 9+%SourceData,1

MassFlow 9+%SourceData,2

RelievingPressure 9+%SourceData,3

InletTemperatureSpec 9+%SourceData,4

The entries in the Row, Column column are codes that tell the Import Wizard that these are repeating data items. Effectively they tell the Import Wizard how to calculate the row and column offset for each data item. In this case the %SourceData part of the entry specifies that we want to work through a list of source data items one by one. The source number is then added to the fixed row offset to give the correct row for that data item.

For example when importing the second line of source data, the %SourceData tag will generate the value 2 which when added to 9 gives 11 - the correct row number for the second line of source data.

10 Next select the Composition subsection beneath SourceData subsection, still under the Scenario object in the Object Selector tree view. On the Source tab, check the Import this type of data checkbox and check the Data is contained in parent checkbox. Again this indicates that this data lies on the same worksheet as the Scenario data.

11 Still on the Composition subsection, select the Field Details tab. Check the Import checkbox for the Fraction data item and make the following Row, Column entry:

Data Item Row, Column Offset (#,#)

Fraction 9+%SourceData,4+%Composition

Again the entries in the Row, Column column are codes that tell the Import Wizard that these are repeating data items. The 9+%SourceData part of the code allows the Import Wizard to calculate the correct row

11 Printing, Importing

and Exporting 208

Page 209: FLARENET Reference Manual

while the 4+%Composition allows it to calculate the correct column for each component fraction.

12 At this point our import definition is complete so click Next to move to the next step of the Import Wizard. On this step select the Save import definition file then import data radio button. Then check the Log import actions to file checkbox and either accept the default log file name or specify an alternative name. Finally we are ready to click Finish to begin the import.

13 The Import Wizard will then display the windows File Browser view to allow us to specify where we want to save our import definition file. Enter your preferred location and name and click OK to continue. The import process itself will then run and then close the import wizard on completion.

At this point we have completed the import process. You can view or print the log file that you specified in step 12 to confirm that it has updated the existing three scenarios and added data for two new scenarios. A reference log file:

<Your FLARENET directory>\Samples\ImportExport\Sample3.log

is provided if you want to make a comparison.

You will also find an export definition file and format spreadsheet that can be used to generate Excel spreadsheets in this format:

<Your FLARENET directory>\Samples\ImportExport\Sample3.fne

<Your FLARENET directory>\Samples\ImportExport\Sample3Format.xls

Export to Access Database For FLARENET 3.05 In this example we are going to export a complete FLARENET model to an Access database using a structure for the Access database that would allow it to be imported by FLARENET version 3.05. To do this we will use a predefined export definition file that is shipped with FLARENET.

1 Start up FLARENET and load the FLARENET model that you want to export. In our case let’s use the file from the previous case:

<Your FLARENET directory>\Samples\ImportExport\sample3.fnw

2 Start the Export Wizard by selecting it from the File menu.

3 In the Export Wizard Step 1 either type in the name of the Access file you want to create or use the Browse button to define this file using the Windows file browser.

4 Once the file name has been entered ensure that the Create new Access files as radio button is set to Version 3.0 since FLARENET 3.05 cannot read Access 4.0 files. If the database name you entered in the previous step is an existing file then check the Clear all existing data before export checkbox to ensure that our database will contain only the data for this model.

Finally click the Next button.

11 Printing, Importing

and Exporting 209

Page 210: FLARENET Reference Manual

5 In Export Wizard Step 2 select the Use the following export definition file radio button then click the Browse button. Use the File Browser view to select the file:

<Your FLARENET directory>\Formats\Access305.fne

When you have selected this definition file click the Next button to continue.

6 In Export Wizard Step 3 you will see that most of the data objects listed in the tree view to the left of the screen are displayed in bold type indicating that export of these data objects is selected. Some objects namely BIPs, Scenarios and Solver Options are not displayed in bold indicated that these objects will not be exported. This is because the fixed format Access import facility in FLARENET version 3.05 is not capable of importing this type of data.

You do not need to, but you can select objects in the Object Selector tree view and click the Field Details tab to see which data items have been selected for export. Again those items that have not been selected have been omitted because they cannot be imported by FLARENET version 3.05.

When you are finished browsing click the Next button to continue.

7 In Export Wizard Step 4 select the second radio button, Export data without saving definition file. Finally click Finish.

8 You will see the Export Progress view report progress as the data objects are written though it will probably update too quickly to read. When the export process is finished the view closes and you are returned to the main FLARENET environment.

You may be interested to know that there is also an import definition file called Access305.fni in the <Your FLARENET directory>\Formats directory which allows the Import Wizard to import Access databases generated by FLARENET version 3.05.

Export Pipe Data Table to Excel In this example we are going to generate a list of the piping that makes up our flare network in an Excel worksheet. In addition to the basic pipe information we are going to add the operating conditions for a selected scenario to the table.

1 Start up FLARENET and load the FLARENET model that you want to export. In this sample let’s use the file we’ve used before:

<Your FLARENET directory>\Samples\ImportExport\sample3.fnw

2 Open the Calculation Options view and go to the Scenarios tab to check that the Calculate option is set to Current Scenario. Then close this view and select Power Fail to be the current scenario using the Scenario Selector and Rating as the calculation mode using the Calculation Mode Selector. Finally click the Go button to run the rating calculations.

11 Printing, Importing

and Exporting 210

Page 211: FLARENET Reference Manual

The Export Wizard will export the same scenarios that are selected for calculation so this step selects the correct scenario for export as well as ensuring that the results are ready for export.

3 Start the Export Wizard using the option from the File menu.

4 In the Export Wizard step 1 specify the name of the Excel workbook we want to output our results to. In this case lets use:

<Your FLARENET directory>\Samples\ImportExport\Sample5.xls

Note: You can either type in this name or specify it through the file browser.

5 When you have specified the file name click the Next button to continue.

6 In the Export Wizard step 2, select the option Create a new export definition file and then click the Next button to continue.

As an alternative you could select the pre-built export definition file for this sample:

<Your FLARENET Directory>\Samples\ImportExport\Sample5.fne

which contains the results of steps 6 to 10. If you do this it is still worth reading through these steps to see how the settings in the export definition file are used to tell the Export Wizard how we want to write data to the Excel data file we are creating.

7 In the Export Wizard step 3 you will see that the default settings for a new export definition file do not select any data objects for export i.e. all object names in the tree view are displayed in normal type. We now need to specify which objects will be exported.

Select the Pipes object in the Object Selector tree view. In the Target tab check the Export this type of data checkbox and enter PipeData in the Worksheet Name field. Finally select the Data is in Rows radio button and enter the values 5 in the Start at Row field and 1 in the Rows per Item field.

These entries tell the Export Wizard that we want to write the pipe data to a worksheet called PipeData. The data will be written with each pipe taking 1 row per pipe, starting at row 5.

8 Click the Field Details tab. Check the Export checkbox against the following data items and enter the following column offsets.

Data Item Column or Row, Column Offset (#,#)

Name 2

Length 4

ElevationChange 5

InternalDiameter 9

7

WallThickness 10

PipeSchedule 8

InsulationType 20

InsulationThickness 21

InsulationConductivity 22

NominalDiameter

11 Printing, Importing

and Exporting 211

Page 212: FLARENET Reference Manual

It is worth a word of explanation here to explain why we have asked the Export Wizard to write the pipe name in column 2 of our table rather than column 1. This is because we are going to output results data into the same set of rows as the pipe data so as to include operating conditions. Since the export process checks for the next free export area for each data object by looking at cell offset 1,1 of the target area, it would not output data in the same row if it found the pipe name already there. By writing the name to column 2 we ensure that the same set of rows will be reused by the results output.

9 Select PFSummary in the Object Selector tree view. Select the Export checkbox and enter PFSummary in the Worksheet Name field on the Target tab.

We are not going to export any data items associated with the PFSummary data object itself but we must select this parent data object in order to be able to export data from its subsections.

10 Select the EndResults subsection beneath PFSummary in the Object Selector. In the Target tab select the Export checkbox, enter PipeData in the Worksheet Name field, select the Data is in Rows radio button and set the Start at Row and Rows per Item fields to 5 and 1 respectively. Ensure that the Data is contained in parent checkbox is cleared.

11 Click the Field Details tab. Check the Export checkbox against the following data items and enter the following column offsets.

Data Item Column or Row, Column Offset (#,#)

UpstreamPressure 12

UpstreamTemperature 13

UpstreamVelocity 14

DownstreamPressure 16

DownstreamTemperature 17

DownstreamVelocity 18

When you have finished entering this data click the Next button to continue.

12 Select the first radio button, Save definition file then perform data export and click Finish. A standard file browser view will appear asking you to specify a location and name for your export definition file. Enter suitable values and click the OK button. The export process will then run.

13 You will see the Export Progress view report progress as the data objects are written. When the export process is finished the view closes and you are returned to the main FLARENET environment.

14 You can now use Excel to open the Excel workbook you have created. There will be an empty sheet called PFSummary that you can delete. The pipe data table we want will be on the PipeData worksheet. All you have to do now is delete the empty column 1, add some column headings and the pipe data table is ready for your report.

11 Printing, Importing

and Exporting 212

Page 213: FLARENET Reference Manual

<Your FLARENET Directory>\Samples\ImportExport\Sample5Final.xls

shows our exported worksheet after adding headings.

Merge Cases Through Export/Import Wizards In this example we will use the Export Wizard to merge two FLARENET models. This could be done equally well using export to an Access database, an Excel spreadsheet or a XML file. For the sake of variety though, we will use XML files in this case.

1 Open FLARENET and load the first of the files we want to merge:

<Your FLARENET directory>\Samples\ImportExport\Sample6a.fnw

2 Open the Calculation Options edit view, go to the Scenarios tab and ensure that the Calculate option is set to All Scenarios. The Export Wizard will only export those scenarios that are selected for calculation.

3 Start the Export Wizard from the File menu

4 In Step 1 of the Export Wizard, enter the name of the file to export as:

<Your FLARENET directory>\Samples\ImportExport\Sample6.xml

or use the Browse button to open the file browser before selecting this directory, the XML file type and entering the file name.

If you are repeating this example and the file Sample6.xml already exists then select the checkbox Clear all existing data before export.

When you’ve done this click the Next button.

5 In Step 2 of the Export Wizard select the Use the default export definition file radio button and click Next.

6 In Step 3 of the Export Wizard select PFSummary in the Object Selector tree view. In the Target tab clear the checkbox Export this type of data since we are not interested in exporting results in this case.

Click Next to continue.

7 In Export Wizard Step 4 select the Export data without saving definition file radio button since we do not want to overwrite the default definition file. Then click Finish. The export process will run and return you to the main FLARENET environment.

8 Open the file:

<Your FLARENET directory>\Samples\ImportExport\Sample6b.fnw

using the Open option from the File menu.

Again check that the All Scenarios option is set in the Scenarios tab of the Calculation Options edit view.

9 Start the Export Wizard from the File menu.

10 In the Export Wizard Step 1, use the Browse button to select the file:

<Your FLARENET directory>\Samples\ImportExport\Sample6.xml

11 Printing, Importing

and Exporting 213

Page 214: FLARENET Reference Manual

Ensure that the Clear all existing data before export checkbox is cleared before clicking Next to move to the next stage.

11 In Step 2 of the Export Wizard, select the Use the default export definition file radio button and click Next.

12 In Step 3 of the Export Wizard select PFSummary in the Object Selector tree view and clear the Export this type of data checkbox in the Target tab. Click Next to continue.

13 In the final step of the Export Wizard, select the Export data without saving definition file radio button and click Finish. Again the export process will run and return you to the main FLARENET screens.

We now have the data for our merged case in the file:

<Your FLARENET directory>\Samples\ImportExport\Sample6.xml.

14 Import this file using the sequence of instructions given in the Default XML Import section.

To summaries these they are:

− Create a new case − Start Import Wizard − In step 1 Specify file

<Your FLARENET directory>\Samples\ImportExport\Sample6.xml

− In step 2 select default import definition file − Make no changes in step 3 − In step 4 select import without saving definition file.

15 You can now use the standard FLARENET views to examine and update the merged case. Things that you might want to modify in your new case are:

− Component lists for the two cases have been merged. This generates a requirement for new Binary Interaction Parameters which will have been set at default values. Do you need to update them?

− The list of scenarios will include all the scenarios from both cases. Default flow and other source data will have been generated for sources that were originally missing. Do you need to update these?

− Any nodes, sources or pipes that were common to both models will have their data values set to the values taken from the second model. Are these correct? (21-FT001 is a common node in this example).

− The calculation options will be set to those defined for the second model. Are these correct?

11 Printing, Importing

and Exporting 214

Page 215: FLARENET Reference Manual

12 Automation

Overview Automation, defined in its simplest terms, is the ability to drive one application from another. For example, the developers of Product A have decided in their design phase that it would make their product more usable if they exposed Product A’s objects, thereby making it accessible to automation. Since Products B, C and D all have the ability to connect to application that have exposed objects, each can programmatically interact with product A.

The exposure of its objects makes FLARENET a very powerful and useful tool in the design of hybrid solutions. Since access to an application through Automation is language-independent, anyone who can write code in Visual Basic, C++ or Java, to name three languages, can write applications that will interact with FLARENET. There are a number of applications that can be used to access FLARENET through Automation, including Microsoft Visual Basic, Microsoft Excel and Visio. With so many combinations of applications that can transfer information, the possibilities are numerous and the potential for innovative solutions is endless.

12 Automation 215

Page 216: FLARENET Reference Manual

Objects The key to understanding Automation lies in the concept of objects. An object is a container that holds a set of related functions and variables. In Automation terminology, the functions of an object are call methods and the variables are called properties. Consider the example of a simple car. If it were an object, a car would have a set of properties such as; make, color, engine, etc. The car object might also have methods such as; drive, refuel, etc. By utilizing the properties and methods of the car object it is possible to define, manipulate and interact with the object.

Fig 12.1

Each property of the car is a variable that has a value associated with it. The color could be either a string or a hexadecimal number associated with a specific color. The gas mileage could be a floating-point value. Methods are nothing more than the functions and subroutines associated with the object.

An object is a container that holds all the attributes associated with it. An object could contain other objects that are a logical subset of the main object. The car object might contain other objects such as engine or tyre. These objects would have their own set of independent properties and methods. An engine would have properties related to the number of valves and the size of the pistons. The tyres would have properties such as the tread type or model number.

Object Hierarchy The path that is followed to get to a specific property may involve several objects. The path and structure of objects is referred to as the object hierarchy. In Visual Basic the properties and methods of an object are accessed by hooking together the appropriate objects through a dot operator (.) function. Each dot operator in the object hierarchy is a function call. In many cases it is beneficial to reduce the number of calls by setting intermediate object variables.

12 Automation 216

Page 217: FLARENET Reference Manual

For instance, expanding on our previous example involving the car, suppose there existed an object called Car and you wished to set the value of its engine size. You could approach the problem in one of two ways.

• Direct specification of object property

Car.Engine.Size = 3

• Indirect specification of object property

Dim Eng1 as Object

Set Eng1 - Car.Engine.Size

Eng1 = 3

If the Engine size is a property that you wish to access quite often in your code, using the indirect method of specification might be easier as it reduces the amount of code thereby reducing the possibility of error.

The FLARENET Type Library In order to do anything with objects it is first necessary to know what objects are available. When an application is exposed to Automation, a separate file is usually created that lists all the objects and their respective properties and methods. This file is called the type library and nearly all programs that support Automation have one of these files available. With the help of an Object Browser, such as the one built into Microsoft Excel, you now have a way to view all the objects, properties, and methods in the application by examining the type library. For FLARENET, the type library is contained within the application itself, flarenet.exe.

The FLARENET type library reveals numerous objects that contain many combine properties and methods. For every object the type library will show its associated properties and methods. For every property the type library will show its return type. For every method, the type library will show what types of arguments are required and what type of value might be returned.

Accessing a specific property or method is accomplished in a hierarchical fashion by following a chain of exposed objects. The first object in the chain should be an object from which all other objects can be accessed. This object will typically be the main application. In FLARENET, the starting object is the Application object. All other objects are accessible from this starting object.

Object Browser The type library itself does not exist in a form that is immediately viewable to you. On order to view the type library, you require the use of an application commonly referred to as an Object Browser. The Object Browser will interpret the type library and display the relevant information. Microsoft Excel and Visual Basic both include a built in Object Browser.

12 Automation 217

Page 218: FLARENET Reference Manual

Accessing the Object Browser in Excel 97 1 Press <Alt><F11> or select Visual Basic Editor from Macro group in

the Tools menu.

2 Within the Visual Basic Editor, choose References from the Tools menu.

3 Check the box next to FLARENET 3.5. If this is not displayed, use the Browse button to locate fnet350.exe.

4 Click OK.

5 Choose Object Browser from the View menu or press <F2>.

6 Select FLARENET under Libraries/Workbooks drop down.

Example: Navigating through the type library This example shows how to navigate through the type library in order to determine the object hierarchy necessary to access a particular property. The desired property is the mass flow of a relief valve called “PSV 1” in the currently active scenario.

The first step is to start with the starting object that in the case of FLARENET is always the Application object.

Fig 12.2

Selecting the Application object in the browser reveals all of its related properties and methods. Examination of the list of properties does not reveal a relief valve object so access to a particular relief valve must be through another object. The properties that are links to other objects can be determined by looking at the type shown when a property is selected. If the type is not String, Boolean, Variant, Double, Integer or Long then it is most likely an object. The object type shown will be found somewhere in the object list and the next step is to determine the object hierarchy.

12 Automation 218

Page 219: FLARENET Reference Manual

With prior experience in FLARENET, the ReliefValves object is a logical choice.

Fig 12.3

The ReliefValves object is shown to be of type IReliefValve. This object is a simple object that is a collection of other objects with some properties and methods for navigation through the collection.

Fig 12.4

The Item property is shown to return an indexed object of type IReliefValve, The argument named “What” is of type Variant which is the default argument type for an argument unless otherwise specified. All collection objects within FLARENET allow access to an individual member of the collection either by index number (like an array) or directly by name. Named arguments are case insensitive so “PSV 1” is the same as “psv 1”. Either approach is equally valid.

12 Automation 219

Page 220: FLARENET Reference Manual

Examining the IReliefValve object type shows a property called PropertyByName, which is type Variant.

Fig 12.5

This property is a read/write property that is used to access all data for a relief valve.

The first argument is a case insensitive string that describes the variable that we wish to access. In this case this string would have the valve “MassFlow”. A full list of property names for each type of object is given at the end of this chapter

The second argument is a Variant to that describes the scenarios for which the mass flow will apply. As with the ReliefValves collection object, either an index number or the name may be used to define the scenario. This argument is optional as indicated by the square brackets, and if it is not specified then the currently active scenario will be used.

The resulting syntax to access the desired property is:

ReliefValves.Item(“PSV1”).PropertyByName(“MassFlow”)

Automation Syntax

Declaring Objects An object in Visual Basic is another type of variable and should be declared. Objects can be declared using the generic type identifier object. The preferred method however uses the type library reference to declare the object variables by an explicit object name.

Early Binding:

Dim | Public | Private Objectvar as ObjectName as specified in the type library

12 Automation 220

Page 221: FLARENET Reference Manual

Late Binding:

Dim | Public | Private objectvar as Object

Once a reference to a type library has been established, the actual name of the object as it appears in the type library can be used. This is called early binding. It offers some advantages over late binding, including speed and access to Microsoft’s IntelliSense functionality when using Visual Basic or VBA.

Example: Object Declaration

Where class is the starting object as specified in the type library.

