ev traction motor comparison - techno frontier 2013 - m burwell - international copper accociation

27
Performance/cost comparison of induction-motor & permanent-magnet-motor in a hybrid electric car Malcolm Burwell – International Copper Association James Goss, Mircea Popescu - Motor Design Ltd July 2013 - Tokyo

Upload: mcburwell

Post on 20-Aug-2015

737 views

Category:

Technology


4 download

TRANSCRIPT

Page 1: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Performance/cost comparison of induction-motor & permanent-magnet-motor in a hybrid electric car Malcolm Burwell – International Copper Association James Goss, Mircea Popescu - Motor Design Ltd July 2013 - Tokyo

Page 2: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Is it time for change in the traction motor supply industry?

“[Our] survey of 123 manufacturers shows far too few making asynchronous or switched reluctance synchronous motors... this is an industry structured for the past that is going to have a very nasty surprise when the future comes.” *

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 2

* Source: IDTechEx research report “Electric Motors for Electric Vehicles 2013-2023: Forecasts, Technologies, Players” www.IDTechEx.com/emotors

Motor-types sold by suppliers of vehicle

traction motors *

Page 3: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

The challenge for electric traction motors: rare earth cost-levels and cost-volatility

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 3

Source: metal-pages.com, Kidela Capital

0

500

1000

1500

2000

2500

3000

Ne Oxide Dy Oxide

Neodymium Oxide

Dysprosium Oxide

Copper (for reference)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Permanent Magnet Motor Materials (“rare earths”)

$480/kg $60/kg

$ per kg

$7/kg

Page 4: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Background to this work

Today, the permanent magnet motor is the leading choice for traction drives in hybrid vehicles But permanent magnet motors have challenges: • High costs • Volatile costs • Uncertain long term availability of rare earth permanent magnets This makes alternative magnet-free motor architectures of great interest The induction motor is one such magnet-free architecture 4 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 5: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

This presentation

The work presented here compares two equivalent 50kW tractions motors for use in hybrid electric vehicles: a permanent magnet motor and an equivalent induction motor

• The main analysis has copper as the rotor cage material of an induction motor • Motoring and generating modes are modelled using standard drive cycles • Important outputs of the work, for each motor type, are:

• Lifetime energy losses and costs • Relative component performance parameters, weights and costs

• Top-level comments on aluminium cages are presented at the end

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 5

Page 6: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Overview of the analysis covered in this presentation

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 6

1. Driving cycles

2. Vehicle Model

3. Powertrain Model

Magnetics

Induction Motor

Permanent Magnet Motor

4. Motor Models

5. Motor Performance

7. Inverter Currents

9. Battery Capacities

8. Motor Weights & Costs

10. Breakeven Analysis

6. Energy Losses & Costs

Heat Flows

Materials per motor Permanent magnet motor

Copper rotor induction motor

Weight Cost Weight CostStator Copper 4.5 kg $31 9.1 kg $64

Steel 24 kg $24 24 kg $24Permanent magnets (2011/2013 prices)

1.3 kg $200-540 0 0

Rotor cage 0 0 8.4 kg $59Increased inverter cost - 0 - $50

Total 29.8 kg(100%)

$260-590 41.5 kg(140%)

$200

Reduction of consumer purchase price*

- 0 - $150-980

Total losses in the motor Permanent magnet motor

Copper rotor induction

motorCity driving over 120,000 miles (UDDS) 1270 kWh 2240 kWh

Highway driving over 120,000 miles (HWFET) 610 kWh 1250 kWh

Aggressive driving over 120,000 miles (US06) 1430 kWh 2510 kWh

Combined average losses over 120,000 miles 1100 kWh 2000 kWh

Extra energy cost (grid price of $0.25/kWh) 0 $220Extra energy cost (internal combustion engine cost of $0.294/kWh) 0 $260

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500

p (

p

)

Page 7: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Main conclusions from this work

