fermilab doubler magnet design and fabrication techniques

4
658 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-15, NO. 1, JANUARY 1979 FERMILAB DOUBLER MAGNET DESIGN AND FABRICATION TECHNIQUES K. Koepke, G. Kalbfleisch, W. Hanson, A. Tollestrup, J. O'Meara, J. Saarivirtan ABSTRACT During the last year, the Fermilab Doubler mag- nets have benefited from a development effort to up- gradetheperformanceofthesuperconductingmagnets. This paper presents the results of this effort. The design philosophy and the fabrication techniques used on currentmagnets will be discussed, along with inno- vative laminated tooling which has been designed to give Fermilab a two dipole a day production capabili- ty. Specific topics to be discussed are coil geometry, coilwindingtechniques,coilclampcollars,bussgeo- metryandinsulation,integralquenchheatersfor quench protection, coil twist, coil helium irrigation andassemblytechniquesthatassureazimuthalpreload and accurate coil size. INTRODUCTION In order to minimizetheconstructionandopera- tion cost of the Fermilab Energy Doubler project and also due to space limitations in the existing 500 Gev synchrotrontunnel, a relatively simple "warm" iron, cold bore magnet design was adopted. Three distinct modules are separatelyfabricatedandassembled to form a complete magnet: the collared coil, the cryostat and the iron shield yoke. The coil package for the dipole consists of a two- s h e l l d e s i g n w i t h t h e f i r s t 1 0 turns of the inner shell at the ends separated with .loo" spacers to reduce the peak field at theselocations. By v a r y i n g the azimu- thal coil angles of the inner and outer shell, the two- dimensional field region can be adjusted to cancel the sextapoleanddecapoletermspresentintheends of the magnet . By virtue of its location between the rigid coil clamp collar and the iron yoke, the cryostat need not beself-supportingand is fabricated out of thin stain- less steel sheet metal. Precise alignment of thecoll- ared coil assembly relative to theironyoke is assured by means of rigid G-10 force transfer blocks located periodically within the cryostat. The cryostats come partially assembled from several vendors. The magnetic shield differs from conventional mag- net yokes only in their cross section. They a r e assem- bled out of laminations into left and right halves in a stacking fixture andjoinedaroundthecoil and cry7 ostatassemblytocompletethemagnet. Over 100 collared dipole assemblies have been com- pleted. Roughly half of these have been inserted in cryostats with iron shields and are in various stages of installation in the synchrotron tunnel. As problems became evident during their construction and testing, they were corrected or improved. Laminated tooling was designed to improve coil accuracy and production rate. Coil measuring fixtures were constructedto mon- itor coil sizes. Conductor motions have been reduced with increased preload. A new type 5 coil clamp collar hasbeenadoptedwhichhas a h i g h e r r e s i s t a n c e t o fati- gue and is torsionally more rigid. Heaters have been installed in the dipole for quench protection and a new buss geometry has been adopted. Manuscript received September 28, 1978. xFermi National Accelerator Laboratory, P.O. Box 500 Batavia,Illinois60510,operated by Universities Research Association, Inc. under contract with the U.S. Department of Energy. The prototype Doubler quadrupole magnet was a "warm" iron, cold bore, three-shell design. Seven mag- nets of this type have been constructed and success- fully tested. Recently, a two-shell quadrupole design wasadoptedtosimplifyfabricationandallow a higher production rate. COIL FABRICATION AND MAGNET ASSEMBLY The sequenceoffabricating a collared dipole coil assembly starts withthewindingandhotmolding of two identical 35 turn inner coils. Our original technique of"saddle"windingthesecoilswasabandonedinfavor of our "pancake" technique. This technique consists of winding a f l a t c o i l a r o u n d a n a r t i c u l a t e d key mounted on a .060" steel retainer sheet. After winding, the coil is coveredwith a second .060" steel retainer and transverselycompressedbymeansofside rails to a dimension approximately equal to the desired outer arc l e n g t ho ft h ef i n i s h e dc o i l . The s i d e rails are then fastened to the retainer sheets, resulting in a "pan- cake sandwich". This is formed around a mandrel using a female mold in a 22' long press and cured, yielding the conventional "saddle" coil configuration. This technique has proved to be fast and accurate. The outer coils are "saddle" wound using the inner preformed coils as a winding mandrel. This technique has resulted in adequate conductor placement accuracy duetothesmaller number of turns (21) in the coil. In order to provide for LHe e d g ec o o l i n g , a layerof .021" thick interrupted G-10 is placed between the inner and outer coils. The cured two-shelled upper and lower coil halves are placed on the assembly mandrel, covered with .030" thickpremoldedmylargroundinsulation(later to be Kapton) and f i t t e dw i t h 4" long collar sections. The loosely collared coil assembly is placed into a pair of massive channel-shaped fixtures which provide precise vertical and horizontal constraints to the col- lar as it is sizedin a 3200 ton hydraulic press. Fin- ally,theassemblymandrel is removed from the coil by means of a ratched-actionhydrauliccylinderandthe collar is weldedonbothsides by automatic welding machines. Fig. 1 Dipole lower coil 0018-9464/79/0100-0658$00.75 0 1979 IEEE

