evla corr codr panel report v6 - national radio astronomy ......adder 4-s ta ion compl exmi r +...

42
Architecture Walk-through National Research Council Canada Conseil national de recherches Canada EVLA Correlator Conceptual Design Review

Upload: others

Post on 05-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Architecture Walk-through

    National Research CouncilCanada

    Conseil national de recherchesCanada EVLA Correlator Conceptual Design Review

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    2

    Outline

    • Overview.

    • Board descriptions.

    • System design issues.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    3

    OVERVIEW

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    4

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    5

    Fibre WDMDemodulators

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board

    WidebandAutocorrelator

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    6

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    Fibre WDMDemodulators

    Sub-band Distributor Backplane

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    TIMECODEGeneratorBox (TGB)

    Reference Clock

    Reference Time Tick

    TIMECODE(s) + CLOCK(s)

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board Master Slave 1 Slave 2 Slave 3

    WidebandAutocorrelator

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    7

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    Fibre WDMDemodulators

    Sub-band Distributor Backplane

    StationDataFanoutBoard

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    TIMECODEGeneratorBox (TGB)

    Reference Clock

    Reference Time Tick

    TIMECODE(s) + CLOCK(s)

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board

    Retiming/Drivers

    Master Slave 1 Slave 2 Slave 3

    WidebandAutocorrelator

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    8

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    Fibre WDMDemodulators

    Sub-band Distributor Backplane

    BaselineEntryBackplane

    StationDataFanoutBoard

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    TIMECODEGeneratorBox (TGB)

    Reference Clock

    Reference Time Tick

    TIMECODE(s) + CLOCK(s)

    Baseline Board

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board

    Retiming/Drivers

    8 'X

    ' Rec

    ircu

    latio

    n C

    ontr

    olle

    rs

    8 'Y' Recirculation Controllers

    8 x 8Correlator Chip

    and LTA ControllerMatrix

    MCBInterfaceModuleEt

    hern

    et

    -48 VDC to1.8V , 2.5VPOWERSUPPLY

    FPDPI/F(s)

    Master Slave 1 Slave 2 Slave 3

    WidebandAutocorrelator

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    9

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    4-StationComplex Mixer

    + 1st Stage

    Adder

    48-S

    tatio

    n D

    ata

    Ent

    ry C

    onne

    ctor

    s

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    Pow

    erC

    onne

    ctor

    MCBInterfaceModule

    Fibre WDMDemodulators

    Sub-band Distributor Backplane

    BaselineEntryBackplane

    StationDataFanoutBoard

    PhasingBoardEntryBackplane

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    TIMECODEGeneratorBox (TGB)

    Reference Clock

    Reference Time Tick

    TIMECODE(s) + CLOCK(s)

    Baseline Board

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board

    Retiming/Drivers

    8 'X

    ' Rec

    ircu

    latio

    n C

    ontr

    olle

    rs

    8 'Y' Recirculation Controllers

    8 x 8Correlator Chip

    and LTA ControllerMatrix

    MCBInterfaceModuleEt

    hern

    et

    -48 VDC to1.8V , 2.5VPOWERSUPPLY

    FPDPI/F(s)

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    (5)Sub-array2nd-Stage

    Adders

    FIRFilterBank

    Sw

    itch

    Phasing Board

    Master Slave 1 Slave 2 Slave 3

    WidebandAutocorrelator

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    10

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    4-StationComplex Mixer

    + 1st Stage

    Adder

    48-S

    tatio

    n D

    ata

    Ent

    ry C

    onne

    ctor

    s

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    Pow

    erC

    onne

    ctor

    MCBInterfaceModule

    Fibre WDMDemodulators

    Sub-band Distributor Backplane

    BaselineEntryBackplane

    StationDataFanoutBoard

    PhasingBoardEntryBackplane

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    TIMECODEGeneratorBox (TGB)

    Reference Clock

    Reference Time Tick

    TIMECODE(s) + CLOCK(s)

    Finalsynchronization

    and VLBI recorderinterface

    VLBIRecorder(s)