• Comparing a 50kW copper-rotor induction motor to a 50kW permanent magnet motor: • No rare earth metals used • -25% torque density • +40% weight • +10-15% peak inverter current

• However, the induction motor is a good alternative because: • Total motor+inverter unit costs are $60-$390 less (=$150-980 lower sticker price) • It uses only $260 in extra energy over 120,000 miles • Increased inverter costs are modest at ~$50/vehicle

• Battery size: • Can optionally be increased to match increased motor losses • Unit cost savings are larger than increased battery costs up to 27kWh battery size

• Using aluminum instead of copper in the rotor of a 50kW induction motor for an HEV: • Increases losses by 4% • Lowers torque density by 5%

7 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 8: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

1. Vehicle drive cycles

Three standard drive cycles are used for the comparison of two traction motors: a permanent magnet motor and a copper rotor induction motor. The 120,000/10year vehicle life is assumed to be composed equally of these three types of driving

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 8

Driving cycle Distance Average

speed City

(UDDS) 7.5 miles 20 mph

Highway (HWFET) 10.3 miles 48 mph

Aggressive (US06)

8.0 miles

48 mph

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500

Spe

ed (m

iles

per h

our)

Time (seconds)

Page 9: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

2. Vehicle Model

Frolling

Faero

Ftraction

9 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

A standard vehicle model is used to convert drive cycle information into powertrain torque/speed requirements.

Page 10: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

3.1 Powertrain model

A standard two motor/generator hybrid powertrain architecture is used

• Consists of two electrical motor/generators, MG1 and MG2 and an internal combustion engine, all connected through a planetary gear set

• Rotational speed of the internal combustion engine (ICE) is decoupled from the vehicle speed to maximise efficiency

• We analyze MG2 for performance/cost

10 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

• We assume that MG2: • Has a rated power of 50kW • Couples to the drive wheels through

a fixed gear ratio • Provides 30% of motoring torque • Recovers up to 250Nm braking

torque • The ICE and brakes supply the rest

Page 11: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

3.2 Motor torques/speeds produced during driving cycles

11 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

By applying the vehicle and powertrain models we convert the driving cycle data into motor torque/speed data points. One data point is produced for each one second of driving cycle

0 1000 2000 3000 4000 5000-250

-200

-150

-100

-50

0

50

100

150

City cycle MG2 loads (UDDS)

MG

2 to

rque

(Nm

)

MG2 Speed (rpm) 0 1000 2000 3000 4000 5000

-250

-200

-150

-100

-50

0

50

100

150

Highway cycle MG2 loads (HWFET)

MG

2 to

rque

(Nm

)

MG2 Speed (rpm) 0 1000 2000 3000 4000 5000

-250

-200

-150

-100

-50

0

50

100

150

Aggressive cycle MG2 loads (US06)

MG

2 to

rque

(Nm

) MG2 Speed (rpm)

Page 12: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

4.1 Magnetic models of permanent magnet motor and induction motor

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 12

Stator OD = 270mm Rotor OD = 160mm

Stack Length = 84mm

Stator OD = 270mm Rotor OD = 180mm

Stack Length = 105mm

Permanent Magnet Motor

Copper Rotor Induction Motor

8 Poles 8 48 Stator Slots 48 - Rotor Bars 62

The two motor types were modeled for similar torque/speed performance: same stator outside diameters, same cooling requirements but different stack lengths

Page 13: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

4.2 Reference permanent magnet motor model

The modelled permanent magnet motor is a well-documented actual motor used in a production hybrid vehicle.