Early Binding:

Public fnApp as Object

Public thisPsv as Object

Late Binding:

Public fnApp as Flarenet.IApplication

Public thisPsv as Flarenet.IReliefValve

The Set Keyword Syntax:

Set objectvar = object.[object...].object | Nothing

Connections or references to object variables are made by using the Set keyword.

Example: Set

Assuming fnApp is set to the Application Object

Dim thisPsv as Flarenet.IReliefValve

Set thisPsv - fnApp.ReliefValves.item(1)

CreateObject, GetObject Syntax for creating an instance of an application:

CreateObject (class)

GetObject ([pathname] [,class])

In order to begin communication between the client and server applications, an initial link to the server application must be established. In FLARENET this is accomplished through the starting object Application.

The CreateObject function will start a new instance of the main application. CreateObject is used in FLARENET with the Flarenet.Application class as defined in the type library. This connects to the main application interface of FLARENET.

Example: CreateObject

Dim FnApp As Object

12 Automation 221

Page 222: FLARENET Reference Manual

Set FnApp = CreateObject (“Flarenet.Application”)

The following example uses early binding in the object declaration to create an instance of FLARENET and then load a specified model.

Example: CreateObject

Dim FnApp As Flarenet.Application

Set FnApp = CreateObject (“Flarenet.Application”)

FnApp.OpenModel “c:\flarenet\samples\ole\olesample.fnw”

The GetObject function will connect to an instance of the server application that is already running. If an instance of the application is not already running then a new instance will be started.

Object Properties, Methods and Hierarchy Syntax for creating and accessing properties:

Set objectvar = object.[object.object...] .object

Variable = object.[object.object...] .object.property

Syntax for accessing methods:

Function Method

returnvalue = object.method ([argument1, argument2, ...])

Subroutine method

object.method argument1, argument2, ...

The sequence of objects is set through a special dot function. Properties and methods for an object are also accesses through the dot function. It is preferable to keep the sequences of objects to a minimum since each dot function is a call to a link between the client and the server application.

The object hierarchy is an important and fundamental concept for utilizing automation. A particular property can only be accessed by following a specific chain of objects. The chain always begins with the Application object and ends with the object containing the desired property.

The methods of objects are accessed in the same fashion as properties by utilizing the dot function. A method for a particular object is nothing more than a function or subroutine whose behavior is related to the object in some fashion.

Typically the methods of an object will require arguments to be passed when the method is called. The type library will provide information about which arguments are necessary to call a particular method. A function will return a value.

Note: Subroutines in Visual Basic do not require parentheses around the argument list.

12 Automation 222

Page 223: FLARENET Reference Manual

Examples: Accessing FLARENET Object Properties Dim FnApp As Flarenet .Application

Dim SepDiam as Double

Set FnApp = CreateObject (“Flarenet.Application”)

FnApp.OpenModel “c:\flarenet\samples\ole\olesample.fnw”

SepDiam - FnApp.VerticalSeparators.Item[1].PropertyByName (“Diameter”)

This example starts up FLARENET and opens a specific case. The diameter of a specific vertical separator is then obtained. The diameter is obtained through a connection of the Application and VerticalSeparators objects.

Dim FnApp As Flarenet.Application

Dim Seps as Flarenet.IVerticalSeparators

Dim Sep as Flarenet.IVerticalSeparator

Dim SepDiam as Double

Set FnApp = CreateObject (“Flarenet.Application”)

FnApp.OpenModel “c:\flarenet\samples\ole\olesample.fnw”

Set Seps = FnApp.VerticalSeparators

Set Sep = Seps.Item[I]

Collection Objects

[statements]

Next [element]

SepDiam = Sep.PropertyByName (“Diameter”)

This example also gets the diameter of a specific vertical separator, but creates all the intermediate objects so that when the diameter value is actually requested the chain of objects only contains one object.

Syntax: Properties of a Collection Object:

Item(Index)Accesses a particular member of the collection by name or number

CountReturns the number of objects in the collection

Syntax: Enumeration of Objects:

For Each element In group

[Exit For]

[statements]

A collection object is an object that contains a set of other objects. This is similar to an array of objects. The difference between an array of objects and a collection object is that a collection object is that a collection object contains a set of properties and methods for manipulating the objects in the collection. The Count property returns the number of items in the collection and the

12 Automation 223

Page 224: FLARENET Reference Manual

Item property takes an index value or name as the argument and returns a reference to the object within the collection.

A special type of For loop is available for enumerating through the objects within the collection. The For Each loop provides a means for enumerating through the collection without explicitly specifying how many items are in the collection. This helps avoid having to make additional function call to the Count and Item properties of the collection object in order to perform the same type of loop.

Examples: Accessing Collection Objects Dim myPsvs as Flarenet.ReliefValves

Dim name as String

Dim i As Integer

Set myPsvs = myApp.ReliefValves

For i = 1 To myPsvs.Count

name = myPsvs.Item(i).PropertyByName(“Name”)

MsgBox name

Next i

This example connects to a collection of relief valves by setting the myPsvs object. A For loop is created that uses the Count and item properties of a collection in order to display a message box that display the name of each relief valve in turn. The items in the collection are indexed beginning at 1. The application object is assumed to have been already set to myApp.

Dim myPsvs as Flarenet.ReliefValve

Dim myPsvs as Flarenet.ReliefValves

Dim name as String

Set myPsvs = myApp.ReliefValves

For Each myPsvs in myPsvs

name = myPsv.PropertyByName(“Name”)

MsgBox name

Next

This example is identical to the first example except that a For Each loop is used instead of the standard For loop in order to enumerate through the ReliefValves collection.

Variants Syntax: Using variant values:

Dim myvariant as Variant

myvariant = [object.property]

To determine the upper and lower bound of the variant:

UBound(arrayname[,dimension])

12 Automation 224

Page 225: FLARENET Reference Manual

LBound(arrayname[,dimension])

A property can return a variety of variable type. Values such as Temperature or Pressure are returned as Doubles or 32-bit floating point values. The Name property returns a String value. Visual Basic provides an additional variable called Variant. A Variant is a variable that can take on the form of any type of variable including, Integer, Long, Double, String, Array, and Objects.

If the property of an object returns an array whose size can vary depending upon the case, then a Variant is used to access that value. For example, the Composition property of a ControlValve returns an array of Doubles sized to the number of components in the model.

In Visual Basic, if a variable is not explicitly declared then it is implicitly a Variant. Variants have considerably more storage associated with their use so for a large application it is good practice to limit the number of Variants being used. It is also just good programming practice to explicitly declare variables whenever possible.

Example: Using Variants in FLARENET Dim myPsvs as Flarenet.ReliefValve

Dim molefracs as Variant

Dim i As Integer

Set myPsv = myApp.ReliefValves.Item(1)

molefracs = myPsv.PropertyByName (“Composition”)

For i = LBound(molefracs) To Ubound (molefracs)

Debug.Print molefracs(i)

Next i

This example shows how to get the mole fractions of a relief valve for the current scenario. The values are sent to the Visual Basic Immediate window. The application object is assumed to have been already set to myApp.

Unknown Values There are a number of occasions where a variable may be unknown such as all the calculated values prior to the calculation or the flange size of a control valve. In all cases this is represented by the value fntUnknownValue.

Example: Using Unknown Values in FLARENET Dim myValve as Flarenet.ControlValves

Dim myValves as Flarenet.ControlValve

Dim flange as Double

Dim name as String

Set myValves = myApp.ControlValves

For Each myValve in myValves

12 Automation 225

Page 226: FLARENET Reference Manual

flange = myValve.PropertyByName (“FlangeDiameter”)

if flange - fntUnknown Then

name = myValve.PropertyByName(“Name”)

MsgBox name

EndIf

Next i

This example loops through all the control valves and displays the name of any whose flange diameter is unknown. The application object is assumed to have been already set to myApp.

FLARENET Object Reference

Each method is shown with the method name including any arguments, a description of the method and a description of the arguments.

The following subsections summaries the methods and properties available in each of the objects available within FLARENET. These are ordered purely alphabetically.

For each object the attributes comprises the type (or class) of object followed by the access characteristics which may be read only or read/write. In general, data will have the read/write attribute and calculated values will have the read only attribute.

Each property is shown with the property name including any arguments, a description of the property, the property attributes and a description of the arguments. Optional arguments are shown in square brackets [].

Many of the objects support a PropertyByName property. In such cases a further table gives the valid property names which are case insensitive as well as the property attributes and the units of measure where appropriate. The property names will generally match the field descriptions on the corresponding views but they never contain any space characters.

Application Description : Application object

Attributes : IApplication, read only

Methods Name Description Arguments

OpenModel(fn As String) Open a FLARENET model fn = Model filename

SaveModel(fn as String) Save a FLARENET model fn = Model filename

12 Automation 226

Page 227: FLARENET Reference Manual

Properties Name Description Attributes Arguments

Collection of flow bleed node objects

IBleeds, read only

Components Collection of component objects

IComponents, read only

Connectors Collection of connector objects

IConnectors, read only

ControlValves Collection of control valve objects

IControlValves, read only

HorizontalSeparators Collection of horizontal separator objects

IHorizontalSeparators, read only

Nodes Collection of node objects INodes, read only

Pipes Collection of pipe objects IPipes, read only

ReliefValves Collection of relief valve objects

IReliefValves, read only

Collection of scenario objects

IScenarios, read only

Solver Solver object ISolver, read only

Tees Collection of tee objects ITees, read only

Tips Collection of flare tip objects

ITips, read only

VerticalSeparators Collection of vertical separator objects

IVerticalSeparators, read only

Visible Set visibility of the application window

Boolean, read/write

Bleeds

Scenarios

Bleed Description : Flow bleed node object

Attributes : IBleed, read only

Methods Name Description Arguments

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd

Connect to a pipe conidx = Connection on bleed

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect from a pipe

conidx = Connection on bleed Disconnect(conidx as fntNodeEnd)

Properties Attributes Name Description Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

12 Automation 227

Page 228: FLARENET Reference Manual

Named Properties For PropertyByName() Name Units Attributes

Ignored fntYesNo, read/write

Location String, read/write

Name String, read/write

OfftakeMaximum kg/hr Double, read/write

OfftakeMinimum kg/hr Double, read/write

OfftakeMutliplier Double, read/write

OfftakeOffset kg/hr Double, read/write

PressureDrop bar Double, read/write

Bleeds Description : Collection of flow bleed node objects

Attributes : IBleed, read only

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single

Add a new bleed nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete (wh as Variant) Delete a bleed wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Number of items in the collection

Integer, read only

Item (wh as Variant)

Indexed item in the collection IBleed, read only Wh = Index as Name (String) or Number (Integer/Long)

Count

Component Description : Component object

Attributes : IComponent, read only

Methods Name Description Arguments

Clear Clear all component data

EstimateUnknown Estimate all unknown component data

12 Automation 228

Page 229: FLARENET Reference Manual

Properties Name Description Attributes Arguments

IsValid Validate component data is complete

Boolean, read only

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

Variant array of all the property names

Variant, read only PropertyNames

Named Properties For PropertyByName() Name Units Attributes

AcentricFactor Double, read/write

AcentricFactorSrk Double, read/write

CharacteristicVolume m3/kgmole Double, read/write

CriticalPressure bar abs Double, read/write

CriticalTemperature K Double, read/write

CriticalVolume m3/kgmole Double, read/write

EnthalpyCoefficients kJ/kgmole

kJ/kgmole/K

kJ/kgmole/K5

kJ/kgmole/K2

kJ/kgmole/K3

kJ/kgmole/K4

Double(1 To 6), read/write

EntropyCoefficient Double, read/write

Id Integer, read/write

MolecularWeight Double, read/write

Name String, read/write

NormalBoilingPoint K Double, read/write

StandardDensity kg/m3 Double, read/write

Type fntCompType, read/write

WatsonK Double, read/write

ViscosityCoefficient Double(1 To 2), read/write

12 Automation 229

Page 230: FLARENET Reference Manual

Components Description : Collection of component objects

Attributes : IComponents, read only

Methods Name Description Arguments

AddLibrary(wh as Variant) Add a library component wh = Component identifier as either name (String) or ID (Integer/Long)

AddHypothetical(wh as String)

Add a named hypothetical component

wh = Name for new component

Delet(wh as Variant) Delete a component wh = Index as component as either Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(What as Variant)

Indexed item in the collection

IComponent, read only

What = Index as Name (String) Or Number (Integer/Long)

Connector Description : Connector node object

Attributes : IConnector, read only

Methods Name Description Arguments

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

Connect to a pipe conidx = Connection on connector

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe

conidx = Connection on connector

Properties Name Description Attributes Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

12 Automation 230

Page 231: FLARENET Reference Manual

Named Properties For PropertyByName() Name Units Attributes

Angle radians Double, read/write

Ignored fntYesNo, read/write

Length m Double, read/write

Location String, read/write

Name String, read/write

Connectors Description : Collection of connector node objects

Attributes : IConnectors, read only

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single

Add a new connector

nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate in PFD (Twips)

Delete (wh as Variant) Delete a Connector

wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(What as Variant)

Indexed item in the collection IConnector, read only

What = Index as Name (String) Or Number (Integer/Long)

ControlValve

Description : Control valve node object

Attributes : IControlValve, read only

Methods Name Description Arguments

Connect to a pipe conidx = Connection on control valve

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe

conidx = Connection on control valve

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

12 Automation 231

Page 232: FLARENET Reference Manual

Properties Name Description Attributes Arguments

PropertyByName(wh as String,

[sc as Variant])

Property value for a named property

Variant, read/write wh = Property name

sc = Scenario Index as Name (String) or Number (Integer/Long)

PropertyNames Variant array of all the property names

Variant, read only

Named Properties For PropertyByName() Name Units Attributes

Composition fractions Double (1 To ?), read/write

fntCompBasis, read/write

Energy kJ/hr Double, read only

Enthalpy kJ/kgmole Double, read only

Entropy kJ/kgmole/K Double, read only

FlangeDiameter mm Double, read/write

FluidType fntCompType, read/write

Ignored fntYesNo, read/write

Location String, read/write

LockMabp fntYesNo, read/write

Mabp bar abs Double, read only

kg/hr Double, read/write

MolecularWeight Double, read/write

String, read/write

OutletSonicVelocity m/s Double, read only

OutletTemperature C Double, read only

OutletTemperatureSpecification C Double, read only

OutleVelocity m/s Double, read only

ReliefPressure bar abs Double, read only

StaticBackPressure bar abs Double, read only

StaticOutletPressure bar abs Double, read only

StaticInletPipePressureDrop bar Double, read only

Temperature C Double, read only

TemperatureSepcification fntTempSpec, read/write

TotalBackPressure bar abs Double, read only

TotalOutletPressure bar abs Double, read only

TotalInletPipePressureDrop bar Double, read only

VapourFraction molar fraction Double, read only

CompositionBasis

MassFlow

Name

12 Automation 232

Page 233: FLARENET Reference Manual

ControlValves Description : Collection of control valve node objects

Attributes : IControlValves

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new control valve

nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete a control valve

wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(wh as Variant)

Indexed item in the collection

IControlValve, read only

wh = Index as Name (String) or Number (Integer/Long)

HorizontalSeparator Description : Horizontal separator node object

Attributes : IHorizontalSeparator, read only

Methods Name Description Arguments

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

Connect to a pipe conidx = Connection on horizontal separator

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe

conidx = Connection on horizontal separator

Properties Name Description Attributes Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write

wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

12 Automation 233

Page 234: FLARENET Reference Manual

Named Properties For PropertyByName() Name Units Attributes

Diameter mm Double, read/write

fntYesNo, read/write

Double, read/write

Location String, read/write

Name String, read/write

Ignored

LiquidLevel mm

HorizontalSeparators Description : Collection of horizontal separator node objects

Attributes : IHorizontalSeparators, read only

Method Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new horizontal separator

nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete a horizontal separator

wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(What as Variant)

Indexed item in the collection

IHorizontalSeparator, read only

What = Index as Name (String) Or Number (Integer/Long)

Nodes Description : Collection of all node objects

Attributes : INodes, read only

Properties Name Description Attributes Arguments

Count Number of items in the collection Integer, read only

12 Automation 234

Page 235: FLARENET Reference Manual

OrificePlate Description : Orifice plate node object

Attributes : IOrificePlate, read only

Method Name Description Arguments

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

Connect to a pipe conidx = Connection on orifice plate

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe

conidx = Connection on orifice plate

Properties Name Description Attributes Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

Variant array of all the property names

Variant, read only PropertyNames

Named Properties For PropertyByName() Name Units Attributes

Diameter mm Double, read/write

DratioIn Double, read/write

DratioOut Double, read/write

Ignored fntYesNo, read/write

Location String, read/write

Name String, read/write

OrificePlates Description : Collection of orifice plate node objects

Attributes : IOrificePlates, read only

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Ass a new orifice plate

nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete an orifice plate

wh = Index as Name (String) or Number (Integer/Long)

12 Automation 235

Page 236: FLARENET Reference Manual

Properties Name Description Attributes Arguments

Count Number of items in the collection Integer, read only

Item(What as Variant)

Indexed item in the collection IOrificePlate, read only What = Index as Name (String) Or Number (Integer/Long)

Pipe Description : Pipe object

Attributes : IPipe, read only

Methods Name Description Arguments

Connect(conidx as fntPipeEnd, nod as Object, nodeconidx as fntNodeEnd)

Connect to a node conidx = Connection on pipe

nod = Node to connect to

nodeconidx = Connection on

Disconnect(conidx as fntPipeEnd) Disconnect from a node conidx = Connection on

Properties Name Description Attributes Arguments

PropertyByName(wh as String,

[sc as Variant], [ph as Variant],

[en as Variant])

Property value for a named property

Variant, read /write

wh = Property name

sc = Scenario Index as Name (String) or Number (Integer/Long)

ph = Phase Index (fntFluidPhase)

en = Pipe end (fntPipeEnd)

PropertyNames Variant array of all the property names

Variant, read only

Named Properties For PropertyByName() Name Units Attributes

AccelarationPressuredrop bar Double, read only

AmbientTemperature C Double, read only

CanSize fntYesNo, read/write

MoleFractions Double(1 To ?), read only

Density kg/m3 Double, read only

Duty kJ/hr Double, read only

ElevationChange m Double, read/write

ElevationPressureDrop bar Double, read only

Energy kJ/hr Double, read only

Enthalpy kJ/kgmole Double, read only

Entropy kJ/kgmole/K Double, read only

continued

12 Automation 236

Page 237: FLARENET Reference Manual

Name Units Attributes

EquivalentLength m Double, read only

ExternalDuty W Double, read/write

ExternalHeatTransferCoefficient W/m2/K Double, read only

FittingsLossConstant Double, read only

FittingsLossMultiplier Double, read only

FittingsPressureDrop bar Double, read only

FlowRegime fntFlowRegime, read only

FrictionFactor Double, read only

FrictionPressureDrop bar Double, read only

HeatCapacity kJ/kgmole/K Double, read only

HeatTransfer kJ/hr Double, read only

Ignored fntYesNo, read/write

InsulationName String, read/write

InsulationThickness mm Double, read/ write

InsulationThermalConductivity W/m/K Double, read/write

InternalDiameter mm Double, read/write

Length m Double, read/write

LengthMultiplier Double, read/write

Location String, read/write

MachNumber Double, read only

MassFlow kg/hr Double, read/write

Material fntPipeMaterial, read/write

MolecularWeight Double, read only

MolarFlow kgmole/hr Double, read only

Name String, read/write

Noise dB Double, read only

NominalDiameter String, read/write

OutletTemperatureSpecification C Double, read/write

W/m2/K Double, read only

UsePipeClass fntYesNo, read/write

PressureDrop bar Double, read only

RatedMassFlow kg/hr Double, read only

ReynoldsNumber Double, read only

RhoV2 kg/m/s2 Double, read only

Roughness mm Double, read/write

StaticPressure bar abs Double, read only

Schedule String, read/write

SurfaceTension dynes/cm Double, read only

TailPipe fntYesNo, read/write

Temperature C Double, read only

ThermalConductivity W/m/K Double, read only

TotalPressure bar abs Double, read only

VapourFraction molar fraction Double, read only

Velocity m/s Double, read only

Viscosity cP Double, read only

WallThermalConductivity W/m/K Double, read/write

OverallHeatTransferCoefficient

continued

12 Automation 237

Page 238: FLARENET Reference Manual

Name Units Attributes

WallTemperature C Double, read only

Double, read/write

WindSpeed m/s Double, read/write

Zfactor Double, read only

WallThickness mm

Pipes Description : Collection of pipe

Attributes : IPipes

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new pipe nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete a pipe wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(wh as Variant)