    Phased outputfeedback

    synchronization

    To phased-VLAStation Board

    input(s)

    Baseline Board

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board

    Retiming/Drivers

    8 'X

    ' Rec

    ircu

    latio

    n C

    ontr

    olle

    rs

    8 'Y' Recirculation Controllers

    8 x 8Correlator Chip

    and LTA ControllerMatrix

    MCBInterfaceModuleEt

    hern

    et

    -48 VDC to1.8V , 2.5VPOWERSUPPLY

    FPDPI/F(s)

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    (5)Sub-array2nd-Stage

    Adders

    FIRFilterBank

    Sw

    itch

    Phasing Board

    Master Slave 1 Slave 2 Slave 3

    WidebandAutocorrelator

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    11

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR-80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MDR

    -80

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    4-StationComplex Mixer

    + 1st Stage

    Adder

    48-S

    tatio

    n D

    ata

    Ent

    ry C

    onne

    ctor

    s

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    Pow

    erC

    onne

    ctor

    MCBInterfaceModule

    Fibre WDMDemodulators

    Sub-band Distributor Backplane

    BaselineEntryBackplane

    StationDataFanoutBoard

    PhasingBoardEntryBackplane

    Network Switches

    Host/Control

    Computers;Archiving

    Antennas:Receivers,Samplers,Fibre WDM

    FOTS

    PC/CPCI

    FPDP I/Fs

    TIMECODEGeneratorBox (TGB)

    Reference Clock

    Reference Time Tick

    TIMECODE(s) + CLOCK(s)

    Finalsynchronization

    and VLBI recorderinterface

    VLBIRecorder(s)

    Phased outputfeedback

    synchronization

    To phased-VLAStation Board

    input(s)

    Baseline Board

    PC/CPCI

    PC/CPCI

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    MCBInterfaceModuleEt

    hern

    et

    Fibre-OpticReceiverModule

    DELAY

    DELAY

    FIRFilterBank

    FIRFilterBank

    Sw

    itch

    Sw

    itch

    Timing

    Station Board

    Retiming/Drivers

    8 'X

    ' Rec

    ircu

    latio

    n C

    ontr

    olle

    rs

    8 'Y' Recirculation Controllers

    8 x 8Correlator Chip

    and LTA ControllerMatrix

    MCBInterfaceModuleEt

    hern

    et

    -48 VDC to1.8V , 2.5VPOWERSUPPLY

    FPDPI/F(s)

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

    (5)Sub-array2nd-Stage

    Adders

    FIRFilterBank

    Sw

    itch

    Phasing Board

    Master Slave 1 Slave 2 Slave 3

    WidebandAutocorrelator

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    4-StationComplex Mixer

    + 1st Stage

    Adder

    4-StationComplex Mixer

    + 1st Stage

    Adder

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    12

    STATION BOARD

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    13

    F ib erD em o d u lat o r

    F ib erD em o d u lat o r

    Def

    orm

    attin

    g,S

    ynch

    roni

    zatio

    n,B

    ER

    T R

    x/Tx

    Co

    nn

    ect

    or

    A1HzAC LK

    Data(64)

    FOTS Rx Module - R

    DVALID

    TIM

    EC

    OD

    ER

    CLK

    D at a P at hS wit ch

    +L ev el C o n t ro l

    +B ER T R X/T X

    A1HzAC LK

    DVALID

    AC LK

    D V A LI D

    A1Hz

    F ib erD em o d u lat o r

    F ib erD em o d u lat o r

    Def

    orm

    attin

    g,S

    ynch

    roni

    zatio

    n,B

    ER

    T R

    x/Tx

    Co

    nn

    ect

    or

    A1HzAC LK

    Data(64)