13 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 14: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

The model of the permanent magnet motor was validated against test data from the actual motor

4.3 Validation of the motor performance model

Test data from actual motor (including mechanical losses)

0

0

0

0

0 0

80

80

80

80

8080

80 80 80

81

81

81

81

8181

81 81 81

82

82

82

82

82

82

82 82 82

83

83

83

83

83

83

83 83

84

84

84

84

84

84

84 84

85

85

85

85

85

85

85 85

86

86

86

86

86

86

86 86

87

87

87

87

87

87 87 87

88

88

88

88

88

88 88

88

89

89

89

89

89 89

89

90

90

90

90

90

90 91

91

91

91

91 92

92

92

92

93

93

ota oss

Speed (RPM)

Torq

ue (N

m)

1000 2000 3000 4000 5000 60000

50

100

150

200

250

80

82

84

86

88

90

92

94

Model data (including mechanical losses) Model Data (excluding mechanical losses) 0 1000 2000 3000 4000 5000 6000

0

50

100

150

200

250

300

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

85

85

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

Speed (RPM)

Torqu

e (Nm

)

g y p

Efficie

ncy (

%)

80

82

84

86

88

90

92

94

96

14 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Our analysis continues using motor performance which excludes mechanical losses

Model and actual data correspond well

Page 15: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

4.4 Thermal Performance Comparison

Steady-state thermal analysis was used to equalize cooling system requirements for both motors at a 118 Nm/900 rpm operating point

Permanent Magnet Motor

Copper Rotor Induction Motor

92% Efficiency 88%

780 W Stator Copper Loss 940 W

0 W Rotor Loss 230 W

0 W Stray Load Loss 140 W

100 W Iron Loss 180 W

880 W Total Loss 1490 W

105°C Coolant Temperature 105°C

2.4 gallons/min Coolant Flow Rate 2.4 gallons/min

156°C Maximum Winding Temp 156°C

15 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 16: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

5.1 Torque/speed/efficiency maps of the permanent magnet motor and induction motor

The two motors have similar torque/speed performance, with the induction motor having ~5% lower efficiencies

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 16

0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

85

85

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

g y p

Effi

cien

cy (%

)

80

82

84

86

88

90

92

94

96

-300

-250

-200

-150

-100

-50

0

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

8585

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm)

Gen

erat

ing

torq

ue (N

m)

Mot

orin

g to

rque

(Nm

)

0

0

0

60

6060

60

60

60

70

7070

70

70

70

808080

8080

80

80

80

818181

8181

81

81

81

828282

8282

82

82

82

838383

8383

83

83

83

848484

8484

84

84

84

858585

8585

85

85

85

868686

8686

86

86

86

878787

87

87

87

87

87

888888

88

88

88

88

88

898989

89

89

89

89

89

90

90

90

90

9090

90

91

91

91

9191

91

92

92

92

92

93

0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

Effi

cien

cy (%

)

80

82

84

86

88

90

92

94

96

-300

-250

-200

-150

-100

-50

0

0

0

0

60

60

60

60

60

60

70 70

70

70

70

70

70

80

80

80

8080

80 80 80

81

81

81

8181

81 81 81

82

82

82

8282

82 82 82

83

83

83

8383

83 83 83

84

84

84

84

84

84 84 84

85

85

85

85

85

85 85 85

86

86

86

86

86

86 86 86

87

87

87

87

87

87 87 87

88

88

88

88

88

88 8888

89

89

89

89

89 8989

90

90

90

90

90 90

90

91

91

91

91

91

92

92

92

Speed (rpm)

Permanent magnet motor Copper rotor induction motor

Page 17: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

5.2 Torque/speed loads during drive cycles: permanent magnet motor

Torque/speed points from the vehicle/powertrain model of the driving cycles are applied to the performance map of the permanent magnet motor to determine total motor losses during driving:

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 17

0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

85

85

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

-300

-250

-200

-150

-100

-50

0

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

8585

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

g y p

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm) 0 1000 2000 3000 4000 5000 6000

0

50

100

150

200

250

300

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

85

85

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

9696

96

-300

-250

-200

-150

-100

-50

0

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

8585

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

9595

96

96

9696

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm) 0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

85

85

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

g y p

Effi

cien

cy (%

)