Indexed item in the collection IPipe, read only wh = Index as Name (String)

or Number (Integer/Long)

ReliefValve Description : Relief valve node object

Attributes : IReliefValve, read only

Methods Name Description Arguments

conidx = Connection on relief valve

conidx = Connection on relief valve

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

Connect to a pipe

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe

12 Automation 238

Page 239: FLARENET Reference Manual

Properties Name Description Attributes Arguments

PropertyByName(wh as String,

[sc as Variant])

Property value for a named property

Variant, read/write wh = Property name

sc = Scenario Index as Name (String) or Number (Integer/Long)

PropertyNames Variant array of all the property names

Variant, read only

Named Properties For PropertyByName() Name Units Attributes

Composition fractions Double (1 To ?), read/write

CompositionBasis fntCompBasis, read/write

Contingency fntContingency, read/write

Energy kJ/hr Double, read only

Enthalpy kJ/kgmole Double, read only

Entropy kJ/kgmole/K Double, read only

FlangeDiameter mm Double, read/write

FluidType fntCompType, read/write

HemCd Double, read/write

HemLiqCd Double. Read/write

Ignored fntYesNo, read/write

Kb Double, read/write

Location String, read/write

LockMabp fntYesNo, read/write

LockReliefPressure fntYesNo, read/write

LockRatedMassFlow fntYesNo, read/write

Mabp bar abs Double, read only

MassFlow kg/hr Double, read/write

Mawp bar abs Double, read/write

MechanicalPressure bar abs Double, read/write

MolecularWeight Double, read/write

Name String, read/write

Orifice String, read/write

RatedMassFlow kg/hr Double, read/write

OutletSonicVelocity m/s Double, read only

OutletTemperature C Double, read only

OutletTemperatureSpecification C Double, read only

OutleVelocity m/s Double, read only

ReliefPressure bar abs Double, read only

SizingBackPressure Bar abs Double, read/write

StaticBackPressure bar abs Double, read only

StaticOutletPressure bar abs Double, read only

StaticInletPipePressureDrop bar Double, read only

Temperature C Double, read only

TemperatureSepcification fntTempSpec, read/write

continued

12 Automation 239

Page 240: FLARENET Reference Manual

Name Units Attributes

TotalBackPressure bar abs Double, read only

TotalOutletPressure bar abs Double, read only

TotalInletPipePressureDrop bar Double, read only

ValveArea mm2 Double, read/write

ValveCount Integer, read/write

ValveType fntPsvType, read/write

VapourFraction molar fraction Double, read only

ReliefValves Description : Collection of relief valve node objects

Attributes : IReleifValves

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new relief valve nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinated on PFD (Twips)

Delete(wh as Variant) Delete a relief valve wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(wh as Variant)

Indexed item in the collection

IReliefValve, read only

wh = Index as Name (String) or Number (Integer/Long)

Scenario Description : Scenario object

Attributes : IScenario, read only

Properties Name Description Attributes Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

12 Automation 240

Page 241: FLARENET Reference Manual

Named Properties For PropertyByName() Name Units Attributes

AtmosphericPressure bar abs Double, read/write

Calculate fntYesNo, read/write

HeaderLiquidVelocityLimit m/s Double, read/write

HeaderMachLimit Double, read/write

HeaderNoiseLimit dB Double, read/write

HeaderRhoV2Limit kg/m/s2 Double, read/write

HeaderVapourVelocityLimit m/s Double, read/write

Name String, read/write

TailpipeLiquidVelocityLimit m/s Double, read/write

TailpipeMachLimit Double, read/write

TailpipeNoiseLimit dB Double, read/write

TailpipeRhoV2Limit kg/m/s2 Double, read/write

TailpipeVapourVelocityLimit m/s Double, read/write

Scenarios Description : Collection of scenario objects

Attributes : IScenarios, read only

Methods Name Description Arguments

Add(nm As String,

[cl as Integer])

Add a new scenario nm = New scenario name

cl = Index of scenario to copy data from for initialization

Delete(wh as Variant)

Delete a scenario wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Active Get active scenario IScenario, read only

Active Set active scenario wh = Index as Name (String) or Number (Integer/Long)

Count Number of items in the collection

Integer, read only

Item(wh as Variant)

Indexed item in the collection

IScenario, read only wh = Index as Name (String) or Number (Integer/Long)

12 Automation 241

Page 242: FLARENET Reference Manual

Solver Description : Solver object

Attributes : ISolver, read only

Methods Name Description Arguments

Halt Stop calculations

Start Start calculations

Properties Name Description Attributes Arguments

IsActive Get calculation status Boolean, read only

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

Named Properties For PropertyByName() Name Units Attributes

AmbientTemperature C Double, read/write

AtmosphericPressure bar abs Double, read/write

CalculationMode fntCalcMode, read/write

CheckChokedFlow fntYesNo, read/write

Elements Integer, read/write

EnableHeatTransfer fntYesNo, read/write

EnthalpyMethod fntEnthMethod, read/write

InitialPressure bar abs Double, read/write

KineticEnergyBasis fntKeBasis, read/write

LengthMultiplier Double, read/write

LoopIteration Integer, read only

LoopIterationLimit Integer, read/write

LoopTolerance % Double, read/write

PressureDropMethod fntPresDropMethod(0 to 2), read/write

PropertyIteration Integer, read only

PropertyIterationLimit Integer, read/write

PropertyTolerance % Double, read/write

ScenarioMode fntScenarioMode, read/write

UnitOperationTolerance % Double, read/write

UseKineticEnergy fntYesNo, read/write

UseRatedFlow fntYesNo, read/write

VleMethod fntVleMethod, read/write

WindSpeed Double, read/write

12 Automation 242

Page 243: FLARENET Reference Manual

Tee Description : Tee node object

Attributes : ITee, read only

Methods Name Description Arguments

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

Connect to a pipe conidx = Connection to tee

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe conidx - Connection on tee

Properties Name Description Attributes Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

Named Properties For PropertyByName() Name Units Attributes

Angle fntTeeAngle, read/write

Body fntTeeEnd, read/write

Ignored fntYesNo, read/write

Location String, read/write

Name String, read/write

Tees Description : Collection of tee node objects

Attributes : ITees, read only

Method Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new tee nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete a tee wh = Index as Name (String) or Number (Integer/Long)

12 Automation 243

Page 244: FLARENET Reference Manual

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(wh as Variant)

Indexed item in the collection

IConnector, read only

wh = Index as Name (String) Or Number (Integer/Long)

Tip Description : Flare tip node object

Attributes : ITip, read only

Methods Name Description Arguments

AddCurve() Add a pressure drop curve

Append a point to a pressure drop curve

wh = Index of curve

DeleteCurve(wh as Integer)

Delete a pressure drop curve

wh = Index of curve

DeleteCurvePoint(wh as Integer, id as Integer)

wh = Index of curve

id = Index of point

AddCurvePoint(wh as Integer)

Properties Name Description Attributes Arguments

Molecular weight of indexed pressure drop curve

Double, read/write

CurvePointMassFlow(Wh as Integer, id as Integer)

Mass flow of point on a pressure drop curve (kg/hr)

Double, read/write wh = Index of curve

id = Index of point

CurvePointPressureDrop(Wh as Integer, id as Integer)

Pressure drop of point on a pressure drop curve (bar)

Double, read/write wh = Index of curve

id = Index of point

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

CurveMolwt(wh as Integer)

wh = Curve index

12 Automation 244

Page 245: FLARENET Reference Manual

Named Properties For PropertyByName() Name Units Attributes

Diameter mm Double, read/write

Ignored fntYesNo, read/write

K Double, read/write

Kbasis fntKbasis, read/write

Location String, read/write

Name String, read/write

Reference Temperature Double, read/write

UseCurves fntYesNo, read/write

Tips Description : Collection of flare tip node objects

Attributes : ITip, read only

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new tip nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete a tip wh = Index as Name (String) or Number (Integer/Long)

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(What as Variant)

Indexed item in the collection

IConnector, read only

What = Index as Name (String) Or

Number (Integer/Long)

12 Automation 245

Page 246: FLARENET Reference Manual

VerticalSeparator Description : Vertical separator node object

Attributes : IVerticalSeparator, read only

Methods Name Description Arguments

Connect(conidx as fntNodeEnd, pip as IPipe, pipeconidx as fntPipeEnd)

Connect to a pipe conidx = Connection on vertical separator

pip = Pipe to connect to

pipeconidx = Connection on pipe

Disconnect(conidx as fntNodeEnd)

Disconnect from a pipe conidx - Connection on vertical separator

Properties Name Description Attributes Arguments

PropertyByName(wh as String)

Property value for a named property

Variant, read/write wh = Property name

PropertyNames Variant array of all the property names

Variant, read only

Named Properties For PropertyByName() Name Units Attributes

Diameter mm Double, read/write

Ignored Boolean, read/write

Location String, read/write

Name String, read/write

VerticalSeparators Description : Collection of vertical separator node objects

Attributes : IVerticalSeparators, read only

Methods Name Description Arguments

Add (Optional nm as Variant, Optional x as Single, Optional y as Single)

Add a new vertical separator nm = Name. If omitted a new name is automatically generated

x = X coordinate on PFD (Twips)

y = Y coordinate on PFD (Twips)

Delete(wh as Variant) Delete a vertical separator wh = Index as Name (String) or Number (Integer/Long)

12 Automation 246

Page 247: FLARENET Reference Manual

Properties Name Description Attributes Arguments

Count Number of items in the collection

Integer, read only

Item(What as Variant)

Indexed item in the collection

IHorizontalSeparator, read only

What = Index as Name (String) Or Number (Integer/Long)

Example – Automation In Visual Basic This example will show how that FLARENET can be used as an automation server by a program that analyses a FLARENET model to search for the maximum and minimum values of a user defined named property within all the pipes.

This complete example has also been pre-built and is located in the Flarenet\Samples\Ole\Vb\Bounds directory

Note: Although Visual Basic 6 is recommended for this example, you may create the Automation application in the Visual Basic editor provided in Microsoft Excel 97® and Microsoft Word 97®.

1 Open a new project in Visual Basic 6® and from the New tab of the New Project property view select the Standard EXE icon and press the Open button. Your screen should appear similar to Figure 16.6.

Fig 12.6

2 By default you should have a form associated with the project. Begin, by giving the form a name. In the Name field of the Properties Window give the form the name:frmBounds.

3 In the Caption field type: FLARENET Model Pipe Property Bounds. This caption should now appear in the title bar of the form.

4 Before adding objects to the forn, resize the view to accommodate the different objects that will be required.. In the Width filed found in the

12 Automation 247

Page 248: FLARENET Reference Manual

Properties Window change the width of the form to 4500 or to any value such that the from is sufficiently wide to fully display the caption.

5 From the Tool Box select the Text Box button and create a text box on the forma as shown in Figure 16.7.

Fig 12.7

6 Ensure that the text box is the active control. This can be done in one of two ways:

− Select the text box on the form so that the object guides appear around the object.

− From the drop down list found at the top of the properties windows select the name of the text box you have just created.

7 In the Properties windows, set the name of the text box as ebModelName in the Name field. If you wish, you may also change the default text that appears inside the edit box by entering a new name in the Text field.

8 You may add a label to the form. i.e. to identify the object from others, by selecting the Label tool and drawing the label on the form just above the text box you have just created.

9 Ensuring that the label control is active using one of the methods suggested in step 6, go to the Properties Window and change the text in the Caption field to Model Name.

12 Automation 248

Page 249: FLARENET Reference Manual

Fig 12.8

10 Add the following objects to the form using the previously described methods.

Fig 12.9

11 Only two more objects are required on the form. Select the Command Button control from the tool bar and add two buttons to the form as shown in Figure 12.10

12 Automation 249

Page 250: FLARENET Reference Manual

Fig 12.10

12 You are now ready to begin defining the events behind the form and objects. You may enter the code environment using a number of methods:

− Click the View Code button. − Select the Code option from the View menu. − Double click the frmBounds form.

Fig 12.11

The Private Sub Form_Load() method definition will only be visible if you enter the code environment by double clicking the form.

13 Begin by declaring the following variables under the Option Explicit Declaration.

12 Automation 250

Page 251: FLARENET Reference Manual

Fig 12.12

14 Add a reference to the FLARENET type library to allow access to predefined constants by selecting References from the Project menu.

Fig 12.13

15 The first subroutine should already be declared. The Form_Load subroutine is the first subroutine called once the program is run. It is usually used to initialize the variables and objects used by the program. Enter the following code into the Form_Load subroutine.

Code Explanation

Private Sub Form_Load() Signifies the start of the form load subroutine. You do not have to add as it should already be there

ebModelName.Text = ""

ebPropertyName.Text = ""

ebMinValue.Text = ""

ebMaxValue.Text = ""

Clears all the text fields

End Sub Signifies the end of the initialization subroutine. This line does not need to be added.

12 Automation 251

Page 252: FLARENET Reference Manual

16 The next section of code to be added is what will occur when the name of the model is changed in the ebModelName box.

Code Explanation

Private Sub ebModelName_Validate(Cancel As Boolean)

Signifies the start of the subroutine.

ModelName = ebModelName.Text Copies the entered name for the model to the String Variable ModelName

End Sub Signifies the end of the subroutine.

17 The next section of code to be added is what will occur when the desired property is changed in the ebPropertyName box.

Code Explanation

Private Sub ebPropertyName_Validate(Cancel As Boolean)

Signifies the start of the subroutine.

PropertyName = ebPropertyName.Text Copies the entered name for the property to the String Variable PropertyName

End Sub Signifies the end of the subroutine.

18 The final two routines define the actions of the two buttons: btnUpdate and btnExit.

Code Explanation

Private Sub btnUpdate_Click() Signifies the start of the subroutine.

Dim MaxVal As Double

Dim MinVal As Double

Dim Pipe As FLARENET.IPipe

Dim WorkVal As Double

Declare work variables

On Error Resume Next Prevents an error from being raised if for example an invalid name for the property is selected

If Trim$(ModelName) = "" Then

Set FnApp = GetObject(, "FLARENET.Application")

Else

Set FnApp = CreateObject("FLARENET.Application")

FnApp.OpenModel ModelName

End If

If a model name is defined then opens the model defined by the String variable ModelName otherwise connects to the currently running instance of FLARENET.

If Not FnApp Is Nothing Then Ensure successful connection to the Application object

MaxVal = -10000000000#

MinVal = 10000000000#

Initializes the maximum and minimum values to values outside the range of possible values.

For Each Pipe In FnApp.Pipes Loop through all the pipes in the model

WorkVal = Pipe.PropertyByName(PropertyName)

Get the property named and stores in the String variable PropertyName

continued

12 Automation 252

Page 253: FLARENET Reference Manual

Code Explanation

If WorkVal <> fntUnknownValue Then Check for an unknown value. Do not consider the value further if it is unknown.

If WorkVal > MaxVal Then MaxVal = WorkVal

Update maximum value

If WorkVal < MinVal Then MinVal = WorkVal

Update minimum value

Next

End of loop and value update

ebMinValue.Text = Format$(MinVal, "0.000e+00")

ebMaxValue.Text = Format$(MaxVal, "0.000e+00")

Update the displayed values in the ebMinValue and ebMaxValue Text boxes.

Set FnApp = Nothing

End If

Disconnect the Application object

End Sub Signifies the end of the subroutine.

End If

Code Explanation

Private Sub btnExit_Click() Signifies the start of the subroutine.

Set FnApp = Nothing

Releases the connection to FLARENET

Unload Me

End

Unload the form and end the program

End Sub Signifies the end of the subroutine.

19 You are now ready to compile and run the program. Before you begin, please ensure that you have a copy of FLARENET on the computer.

20 To compile the program do one of the following:

− Click the Start button... − Select Start from the Run menu. − Press <F5> from the keyboard.

Visual Basic will inform you of any errors that occur during compile time.

12 Automation 253

Page 254: FLARENET Reference Manual

A Theoretical Basis

Pressure Drop

Pipe Pressure Drop Method

Vapor Phase Pressure Drop Methods Pressure drop can be calculated either from the theoretically derived equation for isothermal flow of a compressible fluid in a horizontal pipe2:

( ) 022

In22

12

2

2

12

=

+

−+

aGLf

RTPPM

PP

aG

f φ

A.1

weightMolecularMeTemperaturTlengthEquivalentL

diameterInternal

factorfrictionFanningfconstantgasUniversalRpressureDownstreamP

pressureUpstreamPpipeofareasectionalCrossa

flowMassGwhere

f

====

====

==

φ

2

1

:

A Theoretical Basis 254

Page 255: FLARENET Reference Manual

Or from the theoretically derived equation for adiabatic flow of a compressible fluid in a horizontal pipe2:

+−

+=

1

2

2

2

12

1

1 Inγ

1γ12γ

1-γVV

VV

Ga

VPLAf f φ

A.2

heatsspecificofRatiolengthEquivalentL

diameterInternalfactorfrictionFanningfvolumespecificDownstreamV

volumespecificUpstreamVconstantgasUniversalR

pressureUpstreamPpipeofareasectionalCrossa

flowMassGwhere

f

===

=====

==

γ

:

2

1

1

φ

The friction factor is calculated using an equation appropriate for the flow regime. These equations correlate the friction factor to the pipe diameter, Reynolds number and roughness of the pipe4:

Turbulent Flow (Re > 4000)

The friction factor may be calculated from either the Round equation:

( )

+=

5.6135.0log61.31

ef Re

Ref φ

A.3

roughnesspipeAbsoluteediameterInternalnumberReynoldsRe

factorfrictionFanningfwhere

f

==

=

=

φ

:

A Theoretical Basis 255

Page 256: FLARENET Reference Manual

Or from the Chen21 equation:

( )

+−−=

8981.01098.1 149.78257.2

/log0452.57065.3/log41

Ree

Ree

f f

φφ

A.4

roughnesspipeAbsoluteediameterInternalnumberReynoldsRe

factorfrictionFanningfwhere

f

==

=

=

φ

:

Transition Flow (2100 ≤ Re ≤ 4000)

−−

−=

Ree

Ree

Ree

f f

0.137.3

log02.57.3

log02.57.3

log0.41φφφ

A.5

roughnesspipeAbsoluteediameterInternalnumberReynoldsRe

factorfrictionFanningfwhere

f

==

=

=

φ

:

Laminar Flow (Re < 2100)

Ref f

16=

A.6

numberReynoldsRe

factorfrictionFanningfwhere

f

=

=:

The Moody friction factor is related to the Fanning friction factor by:

fm ff •= 4

A.7

factorfrictionMoodyf

factorfrictionFanningfwhere

m

f

=

=:

A Theoretical Basis 256

Page 257: FLARENET Reference Manual

2-Phase Pressure Drop

Beggs and Brill

The Beggs and Brill9 method is based on work done with an air-water mixture at many different conditions, and is applicable for inclined flow. In the Beggs and Brill correlation, the flow regime is determined using the Froude number and inlet liquid content. The flow map used is based on horizontal flow and has four regimes: segregated, intermittent, distributed and transition. Once the flow regime has been determined, the liquid hold-up for a horizontal pipe is calculated, using the correlation applicable to that regime. A factor is applied to this hold-up to account for pipe inclination. From the hold-up, a two-phase friction factor is calculated and the pressure gradient determined.