    FOTS Rx Module - L

    DVALID

    TIM

    EC

    OD

    ER

    CLK

    Fine DelayController

    +STATE Cnts

    +BERT Rx

    Con

    nect

    or

    SDRAM64M x 72

    Con

    nect

    or

    Delay/Memory

    Controller

    A1Hz

    DVALIDDVALID

    RC LK

    Coarse Delay Module - L

    ACLKTIMECODE

    Connector

    D at a P at hS wit ch

    +L ev el C o n t ro l

    +B ER T R X/T X

    A1HzAC LK

    DVALID

    AC LK

    D V A LI D

    A1Hz

    Fine DelayController

    +STATE Cnts

    +BERT Rx

    DVALID

    DVALID

    8sb0

    8sb1

    8sb2

    8sb3

    8sb4 sb5 sb6 sb7

    8sb8

    8sb9

    8sb10

    8sb11

    8sb12 sb13 sb14 sb15

    8 8 8

    8 8 8

    Gat

    ing,

    STA

    TE C

    nts,

    pC

    al +

    For

    mat

    ting

    Cross-barSwitch

    4

    F.P

    . Rad

    arO

    UTP

    UT-

    L

    Fo

    rma

    t,S

    am

    ple

    clo

    ckg

    en

    .

    Data

    CLK

    TickR C LK

    TIM EC OD E

    F IRF P G A

    4

    D VALID

    D VALID

    Lsb0-7

    Lsb8-15Lsb-radar

    R ef /C al F ilt er

    L-Su

    b-ba

    nd C

    onne

    ctor

    LsbO-0LsbO-1LsbO-2LsbO-3LsbO-4LsbO-5LsbO-6LsbO-7LsbO-8LsbO-9

    LsbO-10LsbO-11LsbO-12LsbO-13LsbO-14LsbO-15LsbO-16LsbO-17Pu lsar T im er

    +16 G at e G en .

    8 X DelayGenerator

    D U M P T R IG G en .+

    PH ASEM O D G en .+

    F o rm at t in g /T im in g

    1

    Tim

    ing/

    Con

    trol

    Con

    nect

    or

    CLOC KD UM PTR IGD ELAYM ODPH ASEM ODTIM EC ODE

    CLOCK-INTIM EC ODE-IN

    R C LKT IM EC OD E

    D ELAYM OD

    D ELAY-RD ELAY-L

    RC LKT IM EC OD E

    R C LKTIM EC ODE

    R C LKTIM EC OD E

    DELAY-L

    -48 VDC to1.8V, 2.5VPOWERSUPPLY

    Pow

    erC

    onne

    ctor

    LCP FIR Filter Bank

    NarrowbandRadar Filter

    R-F

    iber

    Con

    nect

    ors

    L-Fi

    ber C

    onne

    ctor

    s

    Config/Status

    Config/Status

    Config/Status

    Config/Status

    Burs tI/F

    Blank ing

    WidebandAutocorrelator

    FPGA

    MCBInterfaceModule

    LocalAddress /Data Bus

    Eth

    erne

    t

    Con

    nect

    or

    SDRAM64M x 72

    Con

    nect

    or

    Delay/Memory

    Controller

    A1Hz

    DVALIDDVALID

    RC LK

    Coarse Delay Module - R

    ACLKTIMECODE

    Connector

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF P G A

    F IRF P G A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF P G A

    F IRF PG A

    FIRFPGA

    8sb0

    8sb1

    8sb2

    8sb3

    8sb4 sb5 sb6 sb7

    8sb8

    8sb9

    8sb10

    8sb11

    8sb12 sb13 sb14 sb15

    8 8 8

    8 8 8

    Gat

    ing,

    STA

    TE C

    nts,

    pC

    al +

    For

    mat

    ting

    Cross-barSwitch

    4

    F.P

    . Rad

    arO

    UTP

    UT-

    R

    Fo

    rma

    t,S

    am

    ple

    clo

    ckg

    en

    .

    Data

    CLK

    TickR C LK

    TIM EC OD E

    F IRF P G A

    4

    R sb0-7

    R sb8-15R sb-radar

    R ef /C al F ilt er

    R-S

    ub-b

    and

    Con

    nect

    or

    R sbO-0R sbO-1R sbO-2R sbO-3R sbO-4R sbO-5R sbO-6R sbO-7R sbO-8R sbO-9R sbO-10RsbO-11RsbO-12RsbO-13RsbO-14RsbO-15RsbO-16RsbO-17Pu lsar T im er

    +16 G at e G en .

