estad´ıstica miguel angel chong r.´ [email protected] 15 de octubre del … · 2013....

39
Curso Inferencia Estad´ ıstica Miguel ´ Angel Chong R. [email protected] 15 de octubre del 2013 Miguel Chong Inferencia

Upload: others

Post on 18-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Curso Inferencia

Estadıstica

Miguel Angel Chong [email protected]

15 de octubre del 2013

Miguel Chong Inferencia

Page 2: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Estimador maximo verosımil

El metodo de la maxima verosimilitud consiste en elegir comoestimador del parametro desconocido ✓ al valor ✓(X

1

, . . . ,Xn

) quemaximiza la funcion de verosimilitud L(✓; x

1

, . . . , xn

), es decir

L(✓; x1

, . . . , xn

) = max✓2⇥

L(✓; x1

, . . . , xn

).

A este estimador ✓(X1

, . . . ,Xn

) le llamamos el estimadormaximo-verosımil (EMV) para el parametro ✓.

El EMV de la funcion de verosimilitud L(✓; xl

, . . . , xn

) dada unamuestra representa la verosimilitud o plausibilidad de que elparametro ✓ tome un cierto valor, tomando como informacion laproporcionada por la muestra.

Por lo tanto si L(✓1

; x1

, . . . , xn

) > L(✓2

; x1

, . . . , xn

) esto nos indicaque la verosimilitud de que el parametro ✓ tome el valor ✓

1

, esmayor que la verosimilitud de que el parametro tome el valor ✓

2

ala luz de la muestra.

Miguel Chong Inferencia

Page 3: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

En general maximizar la funcion de verosimilitud L(✓; x1

, . . . , xn

)suele ser difıcil. Como la verosimilitud es una funcion positiva y losmaximos de la verosimilitud L(✓; x

1

, . . . , xn

) son los mismos que losdel logaritmo de la verosimilitud, ln L(✓; x

1

, . . . , xn

), puesto que lafuncion logaritmo es una funcion creciente, entonces preferiremosbuscar el EMV usando la log verosimilitud, es decir

ln L(✓; x1

, . . . , xn

) = max✓2⇥

ln L(✓; x1

, . . . , xn

) = max✓2⇥

nX

i=1

ln f (xi

; ✓).

Es decir que hay que buscar la solucion de la ecuacion

d ln L(✓; x1

, . . . , xn

)

d✓=

nX

i=1

d ln f (xi

; ✓)

d✓= 0.

Miguel Chong Inferencia

Page 4: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

De forma mas general, si la funcion de densidad de la poblaciondepende de k parametros, f (x ; ✓

1

, . . . , ✓k

), entonces losestimadores maximo-verosimiles de estos parametros se obtienenresolviendo el sistema de ecuaciones de verosimilitud en ✓

1

, . . . , ✓k

.

@ln L(✓1

, . . . , ✓k

; x1

, . . . , xn

)

@✓1

=nX

i=1

@ln f (xi

; ✓1

, . . . , ✓k

)

@✓1

= 0,

...

@ln L(✓1

, . . . , ✓k

; x1

, . . . , xn

)

@✓k

=nX

i=1

@ln f (xi

; ✓1

, . . . , ✓k

)

@✓k

= 0,

y al resolver este sistema de ecuaciones arriba descrito tendremoslos EMV�s ✓

1

(X1

, . . . ,Xn

), . . . , ✓k

(X1

, . . . ,Xn

) de los parametros(✓

1

, . . . , ✓k

).

Algunas veces el sistema de ecuaciones no se puede resolver deforma analıtica y hay que recurrir a aproximaciones numericas.

Miguel Chong Inferencia

Page 5: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Propiedades de los estimadores de maxima verosimilitud

Bajo condiciones de regularidad bastante generales se cumplen las siguientes

propiedades

Los estimadores de maxima verosimilitud son consistentes, es decir para 8✏ > 0,

se verifica

lım

n!1P(|ˆ✓EMV

� ✓| < ✏) = 1 cuado n ! 1

En general los estimadores de maxima verosimilitud no son insesgados sino

asintoticamente insesgados.

Los estimadores de maxima verosimilitud son asıntoticamente eficientes.

Los estimadores de maxima verosimilitud son asıntoticamente normales

ˆ✓ ! N

✓✓,q

Var(

ˆ✓)

donde Var(

ˆ✓) incide con la CICR, es decir Var(

ˆ✓) = 1

nE⇣

@ ln f (x ;✓)@✓

⌘2

Los estimadores maximo-verosımiles son invanantes ante transformaciones

inyectivas. Es decir, si

ˆ✓ es el estimador de maxima verosimilitud del parametro

✓ y g(·) es una funcion con inversa, entonces se verifica que g(

ˆ✓), es el

estimador de maxima verosimilitud de g(✓).

