experiment 8 ∙ acid–base titration - boston...

14
Experiment 8 ∙ Acid–base titration 8‐1 Name___________________________________________________________Lab Day__________Lab Time_________ Experiment 8 ∙ Acid–base titration Pre‐lab questions Answer these questions and hand them to the TF before beginning work. (1) What is the purpose of this experiment? _________________________________________________________________________________________________________ _________________________________________________________________________________________________________ (2) What is the molar concentration of H 3 O + in a solution whose pH is equal to 2? _________________________________________________________________________________________________________ _________________________________________________________________________________________________________ (3) You will titrate a solution of an unknown acid (HX(aq)) by adding NaOH(aq). Suppose that 25 mL of 0.5 M NaOH(aq) is needed to reach the equivalence point. How many moles of HX were present initially? Show the calculation. (4) You will titrate acid solutions by adding 0.2–0.3‐mL or 2–3‐mL portions of NaOH(aq). When should you add the smaller volume? _________________________________________________________________________________________________________ _________________________________________________________________________________________________________ (5) The concentration of an aqueous solution of NaOH cannot be accurately determined by dissolving a known mass of NaOH(s) in a known volume of water: Why? _________________________________________________________________________________________________________ _________________________________________________________________________________________________________

Upload: others

Post on 20-Mar-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐1

Name___________________________________________________________LabDay__________LabTime_________Experiment8∙Acid–basetitrationPre‐labquestionsAnswerthesequestionsandhandthemtotheTFbeforebeginningwork.(1)Whatisthepurposeofthisexperiment?__________________________________________________________________________________________________________________________________________________________________________________________________________________(2)WhatisthemolarconcentrationofH3O+inasolutionwhosepHisequalto2?__________________________________________________________________________________________________________________________________________________________________________________________________________________(3)Youwilltitrateasolutionofanunknownacid(HX(aq))byaddingNaOH(aq).Supposethat25mLof0.5MNaOH(aq)isneededtoreachtheequivalencepoint.HowmanymolesofHXwerepresentinitially?Showthecalculation.(4)Youwilltitrateacidsolutionsbyadding0.2–0.3‐mLor2–3‐mLportionsofNaOH(aq).Whenshouldyouaddthesmallervolume?__________________________________________________________________________________________________________________________________________________________________________________________________________________(5)TheconcentrationofanaqueoussolutionofNaOHcannotbeaccuratelydeterminedbydissolvingaknownmassofNaOH(s)inaknownvolumeofwater:Why?__________________________________________________________________________________________________________________________________________________________________________________________________________________

Page 2: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐2

Experiment8

Acid–basetitration

MathematicaldevelopmentAcids and bases are indispensable fixtures of daily life. Acidscanberecognizedby theirsharp taste.The tartnessof lemonjuice is causedbycitricacid, the sournessofwineby tartaricacidandmalonicacid.Bases,ontheotherhand,arecharacter‐izedbyabitter taste.Moderately concentratedaqueous solu‐tions of bases such as household ammonia (NH4OH(aq)) ex‐hibitaslimy,slippery feel.Manybasesarephysiologicallyac‐tiveandacutelytoxic.Cigarettesmokerscravethe“buzz”fromthe base nicotine. The sentence of execution exacted on theGreekphilosopher Socrates (his crimewas that of corruptingthe young) consisted of his being forced to drink hemlock,whichcontainsthedeadlybaseconiine.pKaandpHAcidsandbasesarepartners.Anacid,genericallyrepresentedbyHA,isaproton(H+)donor,whereasabase,genericallyrep‐resented by B, is a proton acceptor. When acids and basescombine,theyswapaproton:

HA+B A–+HB+Strong acids (e.g., sulfuric acid) have a very pronounced ten‐dencytotransferaprotontoabasewhereasweakacids(e.g.,water) give up a proton much less readily. Acid strength is

Page 3: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐3

quantifiedbymeasuringtheequilibriumconstantof thereac‐tionofanacidwithwater,whichactsasabase:

HA(aq)+H2O(l) A–(aq)+H3O+(aq)

Keq = Ka =[A−(aq)][H3O

+(aq)][HA(aq)]