    RC LKT IM EC OD E

    R C LKTIM EC OD E

    D ELAY-R

    RCP FIR Filter Bank

    NarrowbandRadar Filter

    Burs tI/F

    Blank ing

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF P G A

    F IRF P G A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF PG A

    F IRF P G A

    F IRF PG A

    FIRFPGA

    Ext

    erna

    lB

    lank

    ing

    • Each Station Board handlesone baseband pair (2 x 2 GHz= 4 GHz), 4 bits/sample.

    • 8 bits/sample possible with1/2 bandwidth.

    • Two banks of 18 poly-phaseFIR filters: each oneindependent in width andplacement in the baseband.

    • Input 64-bit, 256 Ms/s “datahighway” could be reassignedto multiple basebands.

    • Generates all timing, dumpcontrol, delay, and phase fordownstream processing.

    • Use SDRAM for >10k kmbaselines.

    • Output switch for flexibility.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    14

    SUB-BAND DISTRIBUTORBACKPLANE

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    15

    200

    pin

    type

    E

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    200-pin type Emale headers(opposite side)

    80-pin MDR headers(sub-band data out x 18)

    -48VDC main powerconnectors

    48VDC blind-mateheaders (opposite side)

    TIMECODE+ CLOCK entryheader

    ~9.75" (6U)

    ~9.75"

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    16

    200

    pin

    type

    E

    MD

    R-8

    0

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    #1 (Master) #2 #3 #4

    Each MDR-80 connectorcontains one sub-band from all8 basebands (8 x 4-bits).

    (+ TIMECODE + DUMPTRIG,+ PHASEMOD, +DELAYMOD + CLOCK)

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    17

    STATION DATA FANOUTBOARD

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    18

    Station Data Fanout Board• Fans data out to

    Baseline Boardswithin a BaselineRack.

    • For 32 stations, afanout of 4 isrequired, 40 stationsrequires a fanout of5, 48 stations afanout of 6.

    • Also fans data out toPhasing Boards, andexpansion boards.

    8 16 24 32 40 48

    8

    16

    24

    32

    40

    48

    8 x 8 correlatorparallelogram(Baseline Board)

    1

    2

    3 4 5 6

    17

    Station #17distribution

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    19

    XCV50E-FG256C

    DA

    TEL

    UN

    R-3

    .3/8

    -D5

    (3.3

    V @

    8 A

    )

    DATELUNR-1.8/2-D5SM(1.8V @ 2A)

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    1.8V and 3.3VDC-DC powersupplies

    Input MDR-80Header (oppositeside)

    LVDSReceivers

    RetimingFPGA

    LVDSDrivers Output MDR-80

    Headers

    Opposite sideholes forexpansionoutput

    Sub-band breakoutheaders for PhasingBoards

    8"

    3.5"

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    20

    Inside backpanel ofbaseline rack

    Guide posts

    Fastening posts

    Cableportal

    MDR-80entryconnector

    SDFBattachmentplate

    SDFB PCB(opposite side)

    • Straw-man concept for hot-swapping the SDFB.

    • Mount SDFB to plate, thatcan be unfastened from theback panel of the BaselineRack.

    • Guide posts allowextraction of SDFB platewithout short circuit worry.

    • Remove cables, install newplate assembly...

    • Alternative is to use a set ofblind-mate MDR-80 socketson PCB that mountspermanently to back panel.Higher cost...

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    21

    BASELINE ENTRYBACKPLANE

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    22

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    MD

    R-8

    0

    12U(~19.5")

    2.5"

    MDR-80 station dataentry headers

    200-pin type Emale headers(opposite side)

    48VDC blind-mateheaders

    -48VDC main powerconnectors

    • Feeds sub-band (MDR-80) datathrough to the Baseline Board.

    • Blind-mate with Baseline Board.

    • Single board design permits flexibilityin mixing Baseline Boards and PhasingBoards in the same sub-rack.