Miguel Chong Inferencia

Page 6: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

No siempre podemos encontrar los estimadores maximo verosimiles vıa

@ln L(✓; x1

, . . . , xn

)

@✓=

nX

i=1

@ln f (x

i

; ✓)

@✓= 0.

Ejemplo

Sea X

1

,X2

, . . . ,Xn

una muestra aleatoria de una Uniforme (0, ✓).

f (x ; ✓) =

(1

✓ 0 x ✓

0 c.o.c.

=

1

✓I[0,✓](x) =

1

✓I[x,1)

(✓)

Entonces

L(x

1

, . . . , xn

; ✓) =

nY

i=1

1

✓I[x

i

,1)

(✓) =

✓1

◆n

I[x

1

,1)

(✓) · . . . · I[x

n

,1)

(✓) =1

✓nI[

x

(n)

,1)

(✓).

Y por lo tanto X

(n)

es el estimador maximo verosimil, pero ¿Cual es la distribucion de

este estimador?

Miguel Chong Inferencia

Page 7: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Estadısticos de orden

Si X

1

, . . . ,Xn

es una muestra aleatoria que proviene de una poblacion con

funcion de densidad f

X

(x) y funcion de distribucion F

X

(x), entonces se puede

probar que la distribucion de la variable aleatoria X

(k)

, es decir k�esima

estadıstica de orden es

F

X

(k)

(t) = P�X

(k)

t

�=

nX

j=k

n

j

!· F j

X

(t) · [1� F

X

(t)]

n�j ,

graficamente lo podemos entender de la siguiente manera, los primeros k datos

son menores o iguales a t y los restantes n � k datos son mayores a t

· · ·———t]

| {z }k

(———— · · ·| {z }

n�k

Entonces la fucion de distribucion y la fucion de densidad para X

(n)

respectivamente son:

F

X

(n)

(t) = F

n

X

(t) , que al derivar con resp. a t

f

X

(n)

(t) = n · F n�1

X

(t) · fX

(t) .

n

Miguel Chong Inferencia

Page 8: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Entonces para nuestro ejemplo donde, X

1

,X2

, . . . ,Xn

una muestra aleatoria de una

Uniforme (0, ✓). Veamos cual es la distribucion del estimador maximo verosımil X

(n)

f (x ; ✓) =

(1

✓ 0 x ✓

0 c.o.c.

=

1

✓I[0,✓](x)

F (x ; ✓) =

8><

>:

0 x < 0

x

✓ 0 x ✓

1 ✓ < x

Entonces la fucion de distribucion y la fucion de densidad respectivamente son:

F

X

(n)

(t) = F

n

X

(t) =

8><

>:

0 t < 0�t

�n

0 t ✓

1 ✓ < t

f

X

(n)

(t) = n · Fn�1

X

(t) · fX

(t) =

(n

�t

�n�1

1

✓ 0 t ✓

0 c.o.c.

= n

t

n�1

✓nI[0,✓](t)

Notemos que no es un estimador insesgado puesto que

E�X

(n)

�=

R ✓0

x · n x

n�1

✓n dt =

n

✓nR ✓0

x

n

dt =

n

✓n✓n+1

n+1

=

n

n+1

✓. Pero si es asintoticamente

insesgado.

Miguel Chong Inferencia

Page 9: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Estimacion por intervalos

Cuando hacemos estimacion puntual, en general el valor estimadodifiere del verdadero valor del parametro ✓, por lo tanto laestimacion puntual no nos proporciona suficiente informacion sobreel parametro.

Es deseable siempre para cada la estimacion puntual del parametro✓, acompanarla de una medida error asociado, es decir, unintervalo que refleje la confianza que tenemos acerca de que elverdadero valor del parametro ✓ se encuentre dentro del intervalo.

⇥✓ (X

1

, . . . ,Xn

) , ✓ (X1

, . . . ,Xn

)⇤

Miguel Chong Inferencia

Page 10: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Nuestro objetivo sera obtener un intervalo“pequeno”y con una alta“probabilidad”de que el parametro ✓ se encuentra en su interior.