80

82

84

86

88

90

92

94

96

-300

-250

-200

-150

-100

-50

0

0

0

0

0

0 0 60

60

60

60

60

6060

60 60 70

70

70

70

70

7070

70 70 80 80

80

80

80

8080

80 80 81 81

81

81

81

8181

81 81 82 82

82

82

82

8282

82 82 83 83

83

83

83

8383

83 83 84 84

84

84

84

84

84

84 84 85 85

85

85

85

8585

85 85 86 86

86

86

86

8686

86 86 8787

87

87

87

87

87

87 87 88 88

88

88

8888

88

88 8889 89

89

89

89

89

89

89

8990 90 90

90

90

90

90

90

90

91

91

91

91

91 91 91 92

92

92

9292

92

92 92 9393

93

93

93

93

93 93 94

94

94

94

94

94 94 95

95

95

95

9596

96

96

96

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm)

City driving cycle loads (UDDS)

Highway driving cycle loads (HWFET)

Aggressive driving cycle loads (US06)

Per

man

ent m

agne

t mot

or

Page 18: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

5.3 Torque/speed loads during drive cycles: copper rotor induction motor

Torque/speed points from the vehicle/powertrain model of the driving cycles are applied to the performance map of the copper rotor induction motor to determine total motor losses during driving:

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 18

0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

0

0

0

60

6060

60

60

60

70

7070

70

70

70

808080

8080

80

80

80

818181

8181

81

81

81

828282

8282

82

82

82

838383

8383

83

83

83

848484

8484

84

84

84

858585

8585

85

85

85

868686

8686

86

86

86

878787

87

87

87

87

87

888888

88

88

88

88

88

898989

89

89

89

89

89

90

90

90

90

9090

90

91

91

91

9191

91

92

92

92

92

93

-300

-250

-200

-150

-100

-50

0

0

0

0

60

60

60

60

60

60

70 70

70

70

70

70

70

80

80

80

8080

80 80 80

81

81

81

8181

81 81 81

82

82

82

8282

82 82 82

83

83

83

8383

83 83 83

84

84

84

84

84

84 84 84

85

85

85

85

85

85 85 85

86

86

86

86

86

86 86 86

87

87

87

87

87

87 87 87

88

88

88

88

88

88 8888

89

89

89

89

89 8989

90

90

90

90

90 90

90

91

91

91

91

91

92

92

92

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm) 0 1000 2000 3000 4000 5000 6000

50

100

150

200

250

300

0

0

0

60

6060

60

60

60

70

7070

70

70

70

808080

8080

80

80

80

818181

8181

81

81

81

828282

8282

82

82

82

838383

8383

83

83

83

848484

8484

84

84

84

858585

8585

85

85

85

868686

8686

86

86

86

878787

87

87

87

87

87

888888

88

88

88

88

88

898989

89

89

89

89

89

90

90

90

90

9090

90

91

91

91

9191

91

92

92

92

9293

g y p

-300

-250

-200

-150

-100

-50

0

0

0

0

60

60

60

60

60

60

70 70

70

70

70

70

70

80

80

80

8080

80 80 80

81

81

81

8181

81 81 81

82

82

82

8282

82 82 82

83

83

83

8383

83 83 83

84

84

84

84

84

84 84 84

85

85

85

85

85

85 85 85

86

86

86

86

86

86 86 86

87

87

87

87

87

87 87 87

88

88

88

88

88

88 8888

89

89

89

89

89 8989

90

90

90

9090 90

90

91

91

9191

91

92

92

92

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm) 0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

0

0

0

60

6060

60

60

60

70

7070

70

70

70

808080

8080

80

80

80

818181

8181

81

81

81

828282

8282

82

82

82

838383

8383

83

83

83

848484

8484

84

84

84

858585

8585

85

85

85

868686

8686

86

86

86

878787

87

87

87

87

87

888888

88

88

88

88

88

898989

89

89

89

89

89

90

90

90

90

9090

90

91

91

91

9191

91

92

92

92

92

93

g y p

Effi

cien

cy (%

)