    • Many pins using 200-pin (hm 2.0, 8row) connectors, yields high insertionforce (~100 lbs).

    • hm 2.0 connectors should be ok for256 Mbits/sec.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    23

    BASELINE BOARD

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    24

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    FPDP Connector

    FPDP Connector

    FPDP Connector

    FPDP Connector

    FPDPScheduler

    FPGA

    X-S

    tatio

    n In

    pu

    ts

    Y-Station Inputs

    MCBInterfaceModule MCBAddress

    DecoderFPGA

    DATA

    ADDRESS

    CONTROL

    Chipselects

    PowerSupplies

    &Temperature/

    VoltageMonitoring

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    25

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    2048C-lag

    CorrelatorChip

    LTAContrlr

    SD

    RA

    M

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    RecirculationController

    512kDPSRAM

    FPDP Connector

    FPDPScheduler

    FPGA

    X-S

    tati

    on

    Inp

    uts

    Y-Station Inputs

    Local FPDP Bus

    ExternalworldFPDP

    Column (Y)transmissionlines

    Row (X)transmissionlines

    LTA Controller status/control • FPDP is asimple protocolto handle withan FPGA, withno CPUinteraction.

    • Alternatesolutions(Firewire)possible…aslong ascontrolled byFPGA.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    26

    Vicor PSV8B2C100A(1.8V, 90W)

    Vicor PSV8B2C100A(1.8V, 90W)

    Vicor PSV8B2C100A(1.8V, 90W)

    Vicor PSV8C3V3C75A(2.5V, 56W)

    Vicor PSV8C3V3C75A(2.5V, 56W)

    MCB interfaceconnector

    MCBinterfacemodule

    8x8 correlatorchip array

    FPDPdrivers

    FPDPSchedulerFPGA

    RecirculationControllerFPGAs

    FPDPconnector(primary)

    FPDPconnector(secondary)

    FPDPconnector(secondary)

    FPDPconnector(secondary)

    Input connectorsmating with theBaseline EntryBackplane

    X inputs

    Y inp

    uts

    MCB addressdecoderFPGA

    Baseline Board Layout - Front View Baseline Board Layout - Rear View

    LTA ControllerFPGAs

    256 MbitLTA SDRAMs

    256k x 18RecirculationcontrollerDPSRAMs

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    27

    Vicor PSV8B2C100A(1.8V, 90W)

    Vicor PSV8B2C100A(1.8V, 90W)

    Vicor PSV8B2C100A(1.8V, 90W)

    Vicor PSV8C3V3C75A(2.5V, 56W)

    Vicor PSV8C3V3C75A(2.5V, 56W)

    X inputs

    Y inp

    uts

    Baseline Board Layout - Front View - High Speed Data Routing Baseline Board Layout - Rear View - FPDP Bus Routing - Multiple Output

    LTA ControllerFPGAs

    256 MbitLTA SDRAMs

    256k x 18RecirculationcontrollerDPSRAMs

    =

    LocalFPDPbusses

    MultipleTM FPDPinterfaces

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    28

    PHASING BOARDENTRY BACKPLANE

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    29

    2.5"

    12U(~19.5")

    200-pin type Emale headers(opposite side)

    48 x single station,sub-band pairinput connectors(12 diff. signals)

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    200

    pin

    type

    E20

    0 pi

    n ty

    pe E

    -48VDC main powerconnectors

    48VDC blind-mateheaders

    • Feeds up to 48 stations, 1 sub-band pairinto a Phasing Board.

    • Each connector contains two, 4-bit datapaths, timing, delay, and phase.

    • Use GORE “quietzone” cables /connectors (12 pairs).

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    30

    PHASING BOARD

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    31

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phas e

    LUT

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixe r + 1st Stage Adde r

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phas e

    LUT

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixe r + 1st Stage Adde r

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phas e

    LUT

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixe r + 1st Stage Adde r

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phas e

    LUT

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixe r + 1st Stage Adde r

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phas e

    LUT

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixe r + 1st Stage Adde r

    48-S

    tatio

    n D

    ata

    En

    try

    Co

    nn

    ecto

    rs

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    95-tap Hilbert FIR,Final Adder, ReQuant.