Upload: j

Post on 24-Sep-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fermilab doubler magnet design and fabrication techniques

658 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-15, NO. 1, JANUARY 1979 FERMILAB DOUBLER MAGNET DESIGN AND FABRICATION TECHNIQUES

K. Koepke, G. K a l b f l e i s c h , W . Hanson, A. T o l l e s t r u p , J . O'Meara, J. S a a r i v i r t a n

ABSTRACT

D u r i n g t h e l a s t y e a r , t h e F e r m i l a b D o u b l e r mag- ne t s have bene f i t ed f rom a deve lopmen t e f fo r t to up- grade the per formance of the superconduct ing magnets . T h i s p a p e r p r e s e n t s t h e r e s u l t s o f t h i s e f f o r t . The des ign ph i lo sophy and t he f ab r i ca t ion t echn iques u sed on cur ren t magnets w i l l be d i scussed , a long w i th i nno- va t ive l amina ted t oo l ing wh ich has been des igned t o g ive Fe rmi l ab a two d i p o l e a day p roduc t ion capab i l i - t y . S p e c i f i c t o p i c s t o b e d i s c u s s e d are co i l geomet ry , c o i l w i n d i n g t e c h n i q u e s , c o i l c l a m p c o l l a r s , b u s s g e o - me t ry and i n su la t ion , i n t eg ra l quench hea t e r s fo r q u e n c h p r o t e c t i o n , c o i l twist , c o i l h e l i u m i r r i g a t i o n and assembly techniques tha t assure az imutha l p re load a n d a c c u r a t e c o i l s i z e .

INTRODUCTION

I n o r d e r to minimize the construct ion and opera- t i on cos t o f t he Fe rmi l ab Ene rgy Doub le r p ro j ec t and a l s o d u e t o s p a c e l i m i t a t i o n s i n t h e e x i s t i n g 5 0 0 Gev synchro t ron t unne l , a r e l a t i v e l y s i m p l e "warm" i r o n , cold bore magnet design was a d o p t e d . T h r e e d i s t i n c t modules are sepa ra t e ly f ab r i ca t ed and a s sembled to form a c o m p l e t e m a g n e t : t h e c o l l a r e d c o i l , t h e c r y o s t a t and t h e i r o n s h i e l d y o k e .

The c o i l p a c k a g e f o r t h e d i p o l e c o n s i s t s o f a two- s h e l l d e s i g n w i t h t h e f i r s t 1 0 t u r n s of t h e i n n e r s h e l l a t t h e e n d s s e p a r a t e d w i t h . loo" s p a c e r s t o r e d u c e t h e peak f i e l d a t t h e s e l o c a t i o n s . By vary ing the az imu- t h a l c o i l a n g l e s o f t h e i n n e r a n d o u t e r s h e l l , t h e two- d i m e n s i o n a l f i e l d r e g i o n c a n b e a d j u s t e d t o c a n c e l t h e sex tapo le and decapo le t e rms p re sen t i n t he ends of t h e magnet .

By v i r t u e of i t s l o c a t i o n b e t w e e n t h e r i g i d c o i l clamp c o l l a r and t h e i r o n y o k e , t h e c r y o s t a t n e e d n o t be s e l f - suppor t ing and i s f a b r i c a t e d o u t o f t h i n s t a i n - l e s s s t ee l shee t me ta l . P rec i se a l ignmen t of t h e c o l l - a r e d c o i l a s s e m b l y r e l a t i v e to t h e i r o n y o k e i s a s su red by means of r i g i d G-10 f o r c e t r a n s f e r b l o c k s l o c a t e d p e r i o d i c a l l y w i t h i n t h e c r y o s t a t . The c r y o s t a t s come p a r t i a l l y a s s e m b l e d f r o m s e v e r a l v e n d o r s .