80

82

84

86

88

90

92

94

96

-300

-250

-200

-150

-100

-50

0

0

0

0

60

60

60

60

60

60

70 70

70

70

70

70

70

80

80

80

8080

80 80 80

81

81

81

8181

81 81 81

82

82

82

8282

82 82 82

83

83

83

8383

83 83 83

84

84

84

84

84

84 84 84

85

85

85

85

85

85 85 85

86

86

86

86

86

86 86 86

87

87

87

87

87

87 87 87

88

88

88

88

88

88 8888

89

89

89

89

89 8989

90

90

90

90

90 90

90

91

91

91

91

91

92

92

92

Mot

orin

g to

rque

(Nm

) G

ener

atin

g to

rque

(Nm

)

Speed (rpm)

City driving cycle loads (UDDS)

Highway driving cycle loads (HWFET)

Aggressive driving cycle loads (US06)

Cop

per r

otor

indu

ctio

n m

otor

Page 19: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

6.1 Motor losses during driving cycles

From the motor models, cumulative losses during each driving cycle can be calculated:

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 19

Cum

ulat

ive

loss

es o

ver d

rivin

g cy

cle

(Wh)

Time (seconds)

City driving cycle losses (UDDS)

Highway driving cycle losses (HWFET)

Aggressive driving cycle losses (US06)

Cum

ulat

ive

loss

es o

ver d

rivin

g cy

cle

(Wh)

Time (seconds)

Cum

ulat

ive

loss

es o

ver d

rivin

g cy

cle

(Wh)

Time (seconds)

Copper rotor induction motor Permanent magnet motor

Page 20: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

6.2 Combined losses over life of the motor

Total losses in the motor Permanent magnet motor

Copper rotor induction

motor City driving over 120,000 miles (UDDS) 1270 kWh 2240 kWh

Highway driving over 120,000 miles (HWFET) 610 kWh 1250 kWh

Aggressive driving over 120,000 miles (US06) 1430 kWh 2510 kWh

Combined average losses over 120,000 miles 1100 kWh 2000 kWh

Extra energy cost (grid price of $0.25/kWh) 0 $220 Extra energy cost (internal combustion engine cost of $0.294/kWh) 0 $260

The total difference in electrical running costs between the permanent magnet motor and the copper rotor induction motor are $220-$260. Over a typical lifetime of 120,000miles and 10 years, this is an insignificant cost.

20 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 21: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

7. Cost of increased inverter for copper motor induction motor

The copper rotor induction motor/generator requires 10-15% more current to achieve maximum torque. This requires that the power electronics cost ~$50 more than for a permanent magnet motor.

21 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Mot

orin

g to

rque

(Nm

)

Speed (rpm)

Permanent magnet motor

Pea

k ph

ase

curr

ent (

A)

Mot

orin

g to

rque

(Nm

)

Speed (rpm)

Pea

k ph

ase

curr

ent (

A)

Copper rotor induction motor

Page 22: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

8. Component cost comparison

The copper rotor induction motor saves between $60 (at 2013 magnet prices) and $390 (at 2011 magnet prices) costs per vehicle. This translates into $150-980 purchase price savings for the consumer

Materials per motor Permanent magnet motor

Copper rotor induction motor

Weight Cost Weight Cost Stator Copper 4.5 kg $31 9.1 kg $64

Steel 24 kg $24 24 kg $24 Permanent magnets (2011/2013 prices)

1.3 kg $200-540 0 0

Rotor cage 0 0 8.4 kg $59 Increased inverter cost - 0 - $50

Total 29.8 kg (100%)

$260-590 41.5 kg (140%)

$200

Reduction in consumer purchase price*

- 0 - $150-980

22 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

* Assumes materials-cost/consumer-price ratio = 40%

Page 23: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

9. Cost of increased battery capacity to cover increased motor losses

Using a copper rotor induction motor can require the vehicle designer to increase the battery size by ~7%. This would allow a customer to perceive no difference in overall vehicle performance.