This equilibrium constant (called the “acid‐dissociation con‐stant”)isgiventhespecialsymbolKa.AstrongacidexhibitsalargevalueofKawhereastheKaofaweakacidisgenerallylessthanunity(1).Becauseacidstrengthvariesoveranenormousintervalofmorethan60ordersofmagnitude,rangingfromthe“superacid”hydroiodicacid(HI,Ka=1011)totheexceedinglyweakacidmethane(CH4,Ka=10–50),andbecausewe like toavoid scientific notation, it is usual to refer to an acid’s pKaratherthantoitsKa.ThepKaisrelatedtotheKabythedefini‐tion

pKa=–log10KaThus, HI (Ka = 1011) has a pKa of –11, whereas CH4 (Ka =10–50)hasapKaof50. Thepracticeofreferringtoanacid’spKaratherthantoitsKaisanalogoustothecustomofreferringtothemolarconcen‐trationofH3O+(aq)bypH:

pH=–log10[H3O+(aq)]Asolutionthatis1MinH3O+(aq)hasapHofzero,whereasasolutionthatis10–14MinH3O+(aq)hasapHof14. The relationshipbetweenpHandpKa is expressedby theHenderson–Hasselbalchequation(Eqn.8‐1):

[A−(aq)][HA(aq)]

=10pH−pKa (Eqn.8‐1)

Eqn. 8‐1 states that there is more HA(aq) than A–(aq) whenpH<pKaandmoreA–(aq)thanHA(aq)whenpH>pKa.When

Page 4: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐4

pH=pKa,[HA(aq)]=[A–(aq)](seeFigure8‐1foraspecificex‐ampleofthisbehavior).Acid–basetitrationcurvesIn this experiment you titrate an aqueous solution of an un‐knownacid(HX(aq))byaddinganaqueoussolutionofthebaseOH–(aq);thebalancedreactionis

HX(aq)+OH–(aq)X–(aq)+H2O(l)When the pH of the solution containing the unknown acid isplottedasafunctionofthevolumeofOH–(aq)added,thedataformsanacid–basetitrationcurve.Suchacurvehasthreere‐gions:(1)a fairly flat“buffered”regionat lowpH;(2)asteep“equivalence point” region at intermediate pH; (3) a secondfairlyflat“unbuffered”regionathighpH.Figure8‐2showsthetitrationcurvethatresultswhena25.00‐mLsamplecontaining0.815 g of an unknown acid HX is titrated against 0.500M

Figure8‐1Therelativeamountsofaceticacid(abbreviatedAcOH,pKa=4.75)andacetateion(abbreviatedAcO–)asafunctionofpHascalculatedbyEqn.8‐2.AcOHdominateswhenpH<4.75whereasAcO–dominateswhenpH>4.75.WhenpH=4.75,thereareequalamountsofAcOHandAcO–.

Page 5: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐5

NaOH(aq).Let’sdiscussthechemistrythattakesplaceineachofthesethreeregionsandlet’salsodemonstratehowthemo‐larmassMandthepKaoftheunknownacidcanbeextractedfromthedata.BufferedregionatlowpHEvenbeforeanyOH–(aq)isaddedtothesolution,someoftheunknownacidreactswithwater(aweakbase)accordingtothebalancedequation

HX(aq)+H2O(l)X–(aq)+H3O+(aq)to the extent that the solution in Figure 8‐2 exhibits a pH of2.73,thatis,[H3O+(aq)]=10–2.73M=1.87×10–3M.WhenOH–(aq)isaddedtothesolution,thereaction

HX(aq)+OH–(aq)X–(aq)+H2O(l)

Figure8‐2Titrationof25.00mLofasolutioncontaining0.815gofanunknownacidHXagainst0.500MNaOH(aq).Attheequivalencepoint(locatedatthemidpointofthesteeplyincreasingregionofthecurve),thecumulativevolumeVeofOH–(aq)addedcontainsasmanymolesofOH–asthereweremolesofHXinitiallypresent.ThepKaofHXequalsthepHatVe/2.