The m a g n e t i c s h i e l d d i f f e r s f r o m c o n v e n t i o n a l mag- n e t y o k e s o n l y i n t h e i r c r o s s s e c t i o n . They a r e assem- b l e d o u t o f l a m i n a t i o n s i n t o l e f t a n d r i g h t h a l v e s i n a s t a c k i n g f i x t u r e and j o ined a round t he co i l and cry7 os ta t assembly to comple te the magnet .

Over 100 co l l a red d ipo le a s sembl i e s have been com- p l e t ed . Rough ly ha l f o f t hese have been i n se r t ed i n c r y o s t a t s w i t h i r o n s h i e l d s a n d are i n v a r i o u s s t a g e s of i n s t a l l a t i o n i n t h e s y n c h r o t r o n t u n n e l . A s problems b e c a m e e v i d e n t d u r i n g t h e i r c o n s t r u c t i o n a n d t e s t i n g , they were corrected or improved. Laminated tool ing was designed to improve coi l accuracy and product ion r a t e . C o i l m e a s u r i n g f i x t u r e s were c o n s t r u c t e d t o mon- i t o r co i l s i ze s . Conduc to r mo t ions have been r educed wi th i nc reased p re load . A new type 5 c o i l clamp c o l l a r has been adopted which has a h i g h e r r e s i s t a n c e t o f a t i - gue and i s t o r s i o n a l l y more r i g i d . H e a t e r s h a v e b e e n i n s t a l l e d in t h e d i p o l e f o r q u e n c h p r o t e c t i o n a n d a new buss geometry has been adopted.

Manuscript received September 28, 1978.

xFermi Nat ional Accelerator Laboratory, P.O. Box 500 B a t a v i a , I l l i n o i s 6 0 5 1 0 , o p e r a t e d by U n i v e r s i t i e s Research Assoc ia t ion , Inc . under cont rac t wi th the U.S. Department of Energy.

The prototype Doubler quadrupole magnet was a "warm" i r o n , c o l d b o r e , t h r e e - s h e l l d e s i g n . S e v e n mag- ne t s o f t h i s t ype have been cons t ruc t ed and success - f u l l y t e s t e d . R e c e n t l y , a two-she l l quadrupole des ign was adopted to s impl i fy fabr ica t ion and a l low a h ighe r p roduc t ion rate.

COIL FABRICATION AND MAGNET ASSEMBLY

The sequence o f f ab r i ca t ing a c o l l a r e d d i p o l e c o i l assembly s tar ts with the winding and hot molding of two i d e n t i c a l 35 t u r n i n n e r c o i l s . Our o r i g i n a l t e c h n i q u e of "saddle" winding these co i l s was abandoned in favor of our "pancake" technique. This technique consis ts of winding a f l a t c o i l a r o u n d a n a r t i c u l a t e d k e y mounted on a .060" s t ee l r e t a i n e r s h e e t . A f t e r w i n d i n g , t h e c o i l i s covered wi th a second .060" steel r e t a i n e r and t ransverse ly compressed by means o f s ide ra i l s t o a d i m e n s i o n a p p r o x i m a t e l y e q u a l t o t h e d e s i r e d o u t e r arc l e n g t h o f t h e f i n i s h e d c o i l . The s i d e ra i l s are then f a s t e n e d t o t h e r e t a i n e r s h e e t s , r e s u l t i n g i n a "pan- cake sandwich". This i s formed around a mandre l us ing a female mold i n a 2 2 ' l ong p re s s and cu red , y i e ld ing t h e c o n v e n t i o n a l " s a d d l e " c o i l c o n f i g u r a t i o n . T h i s t echn ique has p roved t o be f a s t and accu ra t e .

The o u t e r c o i l s are "saddle" wound u s i n g t h e i n n e r p re fo rmed co i l s as a winding mandrel . This technique has r e su l t ed i n adequa te conduc to r p l acemen t accu racy d u e t o t h e s m a l l e r number o f t u rns (21) i n t h e c o i l . I n o r d e r t o p r o v i d e f o r LHe edge coo l ing , a l aye r o f .021" t h i c k i n t e r r u p t e d G-10 i s placed between the i n n e r a n d o u t e r c o i l s .