Key assumptions used in costing the required increase in battery capacity:

• Motor must at some time provide all motoring and braking torque in the highway driving cycle (like a plug-in hybrid electric vehicle)

• Induction motor uses 7% more motoring energy than a permanent magnet motor

• Induction motor recovers 6% less braking energy than the permanent magnet motor

• Total braking energy is 20% of the motoring energy over the driving cycle • 75% of battery energy is used for motoring, 25% for auxiliary systems

(cabin conditioning, lights, radio, electronics)

23 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 24: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

10. Break-even for using copper motor induction motor

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 24

If the designer chooses to increase battery size for a 50kW system, a copper rotor induction motor saves total vehicle costs when the battery size for a permanent magnet motor system is less than 27kWh

* Assumes 2020 battery pricing of $200/kWh and 7% battery capacity increase for copper rotor induction motor

0

100

200

300

400

500

600

0 10 20 30 40

Indu

ctio

n m

otor

cos

t sav

ings

($)

Permanent magnet motor battery capacity (kWh)

Additional battery cost*

$390 unit cost savings (2011 Rare Earth prices)

$60 unit cost savings(2013 Rare Earth prices)

2013 break-even

2011 break-even

Page 25: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Possible use of aluminum in the rotor of an induction motor

25 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Aluminum has only 56% of the conductivity of copper, which leads to an inferior performance when used in the rotor of an induction motor. In a first-pass analysis of a 50kW aluminum rotor induction motor, losses were 4% higher and power/torque densities 5% lower than the equivalent copper rotor motor.

0

0

0

60

6060

60

60

60

70

7070

70

70

70

808080

8080

80

80

80

818181

8181

81

81

81

828282

8282

82

82

82

838383

8383

83

83

83

848484

8484

84

84

84

858585

8585

85

85

85

868686

8686

86

86

86

878787

87

87

87

87

87

888888

88

88

88

88

88

898989

89

89

89

89

89

90

90

90

90

9090

90

91

91

91

9191

91

92

92

92

92

93

0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300E

ffici

ency

(%)

80

82

84

86

88

90

92

94

96

Mot

orin

g to

rque

(Nm

)

Speed (rpm)

Copper rotor induction motor

0

0

0

6060

60

60

60

7070

70

70

70

808080

8080

80

80

80

818181

8181

81

81

81

828282

8282

82

82

82

838383

8383

83

83

83

848484

8484

84

84

84

858585

85

85

85

85

85

868686

8686

86

86

86

878787

87

87

87

87

87

888888

88

88

88

88

88

898989

89

89

89

89

89

90

90

90

90

9090

90

91

91

91

91

91

92

9292

0 1000 2000 3000 4000 5000 6000

50

100

150

200

250

300

Effi

cien

cy (%

)

80

82

84

86

88

90

92

94

96

Mot

orin

g to

rque

(Nm

)

Speed (rpm)

Aluminum rotor induction motor

Page 26: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

Main conclusions from this work

• Comparing a 50kW copper-rotor induction motor to a 50kW permanent magnet motor: • No rare earth metals used • -25% torque density • +40% weight • +10-15% peak inverter current

• However, the induction motor is a good alternative because: • Total motor+inverter unit costs are $60-$390 less (=$150-980 lower sticker price) • It uses only $260 in extra energy over 120,000 miles • Increased inverter costs are modest at ~$50/vehicle

• Battery size: • Can optionally be increased to match increased motor losses • Unit cost savings are larger than increased battery costs up to 27kWh battery size

• Using aluminum instead of copper in the rotor of a 50kW induction motor for an HEV: • Increases losses by 4% • Lowers torque density by 5%

26 | Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013

Page 27: EV traction motor comparison - Techno Frontier 2013 - M Burwell - International Copper Accociation

[email protected]

Thank you

| Comparison of IM & PMM in a hybrid electric car - Tokyo - July 2013 27

For more information please contact

Phone: +1 781 526 5027

[email protected] [email protected] Phone: +44 1691 623305