Although the Beggs and Brill method was not intended for use with vertical pipes, it is nevertheless commonly used for this purpose, and is therefore included as an option for vertical pressure drop methods.

Fig A.1

The boundaries between regions are defined in terms of two constants and the Froude number10:

( )321 0207.0481.0757.362.4exp xxxL −−−−=

A.8

( )5322 000625.00179.0609.1602.4061.1exp xxxxL +−−−=

A.9

( )( )

flowratevolumetricsituInqqqqcontentliquidInput

Inxwhere

gasliquidliquid

=

+===

/λλ:

A Theoretical Basis 257

Page 258: FLARENET Reference Manual

According to Beggs and Brill:

1 If the Froude number is less than L1, the flow pattern is segregated.

2 If the Froude number is greater than both L d L pattern is distributed.

1 an 2, the flow

3 If the Froude number is greater than L1 and smaller than L2 the flow pattern is intermittent.

Dukler Method

The Dukler10 method breaks the pressure drop into three components - Friction, Elevation and Acceleration. The total pressure drop is the sum of the pressure drop due to these components:

AEFTotal PPPP ∆+∆+∆=∆

A.10

onacceleratitoduepressureinChangePelevationtoduepressureinChangePfrictiontoduepressureinChangeP

pressureinchangeTotalPwhere

A

E

F

Total

=∆=∆=∆

=∆:

The pressure drop due to friction is:

DgVLf

Pc

mmTPF 144

ρ22

=∆

A.11

)()/2.32(g

)/(ρ)/(

)()(

:

2

3

ftpipeofdiameterInsideDslbfftlbmconstantnalGravitatio

ftlbmixturephasetwoofDensitysftvelocity

equalassumingpipelineinmixturephasetwotheofVelocityVftpipelinetheoflengthEquivalentL

yempiricalldeterminedfactorfrictionphaseTwofwhere

c

m

m

TP

=−−=

−=

−==

−=

A Theoretical Basis 258

Page 259: FLARENET Reference Manual

The pressure drop due to elevation is as follows:

144ρ ∑=∆

HEP LhE

A.12

changeselevationofSumHdensityLiquid

yempiricalldeterminedfactorheadLiquidEwhere

L

h

=

==

∑ρ

)(:

The pressure drop due to acceleration is usually very small in oil/gas distribution systems, but becomes significant in flare systems:

+

−−

+

−=∆ θcos

ρ1ρρ

1441 2222

2USL

LPLL

L

GPLg

DSL

LPLL

L

GPLg

cA R

QRQ

RQ

RQ

AgP

A.13

bendpipetheofAnglecapacitypipelineofpercentageaaspipelineinholdupLiquidR

hrftpressureandetemperaturpipelineatflowingliquidofVolumeQ

hrftpressureandetemperaturpipelineatflowinggasofVolumeQ

densityGasareasectionalCrossA

where

L

LPL

GPL

g

==

=

=

=−=

θ

)/(

)/(

ρ

:

3

3

Orkiszewski Method

The Orkiszewski11,12 method assumes there are four different flow regimes existing in vertical two-phase flow - bubble, slug, annular-slug transition and annular-mist.

The bubble flow regime consists mainly of liquid with a small amount of a free-gas phase. The gas phase consists of small, randomly distributed gas bubbles with varying diameters. The gas phase has little effect on the pressure gradient (with the exception of its density).

In the slug flow regime, the gas phase is most pronounced. The gas bubbles coalesce and form stable bubbles of approximately the same size and shape. The gas bubbles are separated by slugs of a continuous liquid phase. There is a film of liquid around the gas bubbles. The gas bubbles move faster than the liquid phase. At high flow velocities, the liquid can become entrained in the gas bubbles. The gas and liquid phases may have significant effects on the pressure gradient.

Transition flow is the regime where the change from a continuous liquid phase to a continuous gas phase occurs. In this regime, the gas phase becomes more dominant, with a significant amount of liquid becoming entrained in the

A Theoretical Basis 259

Page 260: FLARENET Reference Manual

gas phase. The liquid slug between the gas bubbles virtually disappears in the transition regime.

In the annular-mist regime, the gas phase is continuous and is the controlling phase. The bulk of the liquid is entrained and carried in the gas phase.

Orkiszewski defined bubble flow, slug flow, mist flow and gas velocity numbers which are used to determine the appropriate flow regime.

If the ratio of superficial gas velocity to the non-slip velocity is less than the bubble flow number, then bubble flow exists, for which the pressure drop is:

DgRV

fPc

L

sL

Ltp 2ρ

2

=∆

A.14

)()/2.32(

)/()/(ρ

)/(:

2

3

2

ftdiameterHydraulicDslbfftlbmconstantnalGravitatiog

velocityslipnonondependentfactoressDimensionlRsftvelocityliquidlSuperficiaV

ftlbdensityLiquid

factorfrictionphaseTwoflengthoffootperftlbdropPressureP

where

c

L

sL

L

tp

=−−=

−===

−==∆

If the ratio of superficial gas velocity to the non-slip velocity is greater than the bubble flow number, and the gas velocity number is smaller than the slug flow number, then slug flow exists. The pressure drop in this case is:

Γ+

++

=∆

rns

rsL

c

nsLtp

VVVV

DgVf

P2ρ 2

A.15

ConstantvelocityriseBubbleVvelocityslipNonV

where

r

ns

=Γ=

−=:

A Theoretical Basis 260

Page 261: FLARENET Reference Manual

The pressure drop calculation for mist flow is as follows:

( )Dg

VfP

c

sggtp 2

ρ2

=∆

A.16

)/(ρ

)/(:

3ftlbdensityGas

sftvelocitygaslSuperficiaVwhere

g

sg

=

=

The pressure drop for transition flow is:

( ) ms PxPP ∆−+∆=∆ 1

A.17

numbersvelocitygasandflowslugflowmistondependentfactorWeightingxflowmixedfordropPressurePm

flowslugfordropPressurePswhere

,,,

:

==∆

=∆

The pressure drop calculated by the previous equations, are for a one-foot length of pipe. These are converted to total pressure drop by:

∆=∆

246371144

ρ

p

ftotal

total

PAGQ

PLP

A.18

)()(

)(

)(

)/(

)/(/)/(ρ

:

2

3

3

ftsegmentlineofLengthLabovecalculatedasdroppressureUnitP

psiasegmentinpressureAveragep

ftpipeofareasectionalCrossA

sftrateflowGasG

slbgasliquidcombinedofrateMassQftlbregimeflowingtheofDensity

where

p

f

total

==∆

=

−=

=

==

A Theoretical Basis 261

Page 262: FLARENET Reference Manual

Fittings Pressure Change Methods The correlations used for the calculation of the pressure change across a fitting are expressed using either the change in static pressure or the change in total pressure. Static pressure and total pressure are related by the relationship:

2ρ 2vPP st +=

A.19

In this equation and all subsequent equations, the subscript t refers to total pressure and the subscript s refers to the static pressure.

Enlargers/Contractions The pressure change across an enlargement or contraction may be calculated using either incompressible or compressible methods. For two phase systems a correction factor that takes into account the effect of slip between the phases may be applied.

Figure A.2 and A.3 define the configurations for enlargements and contractions. In these figures the subscript 1 always refers to the fitting inlet and subscript 2 always refers to the fitting outlet.

Fig A.2

Fig A.3

A Theoretical Basis 262

Page 263: FLARENET Reference Manual

Incompressible Single Phase Flow

The total pressure change across the fitting is given by:

2ρ 2

111

vKPt +=∆

A.20

VelocityvdensityMass

tcoefficienlossFittingsKchangepressureTotalp

where

====∆

ρ

:

Sudden and Gradual Enlargement

For an enlarger the fittings loss coefficient is calculated from the ratio of the smaller diameter to the larger diameter,β .

2

1βdd

=

A.21

The fitting loss coefficients are defined by Crane26

If θ < 45°

( )221 β1

2θsin6.2 −

=K

A.22

Otherwise

( )221 β1−=K

A.23

Sudden and Gradual Contraction

For a contraction the fittings loss coefficient is calculated from ratio of the smaller area to the larger area,σ .

2

1

=dd

A.24

A Theoretical Basis 263

Page 264: FLARENET Reference Manual

The fittings loss coefficients are defined by HTFS27

57806.00.39543σ

σ5385.4σ24265.14σ54038.8σ2211.190.5

1.52.52

++

−++−=tK

A.25

21 σctCKK =

A.26

The contraction coefficient, is defined by

If θ = 180 ° (Abrupt contraction)

( )σ-10.4111

+=cC

A.27

Otherwise

Sudden and Gradual Enlargement

( )( )( ) 25.079028.4θ'6240.9 θ'1θ'03614.00179.0 ++= −leCc

A.28

oθ/180θ':

=

where

Incompressible Two Phase Flow

The static pressure change across the fitting is given by HTFS27

2

2121

2ρσ11

LOl

s

mKP φ

&

+−

=∆

A.29

( )g

g

g

l

g

gLO

xxε-1

1ρρ

ε

222 −

+=φ

A.30

fractionmassPhasexfractionvoidPhasedensitymassPhase

fluxMassmwhere

====

ερ

:

A Theoretical Basis 264

Page 265: FLARENET Reference Manual

Sudden and Gradual Contraction

The static pressure change across the fitting is given by HTFS27

( ) 222

2

2ρσ1

LOl

ts

mKP φ&−+

=∆

A.31

( )222 1 gLLO x−= φφ

A.32

22 11

XXC

L ++=φ

A.33

5.0

ρρ1

−=

l

g

g

g

xx

X

A.34

5.05.0

ρρ

ρρ

+

=

l

g

g

lC

A.35

fractionmassPhasexfractionvoidPhasedensitymassPhase

fluxMassmwhere

====

ερ

:

Compressible Single Phase Flow

Sudden and Gradual Enlargement

The static pressure change across the fitting is given by HTFS27

−=∆ 1

σρρ

σρ 2

1

1

21mPs&

A.36

densitymassPhasefluxMassm

where

==

ρ

:

A Theoretical Basis 265

Page 266: FLARENET Reference Manual

Sudden and Gradual Contraction

The static pressure change across the fitting is calculated using the two-phase method given in Compressible Two Phase Flow below. The single-phase properties are used in place of the two-phase properties.

Compressible Two Phase Flow

Sudden and Gradual Enlargement

The static pressure change across the fitting is given by HTFS27

−=∆ 1

221

σσ EE

s vvmP&

A.37

bygivenvolumespecificEquivalentvwhere

E =:

( )( ) ( ) ( )

−+

−+−+=

1

111

1 5.0

2

l

g

R

R

gglgRggE

vvu

ux

xvxuvxv

A.38

5.0

=

l

HR v

vu

A.39

( ) lgggH vxvxv −+= 1

A.40

fractionmassPhasexdensitymassPhase

fluxMassmwhere

===

ρ

:

Sudden and Gradual Contraction

The pressure loss comprises two components. These are the contraction of the fluid as is passed from the inlet to the vena contracta plus the expansion of the fluid as it passes from the vena contracta to the outlet. In the following equations the subscript t refers to the condition at the vena contracta.

A Theoretical Basis 266

Page 267: FLARENET Reference Manual

For the flow from the inlet to the vena conracta, the pressure change is modeled in accordance with HTFS27 by:

( )

−=∫ 2

2

11

121ζ

11 σ

112

ζcE

EtE

E

E

Cvv

Pvmd

vv &

A.41

1

ζPP

=

A.42

For the flow from the vena contracta to the outlet the pressure change is modeled used the methods for Sudden and Gradual Expansion given above.

Tees

Tees can be modeled either by using a flow independent loss coefficient for each flow path or by using variable loss coefficients that are a function of the volumetric flow and area for each flow path as well as the branch angle. The following numbering scheme is used to reference the flow paths.

Fig A.4

Constant Loss Coefficients

The following static pressure loss coefficients values are suggested by the API23:

θ 13K 23K 12K 31K 32K 21K

<90o 0.76 0.50 1.37 0.76 0.50 1.37

90o 1.37 0.38 1.37 1.37 0.38 1.37

The selection of the coefficient value is dependant on the angle and the direction of flow through the tee.

• For flow into the run, the loss coefficient for tee is:

θ 13K 12K

90o 0.38 1.37

<>90o 0.50 1.37

A Theoretical Basis 267

Page 268: FLARENET Reference Manual

• For flow into the branch, the loss coefficient for tee is:

θ 21K 23K

90o 1.37 1.37

1.37 0.76 <>90o

• For flow into the tail, the loss coefficient for tee is:

θ 31K 23K

90o 0.38 1.37

0.50 0.76 <>90o

4.32,1: AFigureinshownasassignedareandnumbersReferencewhere

The static pressure change across the fitting is given by:

2ρ 2vKPs =∆

A.43

Variable Loss Coefficients

The loss coefficients are a function of the branch angle, branch area to total flow area ratio and branch volumetric flow to total volumetric flow ratio. These values have been graphically represented by Miller25. Using these charts the static pressure changes are calculated from:

• Combing Flow

333

3

233

1

211

13 v

PvPv

K

+−

+

=

A.44

333

3

233

2

221

23 v

PvPv

K

+−

+

=

A.45

A Theoretical Basis 268

Page 269: FLARENET Reference Manual

• Dividing Flow

333

1

211

3

233

31 v

PvPv

K

+−

+

=

A.46

333

2

222

3

233

32 v

PvPv

K

+−

+

=

A.47

A typical chart for in combining flow is shown. 23K

Fig A.5

Orifice Plates

Orifice plates can be modeled either as a sudden contraction from the inlet pipe size to the orifice diameter followed by a sudden expansion from the orifice diameter to the outlet pipe size or by using the HTFS equation for a thin orifice plate.

( )1

21β5082.12

4 ρ2β1

β2.825 0.08956 mPs

&−=∆

A.48

See Incompressible Single Phase Flow on Page 263 for a definition of the symbols.

A Theoretical Basis 269

Page 270: FLARENET Reference Manual

Vertical Separators

The Pressure change across the separator comprises the following components:

• Contraction of vapor phase outlet from the body diameter, d he outlet diameter, d

Friction losses are ignored.

• Contraction of vapor phase outlet from the vapor space characterized by the equivalent diameter of the vapor area, to the outlet diameter, d

Expansion of the multiphase inlet from the inlet diameter, d1, to the body diameter dbody.

body, to t2

Fig A.6

Horizontal Separators

The Pressure change across the separator comprises the following components calculated using the methods described in Incompressible Single Phase Flow on Page 263:

Expansion of the multiphase inlet from the inlet diameter, d1, to the vapor space characterized by equivalent diameter of the vapor area.

2

A Theoretical Basis 270

Page 271: FLARENET Reference Manual

Friction losses are ignored.

Fig A.7

The PVT relationship is expressed as:

Vapor-Liquid Equilibrium

Compressible Gas

ZRTPV =

A.49

eTemperaturTconstantGasR

factorilityCompressibZVolumeVPressureP

where

=====

:

The compressibility factor Z is a function of reduced temperature and pressure. The overall critical temperature and pressure are determined using applicable mixing rules.

Vapor Pressure The following equations are used for estimating the vapor pressure, given the component critical properties3:

( )( ) ( )( )1*0** InωInIn rrr ppp +=

A.50

A Theoretical Basis 271

Page 272: FLARENET Reference Manual

( )( ) 60* 169347.0In28862.109648.692714.5In rrr

r TTT

p +−−=

A.51

( )( ) 61* 43577.0In4721.136875.162518.15In rrr

r TTT

p +−−=

A.52

)()(

)/(ω

)()(

)/(:

*

**

RetemperaturCriticalTReTemperaturT

TTetemperaturReducedTfactorAcentric

abspsipressureCriticalpabspsipressureVapourp

pppressurevapourReducedpwhere

oc

ocr

c

cr

=

=

====

=

This equation is restricted to reduced temperatures greater than 0.30, and should not be used below the freezing point. Its use was intended for hydrocarbons, but it generally works well with water.

Soave Redlich Kwong It was noted by Wilson (1965, 1966) that the main drawback of the Redlich-Kwong equation of state was its inability of accurately reproducing the vapor pressures of pure component constituents of a given mixture. He proposed a modification to the RK equation of state using the acentricity as a correlating parameter, but this approach was widely ignored until 1972, when Soave (1972) proposed a modification of the SRK equation of this form:

( )( )bVVTTa

bVRTP c

+−

−=

ω,,

A.53

The a term was fitted in such a way as to reproduce the vapor pressure of hydrocarbons using the acentric factor as a correlating parameter. This led to the following development:

( )bVVa

bVRTP c

+−

−=

α

A.54

( )RK22

assamethePTRa ac

cac ΩΩ=

A.55

A Theoretical Basis 272

Page 273: FLARENET Reference Manual

( )5.011α rTS −+=

A.56

20.176ω-ω574.1480.0 +=S

A.57

The reduced form is:

( )2599.03.8473α

2559.03

+−

−=

rrr

rr VVV

TP

A.58

The SRK equation of state can represent with good accuracy the behavior of hydrocarbon systems for separation operations, and since it is readily converted into computer code, its usage has been extensive in the last twenty years. Other derived thermodynamic properties, like enthalpies and entropies, are reasonably accurate for engineering work, and the SRK equation enjoys wide acceptance in the engineering community today.

Peng Robinson Peng and Robinson (1976) noted that although the SRK was an improvement over the RK equation for VLE calculations, the densities for the liquid phase were still in considerable disagreement with experimental values due to a universal critical compressibility factor of 0.3333, which was still too high. They proposed a modification to the RK equation which reduced the critical compressibility to about 0.307, and which would also represent the VLE of natural gas systems accurately. This improved equation is represented by:

( ) ( )bVbbVVa

bVRTP c

−++−

−=

α

A.59

c

cc P

TRa22

45724.0=

A.60

c

c

PRTb 07780.0=

A.61

They used the same functional dependency for the α term as Soave:

( )5.011α rTS −+=

A.63

A.62

20.26992ω-ω5422.137464.0 +=S

A Theoretical Basis 273

Page 274: FLARENET Reference Manual

0642.05068.04.8514α

2534.02573.3

2 −+−

−=

rrr

rr VVV

TP

A.64

The accuracy of the SRK and PR equations of state are roughly the same (except for density calculations).

Physical Properties

Vapor Density Vapor density is calculated using the compressibility factor calculated from the Berthalot equation5. This equation correlates the compressibility factor to the pseudo reduced pressure and pseudo reduced temperature.

−+= 2

0.60.10703.00.1rr

r

TTPZ

A.65

ZRTPM

A.66

Liquid Density Saturated liquid volumes are obtained using a corresponding states equation developed by R. W. Hankinson and G. H. Thompson14 which explicitly relates the liquid volume of a pure component to its reduced temperature and a second parameter termed the characteristic volume. This method has been adopted as an API standard. The pure compound parameters needed in the corresponding states liquid density (COSTALD) calculations are taken from the original tables published by Hankinson and Thompson, and the API data book for components contained in FLARENET's library. The parameters for hypothetical components are based on the API gravity and the generalized Lu equation. Although the COSTALD method was developed for saturated liquid densities, it can be applied to sub-cooled liquid densities, i.e., at pressures greater than the vapor pressure, using the Chueh and Prausnitz correction factor for compressed fluids. The COSTALD model was modified to improve its accuracy to predict the density for all systems whose pseudo-reduced temperature is below 1.0. Above this temperature, the equation of state compressibility factor is used to calculate the liquid density.