The cured two-shel led upper and lower coi l halves are placed on the assembly mandrel , covered with .030" th ick p remolded mylar g round insu la t ion ( la te r to be Kapton) and f i t t e d w i t h 4" l o n g c o l l a r s e c t i o n s . The l o o s e l y c o l l a r e d c o i l a s s e m b l y i s p l a c e d i n t o a p a i r o f mass ive channel -shaped f ix tures which provide p r e c i s e v e r t i c a l and h o r i z o n t a l c o n s t r a i n t s t o t h e c o l - l a r a s i t i s s i z e d i n a 3200 ton hydrau l i c p re s s . F in - a l ly , the assembly mandrel i s removed from t h e c o i l by means of a r a t ched-ac t ion hydrau l i c cy l inde r and t he c o l l a r i s welded on both s ides by au tomat i c we ld ing machines.

F ig . 1 Dipole lower co i l

0018-9464/79/0100-0658$00.75 0 1979 IEEE

Page 2: Fermilab doubler magnet design and fabrication techniques

659

i n t e g r a l m o l d s f o r f o r m i n g c o i l s a n d two 3200 ton p r e s s e s f o r s i z i n g a n d w e l d i n g c o l l a r e d c o i l s . I n a d d i t i o n , t h e r e exist s e v e r a l sets of inner and ou ter winding mandrels , assembly mandrels , and channel tool- i n g u s e d t o s i z e t h e c o l l a r s .

A l l molds , winding mandre ls and keys p resent ly in u se are made of l amina t ions . In our exper ience , 22 ' l o n g t o o l s , e v e n i n s i m p l e s h a p e s , c a n n o t b e e c o n o m i - c a l l y made t o a .0005" t o l e r a n c e . H o w e v e r , r e l a t i v e l y i n e x p e n s i v e d i e s u s i n g E l o x c u t t i n g t e c h n i q u e s c a n p r o d u c e c o m p l e x c r o s s s e c t i o n s t o .0005" t o l e r a n c e s and a l amina t ion un i fo rmi ty o f .0001" i s w i t h i n t h e p r e s e n t s t a t e of t h e a r t . Tools assembled out of s t a c k e d l a m i n a t i o n s a r e t h e r e f o r e u n i f o r m t h r u - o u t t h e i r l e n g t h a n d r e p l i c a t i o n o f t o o l i n g v e r y s i m - p l e .

P ig . 2 C o l l a r e d d i p o l e c o i l h a l f i n s e r t e d i n c r y o s t a t

F ig . 4 Oute r d ipo le mvld la -n ina t ions

To a c h i e v e t h e s , t o l e r a n c e s , t h e l a m i n a t i o n s are made ou t of mi ld s teel . A l l b e a r i n g s u r f a c e s of t h e t o o l i n g are t h e r e f o r e f i t t e d w i t h h a r d e n e d steel in - serts of s i m p l e r e c t a n g u l a r cross sec t ion wh ich can be ground t o a .0005" t o l e r a n c e . T h e s e i n s e r t s a l s o a l l o w u s to change the molded az imutha l angles o f subsequent

F ig . 3 Half yoked dipole

A magnet is completed by pushing a collared coil c o i l s t o c o m p e n s a t e f o r s y s t e m a t i c f i e l d e r r o r s meas- i n r o a prefabr ica ted c . ryos ta t , weld i .ng on t h e c r y o s t a t ured in magnets* end c l o s u r e p i e c e s and f i n a l l y f i t t i n g t h e two h a l v e s of t h e p r e f a b r i c a t e d y o k e . N o t e t h a t t h i s p r o d u , c t i o n s e q u e n c e l e n d s i t s e l f t o p r o d u c t i o n l i n e t e c h n i q u e s . Wi th t he p re sen t manpower a v a i l a b l e , a p roduc t ion ra te of 5 c o l l a r e d c o i l s p e r week has been ach ieved wi th 250 manhours r equ i r ed pe r co l l a red co i l . The i n h o u s e manpower per magnet is approximate ly 400 manhours i f we a d d t h e c r y o s t a t , y o k e a n d i n s p e c t i o n s t e p s . I t i s e x p e c t e d t h a t t h e p r o d u c t i o n rate can be doubled with t h e e f f i c i e n t u s e of a v a i l a b l e t o o l i n g a n d t h r e e f u l l y s t a f f e d s h i f t s .

The q u a d r u p o l e m a g n e t f a b r i c a t i o n u t i l i z e s t h e same p r i n c i p l e s d e v i s e d i n t h e d i p o l e d e v e l o p m e n t p r o g r a m e x c e p t t h a t t h e c o i l s a r e a l l s a d d l e wound. The f o u r sets o f c o i l s a r e wound a s d o u b l e s h e l l s , p re s sed and cu red i n t he same manner as t h e d i p o l e s . I n o r d e r t o s u p p o r t t h e f o u r i n d i v i d u a l c o i l s , t h e c o l l a r s are a p p l i e d f r o m f o u r s i d e s r a t h e r t h a n t w o , n e c e s s i t a t i n g t h e a p p l i c a t i o n o € c o l l a r s o n e a t a time.