    H(n)

    Delay

    4/8-bit

    2-bit12 Element

    ComplexSub-array

    Adder

    12 Elem entComplex

    Sub-arrayAdder

    12 ElementComplex

    Sub-arrayAdder

    12 ElementComplex

    Sub-arrayAdder

    12 ElementComplex

    Sub-arrayAdder

    Out

    put C

    onne

    ctor

    (s)

    Sub-Sub-band FIR Filter Bank

    FIR:FPGA

    (512 tap)-48 VDC to1.8V, 2.5VPOWERSUPPLY

    Pow

    erC

    onne

    ctor

    ComplexSub-Array

    Adders

    Hilbert FIRs,Final Adders,Requantizers

    Quad ComplexMixers and

    1st Stage Adders

    95-tap Hilbert FIR,Final Adder, ReQuant.

    H(n)

    Delay

    4/8-bit

    2-bit

    95-tap Hilbert FIR,Final Adder, ReQuant.

    H(n)

    Delay

    4/8-bit

    2-bit

    95-tap Hilbert FIR,Final Adder, ReQuant.

    H(n)

    Delay

    4/8-bit

    2-bit

    95-tap Hilbert FIR,Final Adder, ReQuant.

    H(n)

    Delay

    4/8-bit

    2-bit

    FIR:FPGA

    (512 tap)

    FIR:FPGA

    (512 tap)

    FIR:FPGA

    (512 tap)

    FIR:FPGA

    (512 tap)

    FIR:FPGA

    (512 tap)

    FIR:FPGA

    (512 tap)

    FIR:FPGA

    (512 tap)

    Out

    put F

    orm

    attin

    g

    TIMECODECLOCK

    Pha

    sing

    Exp

    ansi

    onC

    onne

    ctor SYNC_PULSE

    CLOCK

    OutputSelection and

    Formatting

    MCBInterfaceModule

    LocalAddress/Data Bus

    Eth

    erne

    t

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to-phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    4X:SDATA,CLOCK,

    TIMECODE,DELAYMOD,PHASEMOD

    cosLUT

    sinLUT p

    hase

    gen

    de lay -to -phase

    LU T

    cosLUT

    sinLUT p

    hase

    gen

    SDATA(0)

    PHASEMOD

    DELAYMOD

    PHASEMOD

    SDATA(1)

    SDATA(2)SDATA(3)

    9

    9

    I

    Q

    4-Station Mixer + 1s t Stage Adder

    • Phases 1 sub-bandpair, from up to 48stations.

    • “Phasinggranularity” of 4stations to preventexcessive connectionproblems.

    • 5 sub-arrays.

    • Sub-sub-bandfiltering for moreefficient narrowbanddata recording.

    • All digital.

    • 8-bit output forexpansion >48 stations

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    32

    TIMECODEGENERATOR BOX

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    33

    • Generates “TIMECODE” for use by correlator.• 4 TIMECODES generated. Each Station Board “quad” can

    select any of the 4. This permits mixed real-time and tape-based VLBI operation.

    • 48 outputs to go to up to 48 Sub-band Distributor Backplanes.• Requires input clock and reference time tick.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    34

    SYSTEM DESIGN ISSUES

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    35

    Sub-rack Design

    ~19" (12U)

    ~6"

    12U x 400 mm (15.7") x 23"board installation volume

    15.7"

    Fan tray

    Freshairintake

    FRONTREAR

    Backplanefasteningbars

    TOP (exhaust)

    BOTTOM

    • 24” wide to allow 8boards, with 2.5” width perboard (3 full VME slots perboard).

    • Fresh (cool) air supply foreach sub-rack (crate) ofboards.

    • Requires hot-swappablefan (tray).

    • Requires more verticalrack space...

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    36

    Station Rack Design

    6.5-7'

    FRONT

    • Cool air entry from bottom.

    • Each sub-rack has own cool air.

    • Probably only fit two sub-racks perrack (7’).