A Theoretical Basis 274

Page 275: FLARENET Reference Manual

Vapor Viscosity Vapor viscosity is calculated from the Golubev3 method. These equations correlate the vapor viscosity to molecular weight, temperature and the pseudo critical properties.

Tr > 1.0

167.0

)/29.071.0(667.05.0

0.100005.3µ

c

Trc

TTPM r+

=

A.67

Tr ≤ 1.0

167.0

)965.0(667.05.0

0.100005.3µ

c

rc

TTPM

=

A.68

Liquid Viscosity FLARENET will automatically select the model best suited for predicting the phase viscosities of the system under study. The model selected will be from one of the three available in FLARENET: a modification of the NBS method (Ely and Hanley), Twu's model, and a modification of the Letsou-Stiel correlation. FLARENET will select the appropriate model using the following criteria:

Chemical System Liquid Phase Methodology

Lt Hydrocarbons (NBP < 155 F) Mod Ely & Hanley

Hvy Hydrocarbons (NBP > 155 F) Twu

Non-Ideal Chemicals Mod Letsou-Stiel

All the models are based on corresponding states principles and have been modified for more reliable application. These models were selected since they were found from internal validation to yield the most reliable results for the chemical systems shown. Viscosity predictions for light hydrocarbon liquid phases and vapor phases were found to be handled more reliably by an in-house modification of the original Ely and Hanley model, heavier hydrocarbon liquids were more effectively handled by Twu's model, and chemical systems were more accurately handled by an in-house modification of the original Letsou-Stiel model.

A complete description of the original corresponding states (NBS) model used for viscosity predictions is presented by Ely and Hanley in their NBS publication16. The original model has been modified to eliminate the iterative procedure for calculating the system shape factors. The generalized Leech-Leland shape factor models have been replaced by component specific models. FLARENET constructs a PVT map for each component and regresses

A Theoretical Basis 275

Page 276: FLARENET Reference Manual

the shape factor constants such that the PVT map can be reproduced using the reference fluid.

Note: The PVT map is constructed using the COSTALD for the liquid region. The shape factor constants for all the library components have already been regressed and are stored with the pure component properties.

Pseudo component shape factor constants are regressed when the physical properties are supplied. Kinematic or dynamic viscosity versus temperature curves may be supplied to replace FLARENET's internal pure component viscosity correlations. FLARENET uses the viscosity curves, whether supplied or internally calculated, with the physical properties to generate a PVT map and regress the shape factor constants. Pure component data is not required, but if it is available it will increase the accuracy of the calculation.

The general model employs methane as a reference fluid and is applicable to the entire range of non-polar fluid mixtures in the hydrocarbon industry. Accuracy for highly aromatic or naphthenic oil will be increased by supplying viscosity curves when available, since the pure component property generators were developed for average crude oils. The model also handles water and acid gases as well as quantum gases.

Although the modified NBS model handles these systems very well, the Twu method was found to do a better job of predicting the viscosities of heavier hydrocarbon liquids. The Twu model18 is also based on corresponding states principles, but has implemented a viscosity correlation for n-alkanes as its reference fluid instead of methane. A complete description of this model is given in the paper18 titled "Internally Consistent Correlation for Predicting Liquid Viscosities of Petroleum Fractions".

For chemical systems the modified NBS model of Ely and Hanley is used for predicting vapor phase viscosities, whereas a modified form of the Letsou-Stiel model15 is used for predicting the liquid viscosities. This method is also based on corresponding states principles and was found to perform satisfactorily for the components tested.

The parameters supplied for all FLARENET pure library components have been fit to match existing viscosity data over a broad operating range. Although this will yield good viscosity predictions as an average over the entire range, improved accuracy over a more narrow operating range can be achieved by supplying viscosity curves for any given component. This may be achieved either by modifying an existing library component through FLARENET's component librarian or by entering the desired component as a hypothetical and supplying its viscosity curve.

A Theoretical Basis 276

Page 277: FLARENET Reference Manual

Liquid Phase Mixing Rules for Viscosity The estimates of the apparent liquid phase viscosity of immiscible Hydrocarbon Liquid - Aqueous mixtures are calculated using the following "mixing rules":

• If the volume fraction of the hydrocarbon phase is greater than or equal to 0.33, the following equation is used19:

( )oilvoileff e −= 16.3µµ

A.69

phasenHydrocarbofractionVolumevphasenHydrocarboofViscosity

viscosityApparentwhere

oil

oil

eff

==

=

µ

µ:

• If the volume fraction of the hydrocarbon phase is less than 0.33, the following equation is used20:

OHOHoil

OHoiloileff v

2

2

2 µµµ

µ4.0µ5.21µ

+

++=

A.70

phasenHydrocarbofractionVolumev

phaseAqueousofViscosityphasenHydrocarboofViscosity

viscosityApparentwhere

oil

OH

oil

eff

=

==

=

2µµ

µ:

The remaining properties of the pseudo phase are calculated as follows:

∑= )( weightmolecularmwxmw iieff

A.71

( )( ) )(//1ρ densitymixturepx iieff ∑=

A.72

∑= )( heatspecificmistureCpxCp iieff

A.73

A Theoretical Basis 277

Page 278: FLARENET Reference Manual

Thermal Conductivity As in viscosity predictions, a number of different models and component specific correlations are implemented for prediction of liquid and vapor phase thermal conductivities. The text by Reid, Prausnitz and Polings used as a general guideline in determining which model was best suited for each class of components. For hydrocarbon systems the corresponding states method proposed by Ely and Hanleymolecular weight, acentric factor and ideal heat capacity for each component. These parameters are tabulated for all library components and may either be input or calculated for hypothetical components. It is recommended that all of these parameters be supplied for non-hydrocarbon hypotheticals to ensure reliable thermal conductivity coefficients and enthalpy departures.

15 was

16 is generally used. The method requires

The modifications to the method are identical to those for the viscosity calculations. Shape factors calculated in the viscosity routines are used directly in the thermal conductivity equations. The accuracy of the method will depend on the consistency of the original PVT map.

The Sato-Reidel method15 is used for liquid phase thermal conductivity predictions of glycols and acids, the Latini et al. Method15 is used for esters, alcohols and light hydrocarbons in the range of C3 - C7, and the Missenard and Reidel method15 is used for the remaining components.

For vapor phase thermal conductivity predictions, the Misic and Thodos, and Chung et al. 15 methods are used. The effect of higher pressure on thermal conductivities is taken into account by the Chung et al. method.

As in viscosity, the thermal conductivity for two liquid phases is approximated by using empirical mixing rules for generating a single pseudo liquid phase property.

Enthalpy

Ideal Gas The ideal gas enthalpy is calculated from the following equation:

432 TETDTCTBAH iiiiiideal ++++=

A.74

termscapacityheatgasIdealEDCBAeTemperaturT

enthalpyIdealHwhere

===

,,,,

:

A Theoretical Basis 278

Page 279: FLARENET Reference Manual

Lee-Kesler The Lee-Kesler enthalpy method corrects the ideal gas enthalpy for temperature and pressure.

depideal HHH +=

A.75

+

=

s

c

depr

c

dep

r

s

c

dep

c

dep

RTH

RTH

RTH

RTH

ωω

A.76

++

+

−−−=

E

VTd

VTTcc

VTTb

Tbb

ZTRTH

rr

k

rr

r

kk

rr

t

k

r

kk

kr

k

c

dep

352

332

0.1 52

2

23

2243

2

A.77

++−+=

234 γ1β0.1βγ2

r

k

V

r

kkk

kr

k

eVT

cE

A.78

enthalpydeparturegasIdealHtermsKeslerLeedcb

enthalpyIdealHfluidSimplesfluidReferencerfactorAcentricenthalpySpecificH

etemperaturCriticalTwhere

dep

ideal

c

=

−==

=====

γβ,,,,

ω

:

A Theoretical Basis 279

Page 280: FLARENET Reference Manual

Equations of State The Enthalpy and Entropy calculations are performed rigorously using the following exact thermodynamic relations:

dVPTPT

RTZ

RTHH V

V

ID

∫∞

∂∂

+−=− 11

A.79

dVVT

PRP

PZRSS V

Vo

IDo ∫

∂∂

+−=− 11InIn

A.80

For the Peng Robinson Equation of State, we have:

( )( )

−+++

−−−=

−bVbV

dtdaTa

bRTZ

RTHH ID

1212In

211 5.0

5.0

5.1

A.81

( ) ( )( )

−−++

+−−=

−BZBZ

adTTda

BA

PPBZ

RSS

o

IDo

1212In

2InIn 5.0

5.0

5.1

A.82

( ) ( ijji

N

i

N

jji kaaxxa

where

−= ∑∑= =

1

:

5.0

1 1

)

A.83

For the SRK Equation of State:

+

−−−=

−Vb

dtdaTa

bRTZ

RTHH ID

1In11

A.84

( )

+

+−−=

−ZB

adTTda

BA

PPBZ

RSS

o

IDo 1InInIn

A.85

A Theoretical Basis 280

Page 281: FLARENET Reference Manual

A and B term definitions are provided below:

Term Peng-Robinson Soave-Redlich-Kwong

ib

ci

ci

PRT08664.0

ia icia α icia α

cia ( )ci

ci

PRT 2

457235.0

iα ( )5.011 rii Tm −+

im 2ω26992.0ω54226.137646.0 ii −+ 2ω176.0ω57.148.0 ii −+

ci

ci

PRT077796.0

( )ci

ci

PRT 2

42748.0

( )5.011 rii Tm −+

( ) ( ijji

N

i

N

jji kaaxxa

where

−= ∑∑= =

1

:

5.0

1 1

)

A.86

∑=

=N

iiibxb

and

1

A.87

EntropySEnthalpyH

constantgasIdealRstateReference

gasIdealIDo

===

=

=

A Theoretical Basis 281

Page 282: FLARENET Reference Manual

Noise The sound pressure level at a given distance from the pipe is calculated from the following equations. In these equations the noise producing mechanism is assumed to be solely due to the pressure drop due to friction.

=4π36.1

2φLPWm

A.88

1π4η10log10 2

13

=

rLWSPL m

r

A.89

pressureinChangePefficiencyAcoustic

pressurediameterInternalpipefromDistancer

levelpressureSoundSPLlengthEquivalentL

where

=∆===

==

η

:

φ

A Theoretical Basis 282

Page 283: FLARENET Reference Manual

The acoustical efficiency is calculated from the following graph.

Fig A.8

0.0 0.2 0.4 0.6 0.8 1.0

Mach Number

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10-5

10 -4

10 -3

Aco

usti

cal E

ffic

ien

cy

pt = 10.0

pt = 1.0

pt = 0.1

2

1

2

2

1

=

TT

PPpt

A.90

The transmission loss due to the pipe wall is calculated from:

0.365.00.17 −

=

φmvt

A.91

A Theoretical Basis 283

Page 284: FLARENET Reference Manual

B File Format

Import/Export Details

At this stage the import process opens the specified import definition file or the default or new import definition file as specified in Preferences as appropriate. A check is made that the import definition file type matches the file type specified in step 1. The version of the import definition file is then checked and data object and data item elements are added to update to the current FLARENET version if required.

During this step, the Import Wizard extracts Source tab data and Field Details for each data item as different data objects are selected. Whenever a new data object is selected the data on the Source tab is validated and any problems are reported.

This section provides further details of the import and export capabilities of FLARENET.

Process Descriptions

Import Wizard The purpose of this section of the documentation is to describe step by step the operation of the import wizard.

End of Step 1

At this stage the import process verifies that the specified import file exists and opens it. If an Excel file is being imported this step starts Excel as a background process then asks it to load the file. The import wizard is then configured for the appropriate file type.

Any errors are reported.

End of Step 2

The next step is to process the file to build the object selector tree view for Step 3. Any problems in reading the import definition file are reported.

Step 3

B File Format 284

Page 285: FLARENET Reference Manual

End of Step 4

The first action taken is to save the import definition file if required, prompting for the file name to be used. The import process proper then begins. In detail the steps are:

1 Clear current results

2 Open log file if required

3 Read components one by one. For each component check to see if it already exists in the current FLARENET case. If not add component to list. For database components use information from database, otherwise use the data values from file.

4 Read binary interaction parameter data.

5 Read data for pipes, connector nodes and source nodes one object type at a time, updating the progress view as appropriate.

6 As each instance of a particular object type is read check if it already exists. If so use the data read to update it otherwise create a new instance of the appropriate object type.

7 Make connections between pipes and nodes. Processing allows for only one end of the connection to be read.

10 Update automatic calculations to reflect new data values.

3 Search the source data object for an instance of the appropriate object type using the defined select criteria if required. For Access imports this will be a row in the specified table; for Excel imports this will be a row or column range in the specified worksheet where cell offset 1,1 is not blank; for XML imports this will be an item element within the specified group element.

4 Repeat steps 2 and 3 to open any sub section data objects.

8 Read scenario data. Existing scenarios will be updated and new ones created if required.

9 Read Solver options.

11 Refresh all views.

12 Close log file and then close Import Data File. Any background copy of Excel will be closed at this point.

13 Close Import Wizard view and finish.

General Data Object Import Procedure

For each object type that is read the detailed import procedure is as follows:

1 Check to see if import of this object type is required. Quit reading this type of data object if not.

2 Process the data object definition data from the Import Definition File. Search for and open the specified source object. Quit if any errors are encountered.

5 Read data items from source one by one.

B File Format 285

Page 286: FLARENET Reference Manual

6 Update counters for number of instances read and search data source for next object instance. For an Access imports this will be the next row, for Excel imports the next row or column range, for XML imports the next item element. Selection criteria will apply if specified. Quit if the next instance cannot be found.

7 Repeat steps 5 and 6 until all instances have been read.

Step 3

2 Write components data

6 Write scenario data for scenarios that are selected for calculation.

Export Process The purpose of this section of the documentation is to describe step by step the operation of the export wizard.

End of Step 1

At this stage the export process checks to see if the target export file exists. If so it opens it otherwise the file is created. If an Excel file is being exported this step starts Excel as a background process then asks it to load any existing file. The Export Wizard is then configured for the appropriate file type.

Any errors are reported.

End of Step 2

At this stage the export process opens the specified export definition file or the default or new export definition file specified in Preferences as appropriate. A check is made that the export definition file type matches the file type specified in step 1. The version of the export definition file is then checked and data object and data item elements are added to update it to the current FLARENET version if required.

The next step is to process the file to build the object selector tree view for Step 3. Any problems in reading the export definition file are reported.

During this step, the Export Wizard extracts Target tab data and Field Details for each data item as different data objects are selected. Whenever a new data object is selected the data on the Target tab is validated and any problems are reported.

End of Step 4

The first action taken is to save the export definition file if required, prompting for the file name to be used. The export process proper then begins. In detail the steps are:

1 Clear existing data from export file if requested by the user.

3 Write binary interaction parameter data

4 Write pipe data

5 Write connector node and source node data working through each type of node in turn

B File Format 286

Page 287: FLARENET Reference Manual

7 Write results data for scenarios that are selected for calculation.

8 Write solver options.

9 Save export file. Any background copy of Excel will be closed at this point.

10 Close Export Wizard view.

General Data Object Export Procedure

6 Update counters for number of items read and mark target instance as complete.

7 Repeat steps 4 to 6 for until each instance of this data object has been written.

For each object type that is written the detailed export procedure is as follows:

1 Check that export of this data object type is required. Quit if not.

2 Create target data object using information from export definition file. For Access export this will create a table with the correct fields; for Excel export a worksheet with the correct name; for XML export a group tag with the correct name. Quit if any errors are encountered.

3 Create target data objects as required for any data subsections.

4 For each instance of the data object to be written search the output file to see if this instance already exists. If so select this to be overwritten. Otherwise create a new instance for the data object in the output file. For Access export this will be a new row in that target table, for Excel export the next row or column range where cell offset 1,1 is blank, for XML export a new item element. Quit if the new target instance cannot be found.

5 Write the values to the target object instance.

B File Format 287

Page 288: FLARENET Reference Manual

Definition File Formats The import and export definition files are XML formatted data files that describe how the various FLARENET data objects and their corresponding data items should be read from or written to the supported external file formats. This section of the documentation describes the layout of these files.

Import File Formats

File Header

The top level element of an import definition file must have the tag name FlarenetImport and contain the following attributes:

Attribute Description

LastModified This is a date string that indicates the date that the file was last updated.

FlarenetVersion This indicates the version of FLARENET that the file is applicable to in the format N.NN.

FileType This indicates the type of external file import that is described in this definition file. Valid values are Access, Excel or XML

Data Object Elements

The child elements of the FlarenetImport tag define the various data objects that may be imported by FLARENET. These parent data object elements may contain child data object elements that describe data subsections that may be imported from a different location to the parent data object. For example a pipe data object has a data subsection defined for the PFD layout information.

A data object element has the following attributes:

Attribute Description

ObjectName This defines the source of the data object in the external file. Its usage depends on the type of external file as follows:

Access – The entry defines a database table

Excel – The entry defines a worksheet

XML – The entry defines the tag name of a group element

Import This indicates whether this object type is to be imported. Valid values are Yes or No.

This defines any selection criteria to be used when selecting instances of data objects from the external file. Its usage depends on the type of external file but data substitution codes can be defined in the selection criteria for child data object elements in all cases.

Access – A valid SQL statement for the database table specified under ObjectName.

Excel – A statement of the form R#,C#=”criteria” where R#,C# is a cell offset in the specified worksheet and “criteria” is either a value or a substitution code. Multiple statements can be entered, separated by the word AND.

XML – A statement of the form “item tag”=”criteria” where “item tag” is a data item element in the specified group element and “criteria” is either a value or a substitution code.

Select

continued

B File Format 288

Page 289: FLARENET Reference Manual

Attribute Description

Contained This indicates whether the data for this object is contained in the same external data source as the parent object. Valid values are Yes or No. This setting is always No for a parent data object.

DataBy This entry appears in Excel import definition files only. It defines how the data for this object is organized. Valid values are Row, Column or Sheet.

This entry appears in Excel import definition files only. When DataBy is set to Row or Column it defines the starting row or column for the data. When DataBy is set to Sheet it defines the tag by which worksheets of the requisite layout can be identified.

PerItem This entry appears in Excel import definition files only. It defines the number of rows or columns occupied by a single instance of a data object, including any spacing, when DataBy is set to Row or Column.

ItemTag This entry appears in XML import definition files only. It defines the element tag name used to identify each instance of a data object within the group tag name defined in the ObjectName attribute.

StartAt

A list of valid Data Object elements names is given in Data Objects List.

Data Item Elements

Each data object element contains data item elements that define the location of the individual data item in the external data source. A data item element contains the following attributes:

Attribute Description

This indicates whether the item is to be imported. Valid values are Yes or No.

Offset

Access – The entry defines a field within the database table for the object.

Excel – The entry defines a cell within the worksheet for the object. The cell is defined either by a single row or column offset or by a row, column offset.

XML – The entry defines the tag name of an element within the item tag element for the object.

Import

This defines the location of the data value in the external file. Its usage depends on the type of external file but data substitution codes can be defined for the offset in all cases – see Data Substitution Codes.

A list of the data item elements that are recognized for each data object is given in Data Items List.