TOOLING

The equ ipmen t ava i l ab le t o p roduce co l l a red d ipo le c o i l a s s e m b l i e s c o n s i s t s o f t h r e e 2 2 ' long winding ma- c h i n e s f o r p r o d u c i n g c o i l s , two 22 ' long presses wi th

CONDUCTOR PLACEMENT ACCURACY

I n o r d e r t o r e d u c e t h e AC l o s s i n h e r e n t i n ramped magne t s , t he supe rconduc t ing cab le adop ted fo r t he Doubler magnets was a Ru the r fo rd t ype cab le made by t w i s t i n g 23 s t r a n d s , e a c h o f .027" d i a m e t e r , i n t o a (.044" - .055") x . 307" keys toned c ros s s ec t ion i n a Turkshead die . The keys toned shape a l lows fo r p rope r c o n d u c t o r s t a c k i n g i n t h e c y l i n d r i c a l c o i l g e o m e t r y and is p o r o u s t o a l l o w f o r LHe i r r i g a t i o n . The poro- s i t y of c o i l s i s main ta ined by the use o f a non-adhe- s i v e 7 / 1 2 l a p l a y e r o f .001" x .375" Kapton for elec- t r i c a l i n s u l a t i o n f o l l o w e d by a .125" gap h e l i c a l wrap of .007" x .25" B-stage epoxy impregnated glass t ape fo r bond ing .

The t y p i c a l mean a z i m u t h a l a r c l e n g t h v s . a p p l i e d p res su re behav io r o f a d i p o l e i n n e r c o i l i s p l o t t e d i n F i g . 5. Rig id and accura te conductor p lacement o f t h e s e p o r o u s c o i l s i s ob ta ined by compact ing the c o i l s d u r i n g a s s e m b l y i n t o a s p l i t c o l l a r . The c o l l a r p r e s e n t s a r i g i d , p r e c i s e r a d i a l and az imutha l ou ter b o u n d a r y t o t h e c o i l s .

To t h e e x r e n t t h a t t h e c o i l s a c t l i k e p i e c e

Page 3: Fermilab doubler magnet design and fabrication techniques

660 than .001".

30 MIN CREEP

LL 0 0 0 0 0 0 0 0 0 0 uo 0 0 0 0 0 0 0 0 0 0 g o o 0 0 @ J m , l o s c = 2 a

AZIMUTHAL PRESSURE (LBS./SO.IN.)

Fig. 5 I n n e r d i p o l e c o i l s i z e m e a s u r e d relative t o 2.145", t h e mold dimension.

wise l i n e a r s p r i n g s i n t h e a z i m u t h a l d i r e c t i o n , t h e upper t o l o w e r c o i l b o u n d a r y w i t h i n t h e c o l l a r a t a g i v e n a z i m u t h a l f o r c e is de termined by ha l f the d i f f e r e n c e i n a z i m u t h a l c o i l s i z e m e a s u r e d a t t h a t f o r c e . T h e s e c o i l s i z e s ( F i g . 6) are r e g u l a r l y measured as p a r t o f our ongoing qua l i ty cont ro l p ro- gram. Al though the co i l s izes vary wi th in a .020" r a n g e , r e s u l t i n g i n a v a r i a b l e p r e l o a d , t h e c o i l b o u n d a r i e s f o r c o l l a r e d c o i l s are on the ave rage w i th - i n .001" of

W

$-

_I

Lz W

2 -.010

a

L

: h e i r c a l c u l a t e d p o s i t i o n .

I I

UPPER COIL LEFT SIDE i LOWER COIL LEFT SIDE

I IO 115 120 I25 I30 MAGNET NUMBER

F i g . 6 The i n n e r d i p o l e c o i l s were measured a t an az imutha l p ressure o f 4780 l b s . / s q . i n . The e r r o r b a r s r e p r e s e n t the s t a n d a r d d e v i a t i o n o f 11 measurements t aken a long the l ength of t h e c o i l

The bore dimension of the magnet is determined by t h e w a l l t h i c k n e s s of t h e c o i l s , w h i c h r e p r o d u c e w i t h i n .001" d u e t o t h e small c u m u l a t i v e t o l e r a n c e i n t h i s d i r e c t i o n . S t r a i n g a u g e m e a s u r e m e n t s on t h e OD of t h e c o l l a r a n d t h e I D (bo re ) o f t he co i l s have shown t h a t t h e r a d i a l c o m p r e s s i o n o f t h e c o i l s i s less