    • Estimated power dissipation:200W/board ~= 2kW/sub-rack ~=4kW/rack.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    37

    Baseline Rack Design

    Floor level

    Front

    Rear

    6 ft

    6.5-7 ft

    BaselineSub-racks(12U x 400 mm)

    Air entry

    20 row x 2 colStationDataFanoutBoards

    Horizontalcable routingsection

    Verticalcable routingsection

    Sub-rack entrycable routingsection

    40 sub-bandcables fromstation racks

    1 2 3

    1

    2

    3

    • Must hold up to256, ~3 m 80-wireGORE cables.

    • Extra 3’ depth,with rear and side-panel access.

    • “Grid routing” toorganize cabling.

    • Will build fullmock-up to testfeasibility.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    38

    Remote Power M&C

    SBDB SBDB

    SBDB SBDB

    BE

    BB

    EB

    BE

    B

    BE

    BB

    EB

    BE

    B

    BE

    BP

    BE

    B

    Station Rack Baseline Rack

    To monitorand controlcomputer

    (PC)

    To monitorand controlcomputer

    (PC)

    • DC-DC convertershave power monitorand control line.

    • Route via terminalblock and DB25-pinconnector to externalcontrol computer.

    • Individual power-cycle and monitorcapability for eachboard in the system.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    39

    Correlator (48-station) Floor Plan50 ft

    45 ftStation Racks (12)

    Air Conditioner

    Air Conditioner

    Air

    Con

    ditio

    ner

    Air

    Con

    ditio

    ner

    Air

    Con

    ditio

    ner

    Air

    Con

    ditio

    ner

    26 ft+14ft = 40 ft = 12.2 m

    7 ft

    7 ft

    3 racks =2 sub-bandcorrelators

    Baseline Racks (24)

    48 VDCRectifier

    Plant(100-150 kW)

    48 VDCBatteryPlant

    (6.5 ft x26.4 in;767.3

    lbs/ft^2)

    Fibe

    r-op

    tics

    rack

    san

    d ot

    her

    equi

    pmen

    t

    2.5 ft 3 ft

    2.5 ft3 ft

    2.5 ft

    2.5 ft

    Possible under-the-floorground plane

    • 45 x 50 ft.

    • Center Station Racksbecause of cabling.

    • 360o access to baselineracks (intra-rack cabling).

    • 48 VDC mains supplySingle-point failure, hot-swappable boards andmodules.

    • 48 VDC plant. Telephonycentral-office grade. N+nredundant, hot-swappablemodules.

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    40

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    41

    (One idea of the) Computing EnvironmentStation Board

    Baseline Board

    FPDP

    PC

    Phasing BoardStation Board

    Station Board Baseline Board

    FPDP

    PC

    PC

    Baseline Board

    FPDP

    PC

    Baseline Board

    FPDP

    Phasing BoardBaseline Board

    FPDP

    PC

    PC

    Baseline Board

    FPDP

    PC

    Diskserver

    Diskserver

    BeowulfCluster

    External worldmonitor and control

    connection

    External worlddata output

    connection(s)

    PC PC

    MASTERSLAVE

    SLAVE

    MASTER

    SLAVE

    SLAVE

    • Use NRAO “MIB”.VxWorks? Home-brew OS? 100 MbpsEthernet.

    • Use Linux PCs fornon-real-time“sophisticated” M&Ccomputing (e.g. modelgeneration)

    • Use Linux PCBeowulf clusters forback-end dataprocessing.

    • Other solutionsbeing proposed...

  • B. Carlson, 2001-Nov-02EVLA Correlator Conceptual Design Review

    42

    Summary• 32 delivered stations expandable to 48+ stations.• A few modules need to be developed.• Baseline Board and correlator chip conceptual design is quite

    advanced.• Station Board design straightforward, but not as advanced as

    the Baseline Board.• System design (racks etc.) fairly conservative. High cabling

    density in Baseline Rack requires mock testing.• Full remote control capability, can hot-swap all modules with

    semiconductors.• Ideas for computing environment, but not decided...