Page 6: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐6

begins tooccur.ThepH increases,butonlymodestlybecausethe simultaneous presence of HX(aq) and X–(aq) produces abuffersolutionthatresistschangesinpH.EquivalencepointregionatintermediatepHEventually somuchOH–(aq) is added to the solution that thesupplyofHX(aq)becomesexhaustedandthebufferingcapac‐ityof thesolutioncollapses; thus, thepHrisessharply.At theequivalence point, which is located at the midpoint of thesteeplyincreasingregionofthetitrationcurve,thecumulativevolumeVeofOH–(aq)addedcontainsasmanymolesofOH–asthere were moles of HX initially present. In Figure 8‐2 theequivalencepointoccurswhen13.8mLof0.500 MOH–(aq)isaddedandthesolutionhasapHof8.2. Locating the equivalence point allows us to calculate themolarmassMandthepKaofanunknownacidHX.Thenum‐berofmolesofOH–needed toreach theequivalencepoint inFigure8‐2isgivenby

0.0138LOH–⎛

⎝ ⎜

⎠ ⎟ 0.500molOH–

LOH–⎛

⎝ ⎜

⎠ ⎟ =0.00690molOH–

implyingthatthe0.815gofHXinitiallypresentcorrespondsto0.00690molofHX.ThemolarmassofHXisthus

0.815gHX0.00690molHX

=118g/mol

Recall that Eqn. 8‐1 says that [HX(aq)] = [X–(aq)] whenpH=pKa.At theequivalencepoint (Ve), all of theHX initiallypresentisdepleted.WhenavolumeofNaOH(aq)equaltoVe/2isadded,one‐halfoftheunknownacidmoleculesinitiallypre‐sent have reacted to form X– but one‐half still exists as HX.Thus,thepKaofHXisequaltothepHofthesolutionatVe/2.ThepHatVe/2=6.9mLinFigure8‐2is4.8;thus,thepKaofHXis4.8.

Page 7: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐7

UnbufferedregionBeyondtheequivalencepoint,OH–isbeingaddedtoasolutionthatnolongercontainsanyHX.Thereaction

HX(aq)+OH–(aq)X–(aq)+H2O(l)nolongeroccursandtheincreaseinpHisattributabletosim‐plyaddingOH–(astrongbase)tothesolution.ProcedurePreparationofH2C2O4(aq)Recordingmasstotwodecimalplaces,weighoutabout3gofoxalic acid dihydrate (H2C2O4·2H2O(s), M = 126.07g/mol)ontoataredweighingboat.TransfertheH2C2O4·2H2O(s)toa100‐mLvolumetricflask.Rinsetheweighingboatandtheneckoftheflaskwithdeionizedwaterfromawashbottle;youwantto get every last bit of H2C2O4·2H2O(s) into the volumetricflask.Fill the flaskhalf‐fullwithdeionizedwaterand swirl todissolve the solid; this may take some time and extensiveswirling.WhentheH2C2O4·2H2O(s)hascompletelydissolved,addwateruntilthesolutionreachestheneckoftheflask.Usingadroppercarefullyaddmorewateruntilthebottomoftheliq‐uidlevelreachestheringetchedontheneckoftheflask.Yes,ifyoupassthemark,youmustdiscardthesolutioninahazard‐ous‐waste container and begin again. Invert the flask severaltimestomix.CalculatethemolarityofMH2C2O4ofoxalicacidinthesolution.PreparationofNaOH(aq)Sodiumhydroxide(NaOH(s),M=40.00g/mol)pelletspickupunknown amounts ofwater and carbon dioxide from the air.Thus, it is impossible tomakeupanNaOHsolutionofknownconcentrationbysimplyweighingoutthesolidanddissolvingitinwater.TheexactconcentrationoftheNaOHsolutionisde‐termined by titrating it against theH2C2O4 (aq) solution youprepared.