Export File Formats

File Header

The top level element of an export definition file must have the tag name FlarenetExport and contain the following attributes: Attribute Description

LastModified This is a date string that indicates the date that the file was last updated.

FlarenetVersion This indicates the version of FLARENET that the file is applicable to in the format N.NN.

FileType This indicates the type of external file export that is described in this definition file. Valid values are Access, Excel or XML.

B File Format 289

Page 290: FLARENET Reference Manual

Data Object Elements

The child elements of the FlarenetExport tag define the various data objects that may be exported by FLARENET. These parent data object elements may contain child data object elements that describe data subsections that may be exported to a different location to the parent data object.

A data object element has the following attributes:

Attribute Description

ObjectName This defines the name of the data object that will be created and written to in the external file. Its usage depends on the type of external file as follows:

Access – The entry defines a database table.

Excel – The entry defines a worksheet,

XML – The entry defines the tag name of a group element.

Export This indicates whether this object type is to be exported. Valid values are Yes or No.

Contained This indicates whether the data for this object is to be written to the same external data source as the parent object. Valid values are Yes or No. This setting is always No for a parent data object.

DataBy This entry appears in Excel export definition files only. It defines how the data for this object is organized. Valid values are Row, Column or Sheet.

StartAt This entry appears in Excel export definition files only. When DataBy is set to Row or Column it defines the starting row or column for the data. When DataBy is set to Sheet it defines the name of the worksheet that will be copied to create a worksheet for each instance of the data object. This name must begin with a “%” character.

PerItem This entry appears in Excel export definition files only. It defines the number of rows or columns occupied by a single instance of a data object, including any spacing, when DataBy is set to Row or Column

ItemTag This entry appears in XML export definition files only. It defines the element tag name used to identify each instance of a data object within the group tag name defined in the ObjectName attribute.

A list of valid Data Object elements names is given in Data Objects List.

B File Format 290

Page 291: FLARENET Reference Manual

Data Item Elements

Each data object element contains data item elements that define how an individual data item is to be written to the external data source. A data item element contains the following attributes:

Attribute Description

Export This indicates whether the item is to be exported. Valid values are Yes or No.

Offset This defines the location where the data value will be written in the external file. Its usage depends on the type of external file Its usage depends on the type of external file but data substitution codes can be defined for the offset in all cases – see Data Substitution Codes.

Access – The entry defines a field within the database table for the object.

Excel – The entry defines a cell within the worksheet for the object. The cell is defined either by a single row or column offset or by a row, column offset.

XML – The entry defines the tag name of an element within the item tag element for the object.

Type This appears in Access export definition files only. It defines the data type of the field to be created for this item. Valid values are Text for text strings, Long for integer values, Double for floating point values.

Length This appears in Access export definition files only. It defines the length of the field to be created. For fields of type Text it defines the length of the text string in characters. For fields of type Long and Double it is set to 0 and will be ignored though it must be present.

A list of the data item elements that are recognized for each data object is given in Data Items List.

Data Substitution Codes

The code “.itemname” where itemname is the tag name of a data item element is recognized when processing the Select attribute for import definition files. The code “.itemname” will be replaced in the selection criteria by the current value of that item in the parent data object. Therefore it follows that this code cannot be defined for parent data objects; only child data objects that describe data subsections. Multiple “.itemname” codes are allowed in a single select criteria.

As indicated in the above data substitution codes may be defined in the Select attribute for import data objects and the Offset attribute for item import and export data items. The details of these codes are as follows:

Select Codes

For example consider the default import definition file for Access files – DefAccess.fni. This file is set up to assume that the PFD layout information for each node is contained in a separate table to the node data. Thus a select code is needed to identify the appropriate row in this table as each node is read. Taking a tee as an example node, the relevant lines of the import definition file are:

1 <Tees ObjectName="Tees" Import="Yes" Select="" Contained="No">

The data in this line specifies the following: The ObjectName attribute says that the data for tee nodes lies in a database table called Tees. The Import attribute says tee node data is to be imported. The Select attribute is blank

B File Format 291

Page 292: FLARENET Reference Manual

which implies that all the entries in the Tees database table will be treated as tee nodes. The Contained attribute is No since this is a parent data object element (i.e. directly beneath the FlarenetImport element).

2 <Name Import="Yes" Offset="Name"/> (as found directly below line 1 as a data item element within the Tees element)

The data in this line specifies how to read the Name data item from the Tees table. The attribute Import says that the name of the tee is to be imported. The Offset attributes says that the name of the tee will be found in a field called Name within the Tees database table.

3 <PFDLayout ObjectName="PFDLayout" Import="Yes" Select="ItemName=.Name" Contained="No"> (as found within the Tees element)

The data in this line specifies where to find the PFD layout information for the tee. The ObjectName attribute says that it will be found in a table called PFDLayout. The attribute Import says that the layout information should be imported. The Select attribute includes a substitution code that says that the data will be found in the row of the table where the field ItemName has the same value as the name of the tee we are importing. I.e. when we are importing the tee with the name TeeXYZ the substitution code will evaluate to TeeXYZ and the PFDLayout table will be searched for the row with the criteria “ItemName=TeeXYZ”. The Contained attribute states that the data for this object will be found in a different table (PFDLayout) to that of the parent object (Tees).

A further example can be taken from the default Excel definition file DefExcel.fni. C This expects source data for all scenarios to be held on a dedicated worksheet. The SourceData data object element within the Scenarios data object element is as follows:

4 <SourceData ObjectName="SourceData" Import="Yes" Select="1=.Name" Contained="No" DataBy="Row" PerItem="1" StartAt="1">

This identifies the worksheet as SourceData, and that import of this data is required. The layout is defined as being in rows (DataBy) with 1 row per source data object (PerItem) starting at row 1 (StartAt). The Select attribute says that the data for the current scenario is to be found in rows where column 1 contains the name of the scenario.

Offset Codes

The following codes are recognized and processed in the Offset attribute in both import and export definition files.

“%ObjectName”

where ObjectName is the name of a data object element, will be replaced by a value that iterates as successive instances of that type of object are read or written for this instance of the parent data object. It is used to provide a value that iterates through repeated data items e.g. component data or pipe fitting data. ObjectName may refer to any data object element that is a parent of the data item. The code is usually used in conjunction with a + symbol to add the iteration value to some constant value.

B File Format 292

Page 293: FLARENET Reference Manual

In an Access or XML import or export definition file the + symbol means that the iteration value is concatenated with the constant value. E.g. Frac+%Composition will be expanded to Frac1, Frac2 etc.

In an Excel import or export definition file*, -, and / symbols as well as the + symbol are recognized to combine the iteration value with a constant value to calculate a cell address. E.g. 2,2+%Composition will be expanded to the cell references 2,3 then 2,4 etc. See the CurveMassFlow data item in the TipCurveData data object in the definition file DefExcel.fni for a more complicated example.

“#ObjectName”

where ObjectName is the name of a data object element, will be replaced by the total number of instances of that type of data object that have been read. ObjectName may refer to any data object element that is a child of the current data object element. The value returned is usually combined with some constant value through a + or other symbols as for the “%ObjectName” code.

“?Composition”

is a special code that is used exactly as it stands. “?Composition” will be replaced by each component name or offset in turn as successive component composition data items are read or written It is generally used in conjunction with a + symbol to each component name or offset to some constant value.

In an Access or XML import or export definition file ?Composition will return component names in turn from the master component list e.g. Frac+?Composition will be evaluated as FracMethane, FracEthane etc.

In an Excel import or export definition ?Composition will return the index number of a component in the master component list to allow it to be used to calculate a cell offset.

In both cases the master component list is the union of the components in the current FLARENET case and the import or export definition files. Essentially this code allows unambiguous specification of a component identity when merging of the component lists between a FLARENET case and an import or export definition file.

B File Format 293

Page 294: FLARENET Reference Manual

Recognized Objects and Items

Data Objects List Data object elements for the following data objects and sub-sections are recognized in import and export definition files.

Element Tag Sub Section Data

Object Elements Description

Components None Component data

BIPs None Binary interaction parameters

Connectors PFDLayout Connector nodes

ControlValves PFDLayout

SourceData

Control valve source nodes

FlowBleeds PFDLayout Flow bleed nodes

HorizontalSeparators PFDLayout Horizontal separator nodes

OrificePlates PFDLayout Orifice plate nodes

Pipes PFDLayout

Fittings

Pipes

Fittings None Fitting data for pipes

ReliefValves PFDLayout

SourceData

Relief valve source nodes

Tees PFDLayout Tee nodes

Tips PFDLayout

TipCurves

Flare tip nodes

TipCurves TipCurveData Tip pressure drop curves

TipCurveData None Data points in tip pressure drop curve

VerticalSeparators PFDLayout Vertical separator nodes

Scenarios SourceData PipeEstimates Scenario data

SolverOptions WarningMsgs Calculation option data

WarningMsgs None Warning message flags

PFDLayout None PFD layout information

SourceData Composition Scenario specific source data

None Component composition data

PipeEstimates None Scenario specific flow estimates for tear streams

PFSummary EndResults

CompResults

StreamProps

PhaseProps

Summary results data for each pipe. Export definition files only.

EndResults None End specific results for each pipe. Export definition files only.

CompResults

None Composition results for each pipe. Export definition files only.

StreamProps None Stream properties at each end of each pipe. Export definition files only.

PhaseProps None Properties for each phase at each end of each pipe. Export definition files only.

Composition

B File Format 294

Page 295: FLARENET Reference Manual

Data Items List The data items that can be read for each data object are as follows:

Components Attribute Description

ID The component id number, -1 for hypotheticals

Name The component name (30 chars)

Type The component type (8 chars)

MolWt The component molecular weight

StdDensity The component standard density (kg/m3)

NBP The component boiling point (K)

WatsonK The component Watson K value

Pc The component critical pressure (bar a)

Tc The component critical temperature (K)

The component critical volume (m3/kgmole)

Vchar The component characteristic volume (m3/kgmole)

Omega The component acentric factor

Omega The component SRK acentric factor

The enthalpy A coefficient (kJ/kgmole)

Hb The enthalpy B coefficient (kJ/kgmole/K)

Hc The enthalpy C coefficient (kJ/kgmole/K2)

Hd The enthalpy C coefficient (kJ/kgmole/K3)

He The enthalpy C coefficient (kJ/kgmole/K4)

Hf The enthalpy C coefficient (kJ/kgmole/K5)

S The entropy coefficient

ViscA The viscosity A parameter

ViscB The viscosity B parameter

Vc

Ha

BIPs Attribute Description

PropPkg The code for the property package:

0 – Vapor pressure

1 – Peng Robinson

2 – Soave Redlich Kwong

3 – Compressible Gas

IPType The code for the interaction parameter type

1 – Bij

-1 – None

0 – Kij or Aij

2 – Cij

Comp1 The name of the first component (30 chars)

Comp2 The name of the second component (30 chars)

Kij12 Value of interaction parameter for comp1 / comp2

Kij21 Value of interaction parameter for comp2 / comp1

B File Format 295

Page 296: FLARENET Reference Manual

Connectors Attribute Description

Name The connector name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag 0 = not ignored, 1=ignored

UpstreamConnection The name of the upstream pipe (30 chars)

UpstreamConnectionAt The code for the upstream pipe connection point

0 = upstream end, 1 = downstream end

DownstreamConnnection The name of the downstream pipe (30 chars)

DownstreamConnnectionAt The code for the downstream pipe connection point

0 = upstream end, 1 = downstream end

Length Length of the swage (mm)

Theta The internal angle of the swage (radians)

FittingLossMethod Code for the fitting loss method

0 = ignored, 1 = calculated

Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

TwoPhaseCorrectionOption

ControlValves Attribute Description

Name The control valve name (30 chars)

Location The location text (30 chars)

DownstreamConnnection The name of the downstream pipe (30 chars)

DownstreamConnnectionAt The code for the downstream pipe connection point

0 = upstream end, 1 = downstream end

FlangeID Internal diameter of flange (mm)

Length The length of the inlet piping (m)

ElevationChange The elevation change of the inlet piping (m)

MaterialCode The code for the inlet pipe material

0 = Carbon Steel, 1 = Stainless steel

Roughness The inlet pipe roughness (mm)

NominalDiameter The inlet pipe nominal diameter (20 char text)

PipeSchedule The inlet pipe schedule (20 char text)

The inlet pipe diameter (mm)

UsePipeClass Code for enabling pipe class usage

0 = No, 1 = Yes

FittingLossOffset Fittings loss offset for inlet pipe

FittingLossFactor Fittings loss Ft factor for inlet pipe

InternalDiameter

B File Format 296

Page 297: FLARENET Reference Manual

FlowBleeds Attribute Description

Name The flow bleed name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag 0 = not ignored, 1=ignored

UpstreamConnection The name of the upstream pipe (30 chars)

UpstreamConnectionAt The code for the upstream pipe connection point

0 = upstream end, 1 = downstream end

The name of the downstream pipe (30 chars)

DownstreamConnnectionAt The code for the downstream pipe connection point

0 = upstream end, 1 = downstream end

PressureDrop Pressure drop over bleed (bar)

FlowOffset Bleed flow offset (kg/h)

FlowMultiplier Flow bleed multiplier

FlowMinimum Minimum bleed flow (kg/h)

FlowMaximum Maximum bleed flow (kg/h)

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

DownstreamConnnection

HorizontalSeparators Attribute Description

Name The horizontal separator name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag 0 = not ignored, 1=ignored

PrimaryInlet The name of the primary inlet pipe (30 chars)

PrimaryInletAt The code for the primary inlet pipe connection point

0 = upstream end, 1 = downstream end

SecondaryInlet The name of the secondary inlet pipe (30 chars)

SecondaryInletAt The code for the secondary inlet pipe connection point

0 = upstream end, 1 = downstream end

VapourOutlet The name of the vapor outlet pipe (30 chars)

VapourOutletAt The code for the vapor outlet pipe connection point

0 = upstream end, 1 = downstream end

Diameter The vessel diameter (mm)

LiquidLevel The liquid level (mm)

FittingLossMethod Code for fittings loss calculation

0 = Ignored, 1 = Calculated

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

continued

B File Format 297

Page 298: FLARENET Reference Manual

Attribute Description

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

BodyDimension Code for body area usage

0 = Full body area, 1 = Partial body area on flow

OrificePlates Attribute Description

Name The orifice plate name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag 0 = not ignored, 1=ignored

UpstreamConnection The name of the upstream pipe (30 chars)

UpstreamConnectionAt The code for the upstream pipe connection point

0 = upstream end, 1 = downstream end

DownstreamConnnection The name of the downstream pipe (30 chars)

DownstreamConnnectionAt The code for the downstream pipe connection point

0 = upstream end, 1 = downstream end

OrificeDiameter Diameter of orifice (mm)

UpstreamDiameterRatio Ratio of orifice to upstream diameter

DownstreamDiameterRatio Ratio of orifice to downstream diameter

FittingLossMethod Code for pressure loss method

0 = Ignored, 1 = Thin Plate, 2 = Contraction/Expansion

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition=

CompressibleTransition DP percent of inlet pressure for transition (%)

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

Pipes Attribute Description

Name The flow bleed name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag 0 = not ignored, 1=ignored

UpstreamConnection The name of the upstream node (30 chars)

UpstreamConnectionAt The code for the upstream node connection point

0,1,2 depending on upstream node

DownstreamConnnection The name of the downstream node (30 chars)

DownstreamConnnectionAt The code for the downstream pipe connection point

0,1,2 depending on downstream node

Code to identify tailpipe

0 = No, 1 = Yes

Length Pipe length (m)

ElevationChange Pipe elevation change (m)

TailPipe

continued

B File Format 298

Page 299: FLARENET Reference Manual

Attribute Description

MaterialCode Code for pipe material

0 = Carbon steel, 1 = Stainless steel

ThermalCond Pipe material thermal conductivity (W/m/C)

Pipe absolute roughness (mm)

InternalDiameter Pipe internal diameter (mm)

NominalDiameter Pipe nominal diameter (20 char text)

WallThickness Pipe wall thickness (mm)

PipeSchedule Pipe schedule (20 char text)

UsePipeClass Code for pipe class usage

0 = No, 1 = Yes

Sizeable Code for indicating sizeable pipe

0 = No, 1 = Yes

LengthMultiplier Multiplier for pipe length

FittingLossOffset Fittings loss offset

FittingLossFactor Fittings loss Ft factor

AmbientTemperature Temperature outside pipe (C)

WindSpeed Wind speed (m/s)

HeatTransfer Code to enable heat transfer calcs

0 = No, 1 = Yes

OutletTemperature Temperature leaving pipe (C)

Duty Heat transferred (kJ/h)

InsulationType Insulation description (30 chars)

InsulationThickness Insulation thickness (mm)

InsulationConductivity Insulation thermal conductivity (W/m/C)

VLEMethod Code for VLE method

0 = Default, 1 = Compressible Gas, 2 = Peng Robinson, 3 = Soave Redlich Kwong, 4 = Vapor Pressure

HorizontalPipeMethod Code for DP method for horizontal pipes

0 = Default, 1 = Isothermal gas, 2 – Adiabatic gas, 3 = Beggs&Brill, 4 = Dukler

InclinedPipeMethod Code for DP method for inclined pipes

0 = Default, 1 = Isothermal gas, 2 – Adiabatic gas, 3 = Beggs&Brill, 4 = Dukler

VerticalPipeMethod Code for DP method for vertical pipes

0 = Default, 1 = Isothermal gas, 2 – Adiabatic gas, 3 = Beggs&Brill, 4 = Dukler, 5 = Orkisewski

TwoPhaseElements Number of elements for pipe calculation

FrictionFactorMethod Code for friction factor method

0 = Default, 1 = Round, 2 = Chen

DampingFactor Damping factor

FittingsCount Number of fittings linked to this pipe

Roughness

B File Format 299

Page 300: FLARENET Reference Manual

Fittings

ReliefValves

Attribute Description

ItemName The name of the fitting (30 chars)

FittingDesc Description of the fitting (50 chars)

FittingKOffset Fitting loss constant

FittingKMultiplier Fitting loss Ft factor

Attribute Description

Name The relief valve name (30 chars)

Location The location text (30 chars)

DownstreamConnnection The name of the downstream pipe (30 chars)

DownstreamConnnectionAt The code for the downstream pipe connection point

0 = upstream end, 1 = downstream end

FlangeID Internal diameter of flange (mm)

MAWP Maximum allowable working pressure (bar a)

ValveType Type code for valve

0 = Balanced, 1 = Conventional

ValveCount Number of valves

AreaPerValve Area of each valve orifice (mm2)

MechanicalPressure Mechanical pressure limit (bar a)

OrificeType Standard type code for orifice (5 char text)

Length The length of the inlet piping (m)

ElevationChange The elevation change of the inlet piping (m)

MaterialCode The code for the inlet pipe material

0 = Carbon Steel, 1 = Stainless steel

The inlet pipe roughness (mm)

NominalDiameter The inlet pipe nominal diameter (20 char text)

PipeSchedule The inlet pipe schedule (20 char text)

InternalDiameter The inlet pipe diameter (mm)

UsePipeClass Code for enabling pipe class usage

0 = No, 1 = Yes

FittingLossOffset Fittings loss offset for inlet pipe

FittingLossFactor Fittings loss Ft factor for inlet pipe

Roughness

B File Format 300

Page 301: FLARENET Reference Manual

Tees Attribute Description

Name The tee name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag

0 = not ignored, 1=ignored

UpstreamConnection The name of the upstream pipe (30 chars)