The azimuthal conductor placement within individ- u a l c o i l s is h a r d e r t o c o n t r o l . The conduc to r d i s t r i - b u t i o n w i t h i n t h e i n n e r d i p o l e l a y e r , t h e l a y e r w h o s e c o n d u c t o r d i s t r i b u t i o n i s m o s t d i f f i c u l t t o c o n t r o l , has been op t ica l ly measured on c r o s s s e c t i o n s of c o l l - a r e d d i p o l e s . The measurements ind ica te tha t the con- duc tors have a mean p o s i t i o n e r r o r re la t ive t o t h e c o r - rect p o s i t i o n o f less than .001" w i t h a s t anda rd dev i - a t i o n of .003". F o r t h e o u t e r d i p o l e c o i l s a n d t h e q u a d r u p o l e c o i l s , t h i s e r r o r is e x p e c t e d t o b e less d u e t o t h e smaller number of conductors present.

C a l c u l a t i o n s and measu remen t s i nd ica t e t ha t t he conductor placement o f t h e magnet ends are a n o r d e r of magnitude less c r i t i c a l t h a n t h e two d imens iona l p a r t of the magnet . I n t h i s case, the con tour o f t h e e n d s i s a s s u r e d by mold ing prec is ion G-10 s p a c e r s t o t h e e n d s d u r i n g t h e c o i l c u r i n g s t a g e . T h e s e space r s r ema in w i th t he co i l du r ing a s sembly .

CONDUCTOR MOTION AND PRELOAD

Measurements performed on 1 f t . l o n g p r o t o t y p e s of t he Doub le r supe rconduc t ing d ipo le s i nd ica t ed t ha t t he az imutha l compac t ion o f co i l s i n ene rg ized magne t s c a n b e l i m i t e d t o a few thousands of an inch with a d e q u a t e a z i m u t h a l p r e l o a d . E a r l y a t t e m p t s t o s i z e c o i l s s u c h t h a t t h i s p r e l o a d i s t r a p p e d i n t h e c o l l a r on f u l l s i z e d m a g n e t s f a i l e d f o r t h e f o l l o w i n g r e a s o n s : The c o i l clamp c o l l a r u s e d t o b e bonded a t 200°F w i t h hea t cu re epoxy . Dur ing t h i s p rocess , t he t r apped c o i l s u n d e r t h e combined e f f e c t of hea t and p re s su re c o l l a p s e d . T h i s e f f e c t h a s b e e n m e a s u r e d t o s tar t a t 1 2 5 ' ~ .

2

The p re load t ha t r ema ined was fu r the r r educed b y t h e d i f f e r e n t i a l c o i l t o c o l l a r s h r i n k a g e f r o m room t o LHe t empera tu re . The d i f f e rence i n az imutha l c o i l s i z e A R (P) measured at room temperature and LN t empera tu re bo th a t az imutha l p re s su re P has been measured t o f o l l o w t h e e q u a t i o n :

where PO e q u a l s t h e p r e s s u r e a t w h i c h t h e s a m p l e is cooled . All p r e s s u r e s a r e e x p r e s s e d i n l b s . / sa . i n . The (P-Po) term a c c o u n t s f o r t h e d i f f e r e n c e i n Young's modulus a t t h e two tempera tures .

I n o r d e r t o a s s u r e a d e q u a t e p r e l o a d , t h e i n n e r a n d o u t e r c o i l s o f t h e s u p e r c o n d u c t i n g d i p o l e h a v e t o b e molded .040" and .005" o v e r s i z e i n t h e a z i m u t h a l d i r e c t i o n . The c o l l a r s a r e now we lded t o e l imina te t e m p e r a t u r e i n d u c e d c o i l y i e l d i n g . Upon c o o l down, a t least 4700 l b s . / sq . i n . o f az imutha l p re load r ema ins i n t h e i n n e r c o i l . T h i s h a s b e e n v e r i f i e d by s l i t t i n g t h e c o l l a r a t the median p lane o f the d ipole and m e a s u r i n g t h e f o r c e r e q u i r e d t o r e t u r n t h e s p r u n g c o l l a r b a c k t o i t s nominal dimension a t room tempera- t u r e and LN tempera ture .