Page 8: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐8

Obtain a clean and dry plastic 500‐mL screw‐cap bottle.Weighthebottletotwodecimalplaces.Weighoutabout10gofsodiumhydroxidepellets;besuretorecordthemasstotwodecimalplaces.TransfertheNaOHpelletstotheplasticbottleandfillitwithdeionizedwater.Swirlandshakethebottleuntilthepelletsarecompletelydissolved.MeasuringpHusingtheBeckman340pHmeterTheprogressof theacid–base titrationsconducted in thisex‐periment ismonitoredusing theBeckman340pHmeter(seeFigure8‐3).FollowthesestepstousethepHmeter: •Turnthepoweron. •Pushthe“READ”buttonbeforetakingapHmeasurement.ThepHmeterisconnectedtoafragileandexpensiveelectrodethatwillprobablybe immered inayelloworredbuffersolu‐tion.Theelectrodecannoteverbeallowedtodryout!Keepit immersed in the redor yellowbuffer solutionwhennot inuse.Donotdroptheelectrode,knockitagainstthewallsorbottom of flasks, or use it as a stirrer! The yellow or redbuffer solution does not interfere with the experiment: anydropsoftheyelloworredbuffersolutionclingingtotheelec‐trodedonotneedtobeknockedofftheelectrodebeforeuse.TitrationofNaOH(aq)againstH2C2O4(aq)The exact concentration of theNaOH(aq) solution is nowde‐termined by titrating it against the H2C2O4(aq) solution youprepared.PrepareaburetteforNaOH(aq)solutionandfillthepreparedburettewiththatsolution.Recordtheinitialvolumereadingontheburettetotwodecimalplaces.Preparea25‐mLvolumetric pipette for H2C2O4(aq) solution. Using a pipettepump,transferexactly25.00 mLofH2C2O4(aq)solutionintoaclananddry125‐mLErlenmeyerflask.,immersetheelectrodeintheH2C2O4(aq)solutionandrecordthepH. Openthestopcockandadd2–3mLofNaOH(aq)solutiontotheH2C2O4(aq)intheErlenmeyerflask.Closethestopcockandswirl the solution. Record the pH and the volume reading ontheburettetotwodecimalplaces.Youshouldobserveamod‐estpHincreaseof0.1–0.2unitsbecauseyouareinthebuffered

Figure8‐3TheBeckman340pHmeteranditsas‐sociatedelectrode.

SomeofthepHmeasure‐

ments,especiallythefirstfew

inthebufferedregion,are

subjecttodrift.Althoughan‐

noying,driftdoesnotcom‐

promisethequalityofthedata

aslongasyouobservea

steadyincreaseinpHas

NaOH(aq)solutionisadded.

Page 9: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐9

region of the titration curve. Continue adding 2–3 mL ofNaOH(aq), closing the stopcock, swirling the solution aftereachaddition,recordingpHandrecordingthevolumereadingontheburette. Eventually, theadditionof2–3mLofNaOH(aq)willcausethepH to increaseby0.5unitsormore:youareentering theequivalencepointregionof thetitrationcurve.Drasticallyde‐creasethevolumeoftheNaOH(aq)additionstothesolutioninthe Erlenmeyer flask: try adding no more than 0.2–0.3mL,swirling, recording pH, and recording the volume reading ontheburetteasbefore. If adding0.2–0.3mLofNaOH(aq)doesnot result in apHincrease of 0.5 units ormore, youmay have recorded an ex‐perimentalartifactthatwewillcalla“falsejump”:stopadding0.2–0.3 mL of NaOH(aq) and go back to adding 2–3mL ofNaOH(aq), swirling, recording pH, and recording the volumereadingontheburetteasbefore.Torepeat:Theonlytimetheadditionof0.2–0.3mLofNaOH(aq)isappropriateisafteryouseeapHjumpof0.5unitormore.IfthepHeverjumpsby0.5unitorless,yournextadditionofNaOH(aq)shouldbe2–3mL. Eventually,theadditionof0.2–0.3mLNaOH(aq)willbringaboutaverylargepHincrease(≥ 5units):youhavepassedtheequivalencepointofthetitrationcurveandarenowintheun‐buffered region. Once the equivalence point is exceeded, it’ssafe to go back to adding 2–3mL of NaOH(aq), swirling, re‐cordingpH,andrecordingthevolumereadingontheburette.Getting plenty of data beyond the equivalence point iscritical to the success of the experiment. Do not abandonthetitrationafteryouhavepassedtheequivalencepoint. Repeat the titration on a fresh 25.00‐mL sample ofH2C2O4(aq). Youwant to calculate themolarity of NaOH(aq)fromanaverageofatleasttworuns.CalculatingthemolarityofNaOH(aq)After completing the first titration of H2C2O4(aq) againstNaOH(aq),plotthedatayoujustcollected:youwanttocalcu‐late the molarity of NaOH(aq).Do not wait to prepare theplotathomeafterlab!IfthemolarityoftheNaOH(aq)issig‐