UpstreamConnectionAt The code for the upstream pipe connection point

0 = upstream end, 1 = downstream end

BranchConnection The name of the branch pipe (30 chars)

BranchConnectionAt The code for the branch pipe connection point

0 = upstream end, 1 = downstream end

DownstreamConnection The name of the downstream pipe (30 chars)

DownstreamConnectionAt The code for the downstream pipe connection point

0 = upstream end, 1 = downstream end

AngleIndex Code for branch angle

0 = 30 deg, 1 = 45 deg, 2 = 60 deg, 3 = 90 deg

FittingLossMethod Code for fittings loss calculation

0 = Ignored, 1 = Simple, 2 = Miller

BodyType Code for body type

0 = Run, 1 = Tail, 2 = Branch, 3 = Auto

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

BodyDimension Code for body area usage

0 = Full body area, 1 = Partial body area on flow

ConnectorIfIncomplete Code to use connector calc

0 = No, 1 = Yes

B File Format 301

Page 302: FLARENET Reference Manual

Tips Attribute Description

Name The tip name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag

0 = not ignored, 1=ignored

UpstreamConnection The name of the upstream pipe (30 chars)

UpstreamConnectionAt The code for the upstream pipe connection point

0 = upstream end, 1 = downstream end

Diameter Diameter of flare (mm)

FittingLoss Fittings loss coefficient

FittingLossBasis Code for fittings loss basis

0 = Total pressure, 1 = static pressure

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

UseCurves Code for curve usage

0 = No, 1 = Yes

ReferenceTemperature Reference temperature for curve data (C)

NumCurves Number of pressure drop curves

TipCurves Attribute Description

TipName The name of the top (30 chars)

CurveMolWt The reference molecular weight for the curve

CurveNumPoints The number of points in the curve

TipCurveData Attribute Description

CurveMolWt The mole weight of the curve

CurveDataPointNo The number of the curve data point

CurveMassFlow The mass flow for the curve data point (kg/h)

CurvePressureDrop The pressure drop for the curve data point (bar)

B File Format 302

Page 303: FLARENET Reference Manual

VerticalSeparators Attribute Description

Name The vertical separator name (30 chars)

Location The location text (30 chars)

Ignored The ignored flag

0 = not ignored, 1=ignored

PrimaryInlet The name of the primary inlet pipe (30 chars)

PrimaryInletAt The code for the primary inlet pipe connection point

0 = upstream end, 1 = downstream end

VapourOutlet The name of the vapor outlet pipe (30 chars)

VapourOutletAt The code for the vapor outlet pipe connection point

0 = upstream end, 1 = downstream end

Diameter The vessel diameter (mm)

FittingLossMethod Code for fittings loss calculation

0 = Ignored, 1 = Calculated

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

Scenarios Attribute Description

Name The scenario name (30 chars)

Pressure System back pressure (bar a)

HeaderMach Header mach number limit

HeaderVapVel Header vapor velocity limit (m/s)

HeaderLiqVel Header liquid velocity limit (m/s)

HeaderRV2 Header momentum limit (kg/m/s2)

HeaderNoise Header noise limit (dB)

TailPipeMach Tailpipe mach number limit

TailPipeVapVel Tailpipe vapor velocity limit (m/s)

TailPipeLiqVel Tailpipe liquid velocity limit (m/s)

TailPipeRV2 Tailpipe momentum limit (kg/m/s2)

TailPipeNoise Tailpipe noise limit (dB)

B File Format 303

Page 304: FLARENET Reference Manual

SolverOptions Attribute Description

Tag Fixed text “Solver Options”

AllScenarios Code to indicate which scenarios are calculated

0 – Current, 1 – All, 2 – Selected

EchoLoops Are loop calcs echoed

0 = No, 1 = Yes

CheckChoke Check for choke flow

0 = No, 1 = Yes

IterationsProperties Number of iterations in inner (properties) loop

PresTolProperties Pressure tolerance in properties loop (%)

MassTol Mass balance tolerance in outer loop (%)

DamperProperties Damping factor for inner (properties) loop

AmbientTemperature External temperature (C)

AtmosphericPressure Atmospheric pressure (bar a)

WindSpeed Wind velocity (m/s)

LengthMultiplier Pipe length multiplication factor

Mode Code for calculation mode

0 = Rating, 1 = Design, 2 = Debottleneck

RatedFlow Use rated flow for tailpipes

0 = No, 1 = Yes

HeatTransfer Enable heat transfer calculations

0 = No, 1 = Yes

Vle Code for VLE method

0 = Compressible gas, 1 = Peng Robinson, 2 = Soave Redlich Kwong, 3 = Vapor Pressure

Enthalpy Code for enthalpy method

0 = Ideal gas, 1 = PengRobinson, 2 = Soave Redlich Kwong, 3 = Lee Kesler

Horizontal Code for horizontal pressure drop method

0 = Isothermal gas, 1 = Adiabatic Gas, 2 = Beggs&Brill 3 = Dukler

Inclined Code for inclined pressure drop method

0 = Isothermal gas, 1 = Adiabatic Gas, 2 = Beggs&Brill 3 = Dukler

Vertical Code for vertical pressure drop method

0 = Isothermal gas, 1 = Adiabatic Gas, 2 = Beggs&Brill 3 = Dukler, 4 = Orkisewski

Elements Number of elements for two phase calculations

FrictionFactor Code for friction factor method

0 = Round, 1 = Chen

Choke Code for choke calculation method

0 = Simple, 1 = HEM

MinTemp1 Minimum allowed temperature for carbon steel (C)

MinTemp2 Minimum allowed temperature for stainless steel (C)

MaxTemp1 Maximum allowed temperature for carbon steel (C)

MaxTemp2 Maximum allowed temperature for stainless steel (C)

InitPres Initial pressure for property calculations (bar a)

continued

B File Format 304

Page 305: FLARENET Reference Manual

Attribute Description

UpdateEstimates Update flow estimates from solution 0 = No, 1 = Yes

PresTolUnitOps Pressure tolerance for unit operation calculations (%)

PresTolLoops Pressure tolerance for loop calculations (%)

IterationsLoops Number of iterations for loop calculations

DamperLoops Damping factor for loop calculations

CalcIgnoredSources Calculate ignored sources as zero flow 0 = No, 1 = Yes

IgnoreSizeChange Ignore valve flange size change in design calcs

0 = No, 1 = Yes

MabpInactive Check MABP for inactive sources

0 = No, 1 = Yes

LoopMethod Select loop convergence method

0=Newton Raphson, 1=Broyden, 2=Force Convergent

LoopAnalyser Select analyzer for looped systems

0 = Convergent, 1 = Simultaneous

UseKineticEnergy Include kinetic energy

0 = No, 1 = Yes

KineticEnergyBasis Code for kinetic energy basis

0 = Inlet Pipe Velocity, 1 = Zero velocity

IgnoreSepKineticEnergy Ignore kinetic energy in separators

0 = No, 1 - Yes

SourceData Attribute Description

ScenarioName The name of the scenario (30 chars)

SourceName The name of the source (30 chars)

Ignored The ignored flag

0 = not ignored, 1=ignored

MassFlow Mass flow of the source (kg/h)

RatedFlow Rated flow of the source (kg/h)

RelievingPressure Relieving pressure of source (bar a)

TemperatureFlag The code for inlet temperature specification

0 = Actual, 1 = Superheat, 2 = Subcool

InletTemperatureSpec Inlet temperature value (C)

AllowableBackPressure Maximum allowable back pressure (bar a)

OutletTemperature Outlet temperature (C)

VLEMethod Code for VLE method

0 = Model default, 1 = Compressible gas, 2 = Peng Robinson, 3 = Soave Redlich Kwong, 4 = Vapor Pressure

FittingLossMethod Code for fitting loss calculation

0 = Ignored, 1 = Calculated

TwoPhaseCorrectionOption Code for two phase correction option

0 = No, 1 = Yes

SwageMethod Code for size change calculation method

0 = Compressible, 1 = Incompressible, 2 = Transition

CompressibleTransition DP percent of inlet pressure for transition (%)

continued

B File Format 305

Page 306: FLARENET Reference Manual

Attribute Description

IsothermalDPOption Code for enabling isothermal pressure drop calcs

0 = No, 1 = Yes

SizingMethod Code for PSV sizing method

0 = API, 1 = HEM

ContingencyFlag Code for sizing contingency

0 = Operating, 1 = Fire

HemCd Cd for HEM sizing method

LockRatedFlow Auto update of rated flow

0 = No, 1 = Yes

LockMABP Auto update of MABP 0 = No, 1 = Yes

LockReliefPressure Auto update of relieving pressure 0 = No, 1 = Yes

FluidType Code for fluid type

0 = HC, 1 = Misc, 2 = Amine, 3 = Alcohol, 4 = Ketone, 5 = Aldehyde, 6 = Ester, 7 = Carbacid, 8 = Halogen, 9 = Nitrile, 10 = Phenol, 11 = Ether

MolWt Fluid mole weight

CompositionBasis Code for composition input basis

0 = MolWt, 1 = Mole fraction, 2 = Mass fraction

Composition Attribute Description

ScenarioName The name of the scenario (30 chars)

SourceName The name of the source (30 chars)

CompositionBasis Code for composition input basis

0 = MolWt, 1 = Mole fraction, 2 = Mass fraction

Fraction Individual component fraction

ScenarioName Name of the scenario (30 chars)

SegmentName Name of the pipe segment (30 chars)

NoTear Selects whether pipe segment can be a tear object in looped system

0 = No, 1 = Yes

FlowEstimate Estimated flow rate for the pipesegment (kgmole/hr)

MaxStep Maximum change in pipe flow allowed in a single solver iteration (kgmole/hr)

MaxFlow Maximum flow allowed for this pipe segment (kgmole/hr)

MinFlow Minimum flow allowed for this pipe segment (kgmole/hr)

PFDLayout Attribute Description

ItemName The name of the PFD item (30 chars)

XPosition The X coordinate of the item

YPosition The Y coordinate of the item

LabelXPosition The X coordinate of the item label

LabelYPosition The X coordinate of the item label

Rotation Code for icon rotation 0 = None, 1 = Rotate 90, 2 = Rotate 180, 3 = Rotate 270, 4 = Flip X, 5 = Rotate 90 + Flip Y, 6 = Flip Y, 7 = Rotate 90 + Flip X

B File Format 306

Page 307: FLARENET Reference Manual

PFSummary Attribute Description

ScenarioName The name of the scenario (30 chars)

SegmentName The name of the pipe segment (30 chars)

The mass flow (kg/h)

The rated flow (kg/h)

The mole flow (kgmole/h)

Pressure drop over pipe (bar)

SourcePressure Pressure of attached source node (bar a)

DPFriction Pressure drop due to friction (bar)

DPElevation Pressure drop due to elevation change (bar)

DPAcceleration Pressure drop due to acceleration (bar)

DPFittings Pressure drop due to fittings (bar)

Noise Noise (dB)

FrictionFactor Friction factor

ReynoldsNo Reynolds number

EquivalentLength Equivalent length (m)

Duty Heat transferred (kJ/h)

HTC Overall heat transfer coefficient (W/m2/C)

HTCExternal External heat transfer coefficient (W/m2/C)

HTCInternal Internal heat transfer coefficient (W/m2/C)

WallTemperature

MassFlow

RatedFlow

MoleFlow

PressureDrop

Temperature of pipe wall (C)

EndResults Attribute Description

ScenarioName The name of the scenario (30 chars)

SegmentName The name of the pipe segment (30 chars)

Pressure at upstream end of pipe (bar a)

UpstreamTemperature Temperature at upstream end of pipe (C)

UpstreamVelocity Velocity at upstream end of pipe (m/s)

UpstreamMach Mach number at upstream end of pipe

UpstreamRhoV2 Momentum at upstream end of pipe (kg/m/s2)

UpstreamEnergy Energy at upstream end of pipe (kJ/h)

UpstreamFlowRegime Flow regime at upstream end of pipe (20 chars)

DownstreamPressure Pressure at downstream end of pipe (bar a)

Temperature at downstream end of pipe (C)

DownstreamVelocity Velocity at downstream end of pipe (m/s)

DownstreamMach Mach number at downstream end of pipe

DownstreamRhoV2 Momentum at downstream end of pipe (kg/m/s2)

DownstreamEnergy Energy at downstream end of pipe (kJ/h)

DownstreamFlowRegime Flow regime at downstream end of pipe (20 chars)

UpstreamPressure

DownstreamTemperature

B File Format 307

Page 308: FLARENET Reference Manual

CompResults Attribute Description

ScenarioName The name of the scenario (30 chars)

SegmentName The name of the pipe segment (30 chars)

MolWt The molecular weight of the fluid

Fraction The mole fraction of each component

StreamProps Attribute Description

ScenarioName The name of the scenario (30 chars)

SegmentName The name of the pipe segment (30 chars)

UpstreamDensity Density at upstream end of pipe (kg/m3)

UpstreamEnthalpy Energy at upstream end of pipe (kJ/kgmole)

UpstreamEntropy Entropy at upstream end of pipe (kJ/kgmole/K)

UpstreamHeatCapacity Heat capacity at upstream end of pipe (kJ/kgmole/K)

UpstreamMolWt Mol Wt at upstream end of pipe

UpstreamSurfaceTension Surface tension at upstream end of pipe (dyne/cm)

UpstreamThermConductivity Thermal cond. at upstream end of pipe (W/m/K)

UpstreamViscosity Viscosity at upstream end of pipe (cP)

UpstreamZFactor Z Factor at upstream end of pipe

DownstreamDensity Density at downstream end of pipe (kg/m3)

DownstreamEnthalpy Energy at downstream end of pipe (kJ/kgmole)

DownstreamEntropy Entropy at downstream end of pipe (kJ/kgmole/K)

DownstreamHeatCapacity Heat capacity at downstream end of pipe (kJ/kgmole/K)

DownstreamMolWt Mol Wt at downstream end of pipe

DownstreamSurfaceTension Surface tension at downstream end of pipe (dyne/cm)

DownstreamThermConductivity Thermal cond. at downstream end of pipe (W/m/K)

DownstreamViscosity Viscosity at downstream end of pipe (cP)

DownstreamZFactor Z Factor at downstream end of pipe

PhaseProps Attribute Description

ScenarioName The name of the scenario (30 chars)

The name of the pipe segment (30 chars)

SegmentEnd End of the pipe segment

Phase Phase description (25 chars)

Density of the phase (kg/m3)

Enthalpy Energy of the phase (kJ/kgmole)

Entropy Entropy of the phase (kJ/kgmole/K)

Phase Fraction Fraction of the phase

HeatCapacity Heat capacity of the phase (kJ/kgmole/K)

MolWt Mol Wt of the phase

SurfaceTension Surface tension of the phase (dyne/cm)

ThermConductivity Thermal conductivity of the phase (W/m/K)

Viscosity Viscosity of the phase (cP)

ZFactor Z Factor of the phase

SegmentName

Density

B File Format 308

Page 309: FLARENET Reference Manual

FMT Files Format The printouts can be customized to a limited extent using a series of ASCII text files with the extension “.fmt”. These files may be edited using any ASCII text editor such as the NOTEPAD application distributed with Microsoft Windows.

The default “.fmt” files for each printed report are:

Report “.fmt” file

Component Data Comps.fmt

Component Database DbComps.fmt

Compositions MoleFrac.fmt

Fittings Database DbFittings.fmt

Messages Messages.fmt

Node Data Node.fmt

Pipes Data Pipes.fmt

Physical Properties Properties.fmt

Pipe Schedule Database DbSchedules.fmt

Pressure/Flow Summary Summary.fmt

Scenarios Data Scenarios.fmt

Scenarios Summary ScenSum.fmt

Sources.fmt Source Data

By default, these files are located in the FLARENET program directory. You can change the location and “.fmt“ file for each report on the Reports tab on the Preferences Editor view.

Fig B.1

B File Format 309

Page 310: FLARENET Reference Manual

These files confirm to the following format, here shown for part of the DbSchedules.fmt file.

Variable Description

version 1 File format version. DO NOT CHANGE.

5 Number of variables to display

6 Font Size (Point)

Arial Font Name

schedule,20.0,0

nominal,20.0,1

internal,20.0,1

wall,20.0,1

group,20.0,1

Variable Name,width (mm), repeat flag (0 = All panes, 1 = Once only), extend flag (0 = no, 1 = yes), alignment flag (0 = left, 1 = center, 2 = right)

The following defines which variable may be printed with each report:

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Pro

pert

ies.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

Sce

nS

um

.fm

t

So

urc

es.

fmt

ambient Ambient Temperature

x

angle Angle To Horizontal

backpres Back Pressure x

basis Composition Basis

x

calcloss Autocalculated Fittings Loss Equation

calculations Node Run, Branch and Tail Segment

x

class Pipe Class x

comps Mole Fractions x x

connections x

count Number Of Items

damp Damping Factor

density Standard Liquid Density

x x

densitydown Downstream Density

x

continued

B File Format 310

Page 311: FLARENET Reference Manual

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Pro

pert

ies.

fmt

So

urc

es.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

Sce

nS

um

.fm

t

densityup Upstream Density

x

desc Description x

dsn Downstream Node

x

Heat Loss x

elevation Elevation Change

x

energy Energy x

energydown Downstream Energy Flow

x

energyup Upstream Energy Flow

x

Enthalpy x

enthalpydown Downstream Enthalpy

x

enthalpyup Upstream Enthalpy

x

entropy Entropy x

entropydown Downstream Entropy

x

entropyup Upstream Entropy

x

equivlength Equivalent Length

factor Rated Flow factor

fitloss Fittings Loss Equation

fittingsa Fitting Loss A x

fittingsb Fitting Loss B x

fittingsuse x

flange Flange Diameter x

flow Mass flow

fractiondown Downstream Phase Fraction

x

fractionup Upstream Phase Fraction

x

Friction Factor x

group Item Group x

Mach No.

duty

enthalpy

frictionfractor

headmach Header x

continued

B File Format 311

Page 312: FLARENET Reference Manual

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Pro

pert

ies.

fmt

Sce

nS

um

.fm

t

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

So

urc

es.

fmt

headvelvap Header Vapor Velocity

x

headvelliq Header Liquid Velocity

x

headrhov2 Header Rho V2 x

headnoise Header Noise x

heatcapdown Downstream Heat Capacity

x

heatcapup Upstream Heat Capacity

x

hia Enthalpy A Coefficient

x x

B Coefficient

x x

hic Enthalpy C Coefficient

x x

hid Enthalpy D Coefficient

x x

hie Enthalpy E Coefficient

x x

hif Enthalpy F Coefficient

x x

htc Heat Transfer Coefficient

Overall HTC x

htcexternal External HTC x

htcinternal Internal HTC x

id Item ID x

ignored Item Ignored x x

insname Insulation Description

x

Insulation Thickness

x

insconductivity Insulation Conductivity

x

internal Internal Diameter

x x

length Segment Length x

lmultiply Length Multiplier x

location Segment Location

x

machdown Downstream Mach Number

x

hib Enthalpy

htcoverall

insthick

continued

B File Format 312

Page 313: FLARENET Reference Manual

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Pro

pert

ies.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

Sce

nS

um

.fm

t

So

urc

es.