Conductor motion i n t h e s u p e r c o n d u c t i n g d i p o l e s has been l imi t ed t o less than .003" i n b o t h t h e a z i m u t h a l a n d r a d i a l d i r e c t i o n a t 45 KG. The a x i a l motion a t t h i s f i e l d h a s b e e n m e a s u r e d f o r E22-43 and e q u a l s .050". The m o t i o n r e l a t e d f i e l d p e r t u r b a t i o n s as a func t ion o f cu r ren t are the re fo re domina ted by the two-dimensional par t of the magnet.

COLLARS

F a t i g u e tests performed on 1" s e c t i o n s o f t h e t y p e 4 c o l l a r p r e v i o u s l y u s e d on t h e d i p o l e s p r e d i c t e d

Page 4: Fermilab doubler magnet design and fabrication techniques

t h e i r f a i l u r e a f t e r 10 magnet cycles. Furthermore, t h e c o l l a r was u n a b l e t o c o n t a i n t h e c o i l p r e l o a d wi thou t excess ive de fo rma t ion and had i n su f f i c i en t r e s i s t a n c e t o a x i a l t o r q u e s .

6

A new "so l id" t ype 5 c o l l a r d e s i g n h a s b e e n adopted that overcomes these problems. The f a t i g u e p o i n t h a s b e e n r a i s e d t o l o 8 cyc le s , an o rde r o f m a g n i t u d e g r e a t e r t h a n t h e a n t i c i p a t e d l i f e of t h e a c c e l e r a t o r . Any t w i s t p r e s e n t i n t h e c o l l a r e d c o i l a s sembly a f t e r we ld ing i s m e a s u r e d r e l a t i v e t o a s u r f a c e p l a t e and reduced t o less than 3 m i l l i r a d i a n s w i t h a t o r q u e f i x t u r e . The c o l l a r i s t h e n s u r f a c e c o a t e d i n p l a c e w i t h l o w v i s c o s i t y room cure epoxy. It p e n e t r a t e s .1" a n d e f f e c t i v e l y r e s u l t s i n a t u b e of t h i s wall t h i c k n e s s t o c o u n t e r a c t a n y t o r q u e s p r e s e n t

COIL FATIGUE

The p rema tu re f a i lu re of t h e t y p e 4 c o l l a r u n d e r r e p e a t e d small motions prompted a test o f t h e i n n e r d i p o l e c o i l u n d e r similar c o n d i t i o n s . The c y c l i c a l az imutha l p re s su re and t h e r e s u l t a n t c o n d u c t o r m o t i o n t h a t t h e c o i l e x p e r i e n c e s d u r i n g a magnet current c y c l e was approximated by applying an azimuthal v a r i a b l e p r e s s u r e a t a ra te of 2 cyc le s pe r s econd . The test was performed with the sample immersed in LN, A compar ison of the az imutha l co i l s ize measured a t t h e s tar t o f t h e test and a f t e r t h e s a m p l e experienced lo6 p r e s s u r e c y c l e s showed no measurable s i z e r e d u c t i o n o r a n y o t h e r v i s i b l e s i g n s o f damage;

BUSS LEAD

Unl ike t he o the r conduc to r s i n t he magne t , t he b u s s e l e c t r i c a l i n s u l a t i o n h a s t o w i t h s t a n d 3 KV. To o b t a i n t h e r a d i a l c l e a r a n c e i n t h e magnet f o r t h e a d d i t i o n a l i n s u l a t i o n , t h e b u s s c a b l e wa$ fash ioned out o f unders ized .025" d i a m e t e r s t r a n d s t o a c r o s s sec t ion of ( .043" - .049") x .286". This buss is i n s u l a t e d w i t h 4 l a y e r s of 7 /12 lap .,001" x .375" Kapton followed by an armor layer composed of a l t e r n a t i n g d r y and B-stage impregnated .007" x .25" Kev la r t ape he l i ca l ly wrapped w i th a b u t t l a p .

HEATERS

Two hea te r s , one r edundan t , have been i n s t a l l ed i n t h e d i p o l e s as p a r t o f a proposed quench protec- t i o n c i r c u i t f o r t h e D o u b l e r . The purpose o f the h e a t e r s i s t o i n i t i a t e a uni form longi tudina l quench i n t h e s u p e r c o n d u c t i n g t u r n i m m e d i a t e l y a d j a c e n t t o t h e h e a t e r . T h i s q u e n c h r a p i d l y p r o p o g a t e s i n the t r a n s v e r s e d i r e c t i o n f r o m t u r n t o t u r n , p e r m i t t i n g t h e magnet t o a b s o r b i t s s to red ene rgy w i thou t damage.