Page 10: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐10

nificantlydifferent from0.5M, you’vedonesomethingwrongandremedialactionmustbetakenimmediately. PlotthecumulativevolumeofNaOH(aq)addedalongthexaxis and pH along the y axis. Connect the points; the plotsshould resemble Figure 8‐4. Draw a line through the datapoints that lie on the gently sloping segmentsof the titrationcurveatlowpHandathighpH.Thetwolinesshouldideallybeparalleltoeachother.Nowdrawathirdlineparalleltoandlo‐catedmidway between the first two. The point at which thecenterlineintersectsthetitrationcurvecorrespondstoVe,thevolumeofNaOH(aq)attheequivalencepoint.InFigure8‐4,Veisequalto24.5mL. BecausetwomolesofNaOHareneededtoreactcompletelywithonemoleofH2C2O4accordingtothebalancedequation

H2C2O4(aq)+2NaOH(aq)→Na2C2O4(aq)+2H2O(l)

Figure8‐4Hypotheticaldataofthetitrationof25.00mLof0.247MH2C2O4(aq)against0.504MNaOH(aq).Drawlinesthroughthedatapointslyingontheslopingsegmentsoftheti‐trationcurveatlowpHandathighpH.Drawathirdlineparalleltoandmidwaybetweenthefirsttwo.ThepointatwhichthecenterlineintersectsthetitrationcurvecorrespondstoVe,thevolumeofNaOH(aq)attheequivalencepoint.Inthefigure,Veisequalto24.5mL.

Page 11: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐11

the molarityMNaOH of NaOH(aq) is computed using the for‐mula

MNaOH =2MH2C2O4VH2C2O4

Ve (Eqn.8‐2)

where MH2C2O4 is the molarity of the H2C2O4(aq) solution,VH2C2O4 is the volume ofH2C2O4(aq) taken for titration (i.e.,0.02500L if you follow instructions) andVe is the volume inlitersofNaOH(aq)requiredtoreachtheequivalencepoint.TitrationofanunknownacidWeighaplasticweighingboattotwodecimalplaces.Recordingmasstotwodecimalplaces,transfer2–5gofanunknownacidtotheweighingboat.Besuretorecordthecodenumberoftheunknown.Transfertheunknownacidtoa100‐mLvolumetricflask. Rinse theweighing boat and the neck of the flaskwithdeionizedwaterfromawashbottle;youwanttogeteverylastbitofunknownacidintothevolumetricflask.Filltheflaskhalf‐fullwith deionizedwater and swirl to dissolve the solid; thismaytakesometimeandextensiveswirling.Whenthethesolidhascompletelydissolved,addwateruntilthesolutionreachestheneckoftheflask.Usingadroppercarefullyaddmorewateruntil thebottomoftheliquidlevelreachestheringetchedontheneckof the flask.Yes, ifyoupass themark,youmustdis‐card the solution in a hazardous‐waste container and beginagain.Inverttheflaskseveraltimestomix. Using the same technique that you employed in the titra‐tion of NaOH(aq) against H2C2O4(aq), titrate 25.00‐mL sam‐ples of the unknown acid solution against NaOH(aq) at leasttwice.YouwanttocalculatethemolarmassMandthepKaofthe unknown acid from an average of at least two runs. Ofcourse,perform the second titrationona fresh sampleof theunknownacidsolution.Don’tforgettodecreasetheamountofNaOH(aq) added to the unknown acid solution as you ap‐proach the eqivalence point and be sure to record plenty ofdataafter theequivalencepoint isexceeded.Also,bemindfuloftheannoying“falsejump”phenomenon.

Page 12: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐12

DataanalysisEmployingthethree‐linetechniquedescribedearliertodeter‐minethemolarityofNaOH(aq),forbothofyourrunsinwhichyou titrated theunknownacid solution find thevolumeVe inlitersofNaOH(aq)thatcorrespondstotheequivalencepointofthetitration. TheunknownacidHXandNaOHreactaccordingtothebal‐ancedequation

HX(aq)+NaOH(aq)→NaX(aq)+H2O(l)The number of moles nNaOH of NaOH required to reach theequivalencepointisthusgivenby

nNaOH=MNaOHVewhereMNaOHisthemolarityofNaOHinunitsofmolesperli‐ter. Because of the one‐to‐one stoichiometry of the reaction,nNaOHisalsoequaltothenumberofmolesofunknownacidinthe 25.00‐mL sample of unknown acid solution that you ti‐trated.But recall, however, that the25.00‐mL samples of un‐knownacidsolutionrepresentonly1/4ofthe100‐mLvolumeofunknownacidsolutionyouprepared;thus,thetotalnumberofmolesnHXofHXyouweighedoutisgivenby

nHX=4nNaOH=4MNaOHVeDividing themassmHXofunknownacidyoudissolvedby thetotal number of moles nHX of unknown acid gives themolarmassMHXoftheunknownacid.Insummary,then,

MHX =mHX

4MNaOHVe (Eqn.8‐3)

TofindthepKaoftheunknownacid,dividethevolumeVebytwo.ThepHthattheunknownacidsolutionexhibitsatVe/2correspondstothepKaoftheunknownacid.

