fast nuclear spin hyperpolarization of phosphorus in silicon e. sorte, w. baker, d.r. mccamey, g....

19
Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon E. Sorte, W. Baker, D.R. McCamey, G. Laicher, C. Boehme, B. Saam Department of Physics, University of Utah

Upload: cory-dicken

Post on 14-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon

E. Sorte, W. Baker, D.R. McCamey, G. Laicher, C. Boehme, B. SaamDepartment of Physics, University of Utah

Silicon doped with Phosphorus

Introduction

Introduction

H0

Energy Splitting in Magnetic Field

ms = 12 ,mI = 1

2

ms = − 12 ,mI = 1

2

ms = − 12 ,mI = − 1

2

ms = 12 ,mI = − 1

2

ˆ H = −μ e ⋅Ho − μN ⋅Ho + AI ⋅J

Tx =1

Γx=

4πh2s5ρ

ω02kTresγ

2IA2

• Tx returns the spin populations n2 and n3 to thermal equilibrium with the phonon reservoir

1 D. Pines, J. Bardeen, C. Slichter, Phys. Rev. 106, 489 1957

1

Tx

=2π

h

dk

2π( )3∫ δ hsk − hω0( ) Nk +1 1

2 δA Nk

2

Relaxation Times

n4

n3

n2

n1

1

1X

T1 =1

Γ1

∝ e−

E

kTspin

but

• T1 returns the spin populations n4 and n3 / n1 and n2 to thermal equilibrium with the lattice

Ee ≈ 240 GHz (electric Zeeman)

En ≈ 147 MHz (nuclear Zeeman)

A ≈ 117 MHz (hyperfine interaction)

ωconduction band

valence band

phonons

Tspin (LH2 bath)

Tres

hω > E res > kTspin

In general: Tres ≠ Tspin

Tres > TspinIn fact we want:

Temperature

• Constant illumination generates new charge carriers, leading to steady state with constant density of “hot” electrons

• As hot electrons cascade toward the lattice temperature, they emit phonons at constant rate.

G.Feher, Phys. Rev Lett 3, 135 (1959)

B=8.5T

Mechanism

B=8.5T

X

Mechanism

B=8.5T

X

1

1

Mechanism

X

B=8.5T

1

1

Mechanism

X

B=8.5T

1

1

Mechanism

X

B=8.5T

1

1

Mechanism

X

B=8.5T

1

1

Result = net nuclear antipolarization:

P =(n1 + n2) − (n3 + n4 )

(n1 + n2) + (n3 + n4 )

Tres >> Tspin

Mechanism

Experimental - EPR

Tx =1

Γx=

4πh2s5ρ

ω02kTresγ

2IA2

EDMR at T = 1.37 K Xe discharge lamp

EDMR at different temperatures

Experimental - EDMR

D. R. McCamey, J. van Tol, G. W. Morley, C. Boehme, eprint arXiv:0806.3429v1 (2008)

Conclusion

• NMR on 31P nucleus to actually “see” the nuclear polarization.

Future Experiments

Comparison of polarization measured using EDMR vs EPR at different intensitiesof light (Hg discharge) at T = 3 K.

Hg discharge has higher spectral temperature, yielding higher polarizations(P=-24% at 3K vs -6% at 3K for Xe lamp) independent of intensity for most part.

Polarization with ESR 45% that measured with EDMR

Experimental - EDMR vs. ESR