Each h e a t e r c o n s i s t s o f a .005" x .200" s t a i n l e s s s teel s t r i p wound unde r t he g l a s s t ape o f t he comple t e f i r s t t u r n o f a n o u t e r c o i l . It f a c e s away f rom the c o i l a n d is i n s u l a t e d f r o m t h e t u r n by a .010" s t r i p o f K a p t o n .

QA QUADRUPOLES

The p r o t o t y p e QA quadrupole was a 3..25" b o r e , 3 - s h e l l d e s i g n . T h e t o o l i n g f o r t h i s m a g n e t was des igned fo r accu racy and s u f f i c i e n t p r e l o a d i n g c a p a b i l i t y , b o t h o f w h i c h were a t t a i n e d .

The f i r s t several q u a d s d M n o t a t t a i n , a p r e l o a d i n t e r n a l l y . The l o s s of preload w a s t r a c e d t o t h e h e a t c u r e c y c l e o f b o n d i n g t h e c o l l a r s . The l as t two quads were then bonded with room tempera tu re cu re epoxy. They d id ach ieve az imutha l p re load . The v e r i f i c a t i o n of p re load was obtained by magnet ic f i e ld measu remen t s unde r exc i t a t ion . The 12-pole

661

component is s e n s i t i v e t o c h a n g e i n t h e c o i l s i z e . 3 y ' c a l c u l a t i o n , t h e r a t i o o f t h e 1 2 - p o l e t o t h e & p o l e component ( i . e . quadrupo le ) a t 1 inch r ad ius changes by 1 p a r t i n 10,000 f o r a 0.001 inch az imutha l squeeze . Adequa te ly p re loaded co i l s w i l l t h e n show a c o n s t a n t 1 2 - p o l e r a t i o w i t h v a r y i n g e x c i t a t i o n c u r r e n t ; a change w i l l i nd ica t e mo t ion . The h e a t c u r e d c o l l a r e d a s s e m b l i e s show a 12-po le r a t io chang ing w i th exc i t a - t i o n ( F i g . 7A). The magnitude of the observed change i n t h i s r a t i o a g r e e s well wi th independent mechanica l measu remen t s o f t he co i l mo t ion unde r exc i t a t ion . The room t e m p e r a t u r e c u r e d c o l l a r e d a s s e m b l i e s ( F i g . 7B) show a c o n s t a n t v a l u e f o r t h i s r a t i o , i n d i c a t i n g a motion of less than 0.001".

QB QUADRUPOLE

The product ion QB quadrupole i s a 3 .5" bore , two- s h e l l d e s i g n . D i p o l e t o o l i n g t e c h n i q u e s h a v e b e e n i n c o r p o r a t e d t o p r o d u c e t o o l i n g t h a t w i l l a l l o w a h i g h product ion rate. A s p a c e r h a s b e e n i n c o r p o r a t e d i n t h e inne r co i l wh ich r educes t he 20 -po le a f a c t o r o f 5 o v e r t h e QA d e s i g n . The f i r s t QB magnet tes ted reached 5400 A (22KG/in.) i n t h r e e q u e n c h e s . A pre l iminary harmonic p robe ana lys i s i nd ica t e s no conduc to r mo t ion i n t he c o i l s .

X I I I I I

t 4 a) HEAT CURE

I 2 5 - 0

0

0

s 5 -2 LY - " F- b) ROOM C U R E

u -7 E Z 1 i / , I I I

4 0 I 0 CURRENT (KILOAMPERES)

2 3 4 5

F i g . 7 QBA Magnet 12 P o l e t o 4 P o l e R a t i o s .

ACKNOWLEDGEMENT

The teamwork of t h e F e r m i l a b s t a f f is r e s p o n s i b l e fo r t he success o f t he Doub le r magne t p roduc t ion p ro - gram. The a u t h o r s w i s h t o s p e c i f i c a l l y a c k n o w l e d g e t h e c o n t r i b u t i o n o f S . Bara th , J. Carson, J. Humbert, J. Jagger , G. J u g e n i t z , D. Smith and the remaining s t a f f o f t h e F e r m i l a b Magnet F a c i l i t y .

References

1. P. Livdahl , IEEE, Trans. Nucl . Sci . , N S - 2 4 , No. 3, 1218 (1977)

2. A. T o l l e s t r u p , e t . a l . , I E E E , Trans. Nucl . Sci . , NS-24 NO. 3 , 1331 (1977)