Page 13: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐13

Name___________________________________________________________LabDay__________LabTime_________Experiment8∙Acid‐basetitrationLabreportform Page1(I.A)ReportthemassofH2C2O4·2H2O(s)(M=126.07g/mol)taken=______________________g(I.B)ShowthecalculationofMH2C2O4,theconcentrationofH2C2O4(aq)inunitsofmoleperliteroftheH2C2O4(aq)solutionyouprepared.(I.C)ReportthemassofNaOH(s)taken=_______________________________________________________g(II.A) On separate sheets, present plots of the data collected during the titrations ofH2C2O4(aq)againstNaOH(aq).PlotthecumulativevolumeofNaOH(aq)addedalongthexaxisandpHalongtheyaxis.Prepareaseparateplotforeachrun.Giveeachplotatrulyin‐formativetitle(i.e.,don’tjustcallit“Run1”),labeltheaxes,andincludeappropriateunitsanddivisionsofthoseaxes.Donotsubmitsmallplots:useawholesheetofpaper.Scalethehorizontal and vertical axes so that the data points occupymost of the area of the plot.DrawthethreelinesneededtodeterminetheequivalencepointVe(seeFigure8‐4)andin‐dicatethelocationofVeontheplot.(II.B) Report themolarityMNaOH of NaOH(aq) calculated according to Eqn. 8‐2 and themeanmolarityofNaOH(aq).

MNaOH =2MH2C2O4VH2C2O4

Ve (Eqn.8‐2)

Run MH2C2O4

[mol/L]VH2C2O4[L]

Ve[L]

MNaOH[mol/L]

1

2

mean

Page 14: Experiment 8 ∙ Acid–base titration - Boston Universityquantum.bu.edu/courses/ch131-summer-1-2018/lab/exp08-Acid-base titration.pdf · Experiment 8 ∙ Acid–base titration 8‐2

Experiment8∙Acid–basetitration 8‐14

Name___________________________________________________________LabDay__________LabTime_________Experiment8∙Acid‐basetitrationLabreportform Page2(III.A)Reportthecodenumberoftheunknownacid=__________________________________________(III.B)ReportthemassmHXofunknownacidtaken=__________________________________________g(IV.A)Onseparatesheets,presentplotsofthedatacollectedduringthetitrationoftheun‐knownacidagainstNaOH(aq).PlotthecumulativevolumeofNaOH(aq)addedalongthexaxisandpHalongtheyaxis.Prepareaseparateplotforeachrun.Giveeachplotatrulyin‐formativetitle(i.e.,don’tjustcallit“Run1”),labeltheaxes,andincludeappropriateunitsanddivisionsofthoseaxes.Donotsubmitsmallplots:useawholesheetofpaper.Scalethehorizontal and vertical axes so that the data points occupymost of the area of the plot.DrawthethreelinesneededtodeterminetheequivalencepointVe(seeFigure8‐4)andin‐dicatethelocationofVeontheplot.IndicatethepKaoftheunknownontheplot.(IV.B)Report themolarmassMHXof theunknownacidcalculatedaccordingtoEqn.8‐3,thepKaoftheunknownacid,andthemeanvaluesofMHXandpKa.

MHX =mHX

4MNaOHVe (Eqn.8‐3)

Run mHX

[g]MNaOH[mol/L]

Ve[L]

MHX[g/mol]

pKa

1

2

mean

Post­labquestions(1)Circlethecompoundthatmostcloselymatchesyourunknownacid.Acid M pKa Acid M pKaBoricacid 61.8 9.14 trans‐Crotonicacid 86.1 4.69Malicacid 134.1 3.40 Glutamicacid 147.1 4.25L‐Ascorbicacid 176.1 4.17 Potassiumhydrogenphthalate 204.2 5.513‐Iodobenzoicacid 248.0 3.80