fmt

machup Upstream Mach Number

x

Mass Flow x x

material Material Of Construction

x

methoddamping

Damping Factor x

methoddp Pressure Drop Method

methodelements

Twp Phase Elements

x

methodfriction Friction Factor x

Fittings Loss Method

x

methodhordp Horizontal 2 Phase Pressure Drop Method

x

methodincdp Inclined Pressure Drop

x

methodverdp Vertical 2 Phase Pressure Drop Method

x

methodvle VLE method x x

molarflow Molar Flow x

moleflow Source Molar Flow

molwt Molecular Weight

x x x x

molwtdown Downstream Molecular Weight

x

molwtup Upstream Molecular Weight

x

msg Text Message

multiply Fittings Equation Multiplier

x

Item Name x x x x x x x x x

nbp Normal Boiling Point

x x

node Node x x

noise Noise x

massflow

methodfitlos

name x

continued

B File Format 313

Page 314: FLARENET Reference Manual

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Pro

pert

ies.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

Sce

nS

um

.fm

t

So

urc

es.

fmt

Nominal Pipe Diameter

x x

number Index Number

Maximum Flow Offtake

Minimum Flow Offtake

offmultiply Offtake Flow Multiplier

offrate Offtake Flow Offset

offset Fittings Equation Offset

x

omega Acentric Factor x x

omegasrk SRK Acentric Factor

x x

pc Critical Pressure x x

phase Phase Label x

plant Source Plant Location

pressource Static Source Back Pressure

x

presallow Allowable Back Pressure

x

presdown Downstream Static Pressure

x

presdrop Pressure Drop x

presdropfriction

Static Pipe Friction Loss

x

presdropacceleration

Static Pipe Acceleration Loss

x

presdropelevation

Static Pipe Elevation Loss

x

presdropfittings

Static Pipe Fittings Loss

x

presin Inlet Pressure x

presup Upstream Static Pressure

x

property Property Description

x

ratedflow Rated Mass Flow x

refer Literature Reference

x

nominal

x

offmaximum

offminimum

continued

B File Format 314

Page 315: FLARENET Reference Manual

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Pro

pert

ies.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

Sce

nS

um

.fm

t

So

urc

es.

fmt

regime Flow Regime x

resize Resizable Flag x

reynolds Reynolds Number

x

rhov2up Upstream Rho V2

x

rhov2down Downstream Rho V2

x

roughness Wall roughness x

scenario Scenario Name x

schedule Pipe Schedule x x

seg1 Node Run Segment

x

seg2 Node Branch Segment

x

seg3 Node Tail Segment

x

separate Separator Flag

si Entropy Coefficient

x

source Source Name

status Ignored Status Flag

surftendn Downstream Surface Tension

x

surftenup Upstream Surface Tension

x

tailmach Tailpipe Mach No.

x

tailnoise Tailpipe Noise x

tailpipe Tailpipe Flag x

tailrhov2 Tailpipe Rho V2 x

tailvelliq Tailpipe Liquid Velocity

x

tailvelvap Tailpipe Vapor Velocity

x

tc Critical Temperature

x x

temp Temperature

tempcalc Inlet Temperature Calculations

x

continued

B File Format 315

Page 316: FLARENET Reference Manual

Variable Name Variable Description

Co

mp

s.fm

t

Db

Co

mp

s.fm

t

Mo

leFra

cs.f

mt

Db

Fit

tin

gs.

fmt

Mess

ag

es.

fmt

No

des.

fmt

Pip

es.

fmt

Pro

pert

ies.

fmt

Db

Sch

ed

ule

s.f

mt

Su

mm

ary

.fm

t

Sce

nari

os.

fmt

Sce

nS

um

.fm

t

So

urc

es.

fmt

tempdown Downstream Temperature

x

tempout Outlet Temperature

x x

tempspec Inlet Temperature Specification

x

tempup Upstream Temperature

x

thermconddn Downstream Thermal Conductivity

x

thermcondup Upstream Thermal Conductivity

x

type Item Type x x x x

usn Upstream Node x

vapourfrac Source Vapor Fraction

x

vc Critical volume x x

vchar Characteristic Volume

x x

veldn Downstream Velocity

x

velup Upstream Velocity

x

visca Viscosity A Coefficient

x x

viscb Viscosity B Coefficient

x x

viscdown Downstream Viscosity

x

viscup Upstream Viscosity

x

volume Pipe volume

wall Wall Thickness x x

watson Watson Characterisation Parameter

x x

wind Wind Velocity x

zfactordown Downstream Compressibility Factor

x

zfactorup Upstream Compressibility Factor

x

B File Format 316

Page 317: FLARENET Reference Manual

C References

1 “GPSA Engineering Data Book”.

2 “chemical Engineering Volume 1”, 2nd Edition, J. M Coulson and J. F. Richardson, Pergamon Press.

3 “Viscosity of Gases And Mixtures”, I. F. Golubev, National Technical Information Services, TT7050022, 1959.

4 "Chemical Process Computations 1, Chemical Engineering-Data Processing", Raman, Raghu, Elsevier Applied Science Publishers Ltd, 1985.

5 "Journal Of Physics", 3 ,263 , D. J. Berthalot.

6 "Technical Data Book-Petroleum Refining", American Petroleum Institute, 1977.

7 Ely, J.F. and Hanley, H.J.M., "A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures", NBS Technical Note 1039 (1983).

8 Hankinson, R.W., and Thompson, G.H., AIChE J., 25, 653 (1979).

13 API Technical Data Book - Volume 1 , 1983, American Petroleum Institute.

9 Beggs, H.D., and Brill, J.P., "A Study of Two-Phase Flow in Inclined Pipes", J. Petrol. Technol., p. 607, May (1973).

10 Gas Conditioning and Processing, Volume 3, Robert N. Maddox and Larry L. Lilly, 1982 by Campbell Petroleum Series (second edition, 1990).

11 Orkiszewski, J., Journal of Petroleum Technology, B29-B38, June, 1967.

12 Gas Conditioning and Processing, Volume 3, Robert N. Maddox and Larry L. Lilly, 1982 by Campbell Petroleum Series (second edition, 1990).

14 Hankinson, R.W. and Thompson, G.H., A.I.Ch.E. Journal, 25, No. 4, p.653 (1979).

15 Reid, R.C., Prausnitz, J.M., Poling, B.E., "The Properties of Gases &Liquids", McGraw-Hill, Inc., 1987.

16 Ely, J.F. and Hanly, H.J.M., "A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures", NBS Technical Note 1039.

17 Pausnitz, J.M., Lichtenthaler, R.N., Azevedo, E.G., "Molecular Thermodynamics of Fluid Phase Equilibria", 2nd. Ed., McGraw-Hill, Inc. 1986.

18 Twu, C.H., IEC. Proc Des & Dev, 24, p. 1287 (1985).

C References 317

Page 318: FLARENET Reference Manual

19 Woelfin, W., "Viscosity of Crude-Oil Emulsions", presented at the spring meeting, Pacific Coast District, Division of Production, Los Angeles, Calif., Mar. 10, 1942.

20 Gambill, W.R., Chem Eng., March 9, 1959.

21 Chen, N.H., "An Explicit Equation for Friction Factor in Pipe", Ind. Eng. Chem. Fund., 18, 296, 1979.

22 API Recommended Practice 520, “Sizing, Selection, and Installation of Pressure - Relieving Devices in Refineries”, Part I, 6th. Ed., American Petroleum Institute, March, 1993

23 API Recommended Practice 521, “Guide for Pressure-Relieving and Depressuring Systems”, 3rd. Ed., American Petroleum Institute, November, 1990

24 Leung, J.C., "Easily Size Relief Devices and Piping for Two-Phase Flow", Chem. Eng. Prog., p. 28, December, 1996.

25 “Miller, D.M., "Internal Flow Systems", 2nd. Ed., BHR Group Limited, 1990.

26 “Flow of Fluids Through Valves, Fittings and Pipe” Crane Technical Paper 410M. 1988.

27 “PIPE 3, Single and Two-Phase Pressure Drop Calculations in Pipeline Systems”, HTFS Design Report 38, 1996.

C References 318

Page 319: FLARENET Reference Manual

D Glossary of Terms

Adiabatic Flow Adiabatic flow is the constant enthalpy flow of a fluid in a pipe.

Choked Flow The velocity of a fluid in a pipe of constant cross sectional area cannot exceed the sonic velocity of the fluid. If the flow of fluid in a pipe is great enough that the sonic velocity is reached, then a pressure discontinuity is seen at the exit end of the pipe.

Critical Pressure The critical pressure is the pressure at which the vapor density and liquid density of a substance may be the same.

Critical Temperature The critical temperature is the temperature at which the vapor density and liquid density of a substance may be the same.

Dongle See Security Device.

Equivalent Length The equivalent length of a pipe is the straight length of pipe which would create the same pressure drop as the actual pipe length plus losses due to bends and fittings.

D Glossary of Terms 319

Page 320: FLARENET Reference Manual

Isothermal Flow Isothermal flow is the constant temperature flow of a fluid in a pipe. In general when the pressure of a gas reduces, there is a small change in temperature. This assumption leads to a small error in the calculated pressure profile. In practice for pipes of length at least 1000 diameters, this difference does not exceed 5% and in fact never exceeds 20%.

MABP

In general the MABP for a balanced pressure relief valve should not exceed 40% of the set pressure at 10% overpressure.

Reduced pressure is the ratio of the absolute pressure to the critical pressure of the fluid.

The Maximum Allowable Back Pressure on a relief device is the maximum pressure that can exist at the outlet of the device without affecting the capacity of the device.

In general the MABP for a conventional pressure relief valve should not exceed 10% of the set pressure at 10% overpressure.

Mach Number Mach number is the ratio of the fluid velocity to the sonic velocity in the fluid.

Node Nodes define the connection points between pipes, and pipes with sources. Each node must have a unique name.

Reduced Pressure

Reduced Temperature Reduced temperature is the ratio of the absolute temperature to the critical temperature of the fluid.

D Glossary of Terms 320

Page 321: FLARENET Reference Manual

Scenario A scenario represents a set of flow and compositional data for all sources in the system. It may also represent a particular set of limiting operating conditions.

Schedule The schedule of a pipe defines a standard thickness for a given nominal pipe size. In general, flare and vent systems are constructed from schedule 40 or 80 pipe.

Security Device The hardware device that is connected to the parallel port of the computer.

Source A source refers to a fluid entering the piping network regardless of the type of pipe fitting from which it enters. the fluid is defined in terms of its composition, mass flowrate, pressure and temperature.

Static Pressure The pressure acting equally in all directions at a point in the fluid.

Physical properties are calculated at the static pressure condition.

Tailpipe The section of pipe between the discharge flange of the source valve and the main collection header is generally referred to as a tailpipe.

Total Pressure The sum of the static and velocity pressures.

D Glossary of Terms 321

Page 322: FLARENET Reference Manual

Velocity Pressure Given by

2ρU2

, also called the kinematic pressure.

D Glossary of Terms 322

Page 323: FLARENET Reference Manual

General Information

This section provides Copyright details and lists any other documentation related to this release.

Copyright Version Number: 2004

November 2004

Copyright 1981 - 2004 Aspen Technology, Inc. All rights reserved.

FLARENET™, Aspen Custom Modeler®, ACOL™, ACX™, APLE™, Aspen Adsim™, Aspen Aerotran™, Aspen CatRef®, Aspen Chromatography®, Aspen Decision Analyzer™, Aspen Dynamics®, Aspen Enterprise Engineering™, Aspen FCC®, Aspen Hetran™, Aspen Hydrocracker®, Aspen Hydrotreater™, Aspen Icarus Process Evaluator™, Aspen Icarus Project Manager™, Aspen Kbase™, Aspen Plus®, Aspen Plus® HTRI®, Aspen OLI™, Aspen OnLine®, Aspen PEP Process Library™, Aspen Plus BatchFrac™, Aspen Plus Optimizer™, Aspen Plus RateFrac™, Aspen Plus SPYRO®, Aspen Plus TSWEET®, Aspen Split™, Aspen WebModels™, Aspen Pinch®, Aspen Properties™, Aspen SEM™, Aspen Teams™, Aspen Utilities™, Aspen Water™, Aspen Zyqad™, COMThermo®, COMThermo TRC Database™, DISTIL™, DISTIL Complex Columns Module™, FIHR™, FRAN™, HX-Net®, HX-Net Assisted Design Module™, Hyprotech Server™, HYSYS®, HYSYS Optimizer™, ACM Model Export™, HYSYS Amines™, HYSYS Crude Module™, HYSYS Data Rec™, HYSYS DMC+ Link™, HYSYS Dynamics™, HYSYS Electrolytes™, HYSYS Lumper™, HYSYS Neural Net™, HYSYS Olga Transient™, HYSYS OLGAS 3-Phase™, HYSYS OLGAS™, HYSYS PIPESIM Link™, HYSYS Pipesim Net™, HYSYS PIPESYS™, HYSYS RTO™, HYSYS Sizing™, HYSYS Synetix Reactor Models™, HYSYS Tacite™, HYSYS Upstream™, HYSYS for Ammonia Plants™, MUSE™, PIPE™, Polymers Plus®, Process Manuals™, Process Tools™, ProFES 2P Tran™, ProFES 2P Wax™, ProFES 3P Tran™, ProFES Tranflo™, STX™, TASC-Thermal™, TASC-Mechanical™, the aspen leaf logo and Enterprise Optimization are trademarks or registered trademarks of Aspen Technology, Inc., Cambridge, MA.

All other brand and product names are trademarks or registered trademarks of their respective companies.

General Information 323

Page 324: FLARENET Reference Manual

This document is intended as a guide to using AspenTech's software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license agreement. Users are solely responsible for the proper use of the software and the application of the results obtained.

Although AspenTech has tested the software and reviewed the documentation, the sole warranty for the software may be found in the applicable license agreement between AspenTech and the user. ASPENTECH MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS DOCUMENTATION, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Corporate

Aspen Technology, Inc. Ten Canal Park Cambridge, MA 02141-2201 USA Phone: (1) (617) 949-1000 Toll Free: (1) (888) 996-7001 Fax: (1) (617) 949-1030 URL: http://www.aspentech.com/

Related Documentation Title Content

FLARENET Getting Started Guide Tutorials covering the basic use of FLARENET

General Information 324

Page 325: FLARENET Reference Manual

Technical Support

Online Technical Support Center AspenTech customers with a valid license and software maintenance agreement can register to access the Online Technical Support Center at:

http://support.aspentech.com

You use the Online Technical Support Center to:

• Access current product documentation.

• Search for technical tips, solutions, and frequently asked questions (FAQs).

• Search for and download application examples.

• Service Pack announcements.

• Search for and download service packs and product updates.

• Submit and track technical issues.

• Search for and review known limitations.

• Send suggestions.

Registered users can also subscribe to our Technical Support e-Bulletins. These e-Bulletins proactively alert you to important technical support information such as:

• Technical advisories.

• Product updates.

• Product release announcements.

Technical Support 325

Page 326: FLARENET Reference Manual

Phone and E-mail Customer support is also available by phone, fax, and e-mail for customers who have a current support contract for their product(s). Toll-free charges are listed where available; otherwise local and international rates apply.

For the most up-to-date phone listings, please see the Online Technical Support Center at:

http://support.aspentech.com

Support Centers Operating Hours

North America 8:00 – 20:00 Eastern time

South America 9:00 – 17:00 Local time

Europe 8:30 – 18:00 Central European time

Asia and Pacific Region 9:00 – 17:30 Local time

Technical Support 326

Page 327: FLARENET Reference Manual

Index

A

definition 319

Case

Column Order

changing 16

selection filter 33

type 32

Component Editor View

Components 31

Critical Temperature

viewing 124

Acentric Factor 272, 278

Adiabatic Flow

Automation 215

B

Berthalot Equation 274

Toolbar 14

C

Calculation Options Editor 99

General tab 99

Methods tab 103

Warnings tab 106

Calculation Problems group 107

Sizing Status group 107

Calculations 99

opening an existing 29

saving a 30

Case Description View 27

Changing Column Order 17

Chen Equation 256

Choked Flow

definition 319

changing 17

Column Width

Comma Separated Values 169

Component

list 32

selecting 32

matching name string 32

sorting 38

swapping 38

estimating unknown properties 37

Component Manager View 31

Control Valve 80

Control Valve Editor

Connections tab 80, 88

COSTALD Calculations 274

Creating and Saving Cases 27

Critical Pressure

definition 319

definition 319

CSV

See Comma Separated Values 169

D

Darcy Friction Factor 256

Data

sources 126

Database Editor

Index 327

Page 328: FLARENET Reference Manual

component 122

fittings 121

pipe schedule 119

Database Features

Step 2 191

Step 3 192

Flare Tip Editor

laminar 256

Flow Bleed Editor

Connections tab 66

H

Importing HYSYS Source Data 187

Mach Number

Multiple Editing 59

adding/deleting data 118

selection filter 117

Dongle

See Security Device 319

E

Equation

Berthalot 274

Chen 256

Round 255

SRK 272

Equivalent Length

definition 319

Export Wizard 189

Export Data Layouts 189

Step 1 190

Step 4 196

Using 189

F

Calculations tab 96, 97

Flow

mist 261

transition 256, 259, 261

turbulent 255

FMT Files 170

Froude Number 257

Horizontal Separator Editor

Connections tab 68

Hysim 168

I

Import Wizard

Importing Source Data 182

Step 1 174

Step 3 177

Step 4 181

Using 174

Import/Export Examples 198

Importing

ASCII text files 183

from HYSIM 182

HYSYS source data 187

Interface 10

Terminology 11

Tool Bar 14

Isothermal Flow

definition 320

M

MABP

definition 320

definition 320

Moody Friction Factor 255

N

Network

rating an existing 112

Node

definition 320

Node Manager 61

Index 328

Page 329: FLARENET Reference Manual

Node Types

flare tip 95

flow bleed 65

sources 80

tee 74

vertical separator 77

Nodes 61

Noise 282

acoustical efficiency 283

O

Orifice Plate Editor

Connections tab 71

P

Password

setting the 119

mixing rules 277

Pipe

physical properties 132

Scenario

Scenario Management 41

PFD 157

changing view options 167

connecting objects 164

icons 158

installing objects 163

manipulating the 164

moving objects 165

object inspection 159

printing 166

regenerate 165

saving 166

selecting objects 164

method one 164

method two 165

toolbar 159

unselecting objects 165

view 159

Physical Properties 274

thermal conductivity 278

vapour density 274

vapour viscosity 275

Golubev method 275

Physical Prperties

enthalpy 278

Equations of State 280

ideal gas 278

multiple editing 59

Pipe Network 48

Pipe Tools

pipe class editor 60

Preferences Editor

General tab 18

Import tab 24, 25

Reports tab 22

Pressure Drop 254

Printing 169

location-specific 172

Printing, Importing and Exporting 168

PVT Relationship 271

R

Reduced Pressure

definition 320

Reduced Temperature

definition 320

Refresh Source Temperatures 94

Results

messages 127

viewing 124

Round Equation 255

S

definition 321

Scenario Editor

General tab 43

Sources tab 45

Index 329

Page 330: FLARENET Reference Manual

Scenario Manager View 42

Scenario Tools 47

Scenarios

adding single source 47

definition 321

definition 321, 322

T

TSV

methods 254

Viewing Data and Results 124 adding/editing 43

General tab 43

Sources tab 45

Schedule

Security Device

definition 321

Source

Source Tools 94

adding single source scenarios 95

updating downstream temperatures 94

Source Types

control valve 80

SRK Equation 272

SRK Equation of State 280

Status Bar 15

Tab Separated Values 169

Terminology 11

Tool Bar 14

See Tab Separated Values 169

Two-Phase Pressure Drop 257

Beggs and Brill 257

Dukler method 258

Orkiszewski method 259

V

Vaour Phase Pressure Drop

Vapour-Liquid Equilibrium 271

compressible gas 271

Peng Robinson 273

Soave Redlich Kwong 272

vapour pressure 271

Vertical Separator Editor

Connections tab 77

Index 330