Por lo tanto la estimacion por intervalo del parametro poblacional✓ desconocido, se reducea a encontrar dos estadısticos✓ (X

1

, . . . ,Xn

) y ✓ (X1

, . . . ,Xn

), tales que

P⇥✓ (X

1

, . . . ,Xn

) < ✓ < ✓ (X1

, . . . ,Xn

)⇤

= 1� ↵

donde el valor (1� ↵)⇥ 100% se le llama nivel de confianza yelegiremos probabilidades cercanas a la unidad, los valores masfrecuentes seran 0.90 , 0.95 y 0.99.

Miguel Chong Inferencia

Page 11: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Observaciones

Los extremos del intervalo ✓ y ✓ varian de manera aleatoria segunla una muestra, por tanto, no podremos saber con seguridad si elvalor del parametro ✓ se encuentre dentro del intervalo

⇥✓ (X

1

, . . . ,Xn

) , ✓ (X1

, . . . ,Xn

)⇤

Antes de seleccionar una muestra podemos decir que laprobabilidad de que el parametro ✓ tome algun valor en el intervalo⇥✓, ✓⇤es igual a 1� ↵.

Miguel Chong Inferencia

Page 12: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Para una muestra dada la afirmacion no sera la misma, puesto que para una

muestra fija

✓ (x1

, . . . , xn

) = a y ✓ (x1

, . . . , xn

) = b,

y no podemos afirmar que

P [a < ✓ < b] = 1� ↵

ya que a , b y ✓ son valores constantes!!

Por lo tanto, una vez seleccionada la muestra y calculados, los extremos

✓ (x1

, . . . , xn

) = a y ✓ (x1

, . . . , xn

) = b,

solo tiene sentido decir que

la probabilidad es 1 si ✓ 2 [a, b]

la probabilidad es 0 si ✓ 62 [a, b]

Por lo tanto no decimos“la probabilidad del intervalo numerico” sino“el

coeficiente de confianza del intervalo”.

Miguel Chong Inferencia

Page 13: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Para precisar mas sobre la interpretacion del intervalo de confianza,consideramos un numero grande de muestras del mismo tamano ycalculamos los lımites inferior y superior para cada muestra

✓ (x1

, . . . , xn

) = a y ✓ (x1

, . . . , xn

) = b,

entonces se obtendra que aproximadamente el (1� ↵)⇥ 100% delos intervalos resultantes estara en su interior el valor del parametro✓, y en el ↵⇥ 100% restante no estara en su interior el valor delparametro ✓, y en consecuencia al intervalo (a, b) se le llamaintervalo de confianza al nivel de confianza al (1� ↵)⇥ 100%.

Miguel Chong Inferencia

Page 14: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

De forma grafica tenemos

Si tomamos 100 muestras aleatorias de tamano n de la misma poblacion y calculamos

los lımites de confianza ✓ y ✓ para cada muestra, entonces esperamos que

aproximadamente el 95% de los intervalos contendran en su interior el verdadero valor

del parametro µ, y el 5% restante no lo contendran.

Miguel Chong Inferencia

Page 15: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

En la practica, solo tomamos una muestra aleatoria y, por tanto,solo tendremos un intervalo de confianza, no conocemos si nuestrointervalo es uno del 95% o uno del 5%, y por eso hablamos de quetenemos un nivel de confianza del 95%.

Miguel Chong Inferencia

Page 16: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Metodos de construccion de intervalos de confianza

Primero veremos el metodo pivotal cuando se supone conocida ladistribucion de la poblacion (caso normal), y tambien usando enlas propiedades asintoticas de los estimadores y el Teorema Centraldel Lımite.

Miguel Chong Inferencia

Page 17: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Metodo pivotal

Supongamos que tenemos una poblacion con distribucion F (x ; ✓)en donde ✓ es desconocido, y ✓ 2 ⇥.

En este metodo buscamos una cantidad pivotal que cumpla con lassiguientes condiciones

1 La cantidad pivotal o pivote, T (X1

, . . . ,Xn

; ✓), es una funcionde las observaciones muestrales y del parametro ✓, y

2 La funcion de distribucion de la cantidad pivotalT (X

1

, . . . ,Xn

; ✓) no depende del parametro ✓.

Miguel Chong Inferencia

Page 18: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalos de confianza para µ suponiendo poblaciones normales

Sea (X

1

, . . . ,Xn

) una muestra aleatoria simple de tamano n, procedente de una

poblacion N

�µ,�2

con �2

conocida.

T (X

1

, . . . ,Xn

;µ) =¯

X � µq

�2

n

⇠ N (0, 1) .

Iµ =

2

4x � z

↵2

s�2

n

, x + z

↵2

s�2

n

3

5 , donde P⇣Z � z

↵2

⌘=

2

.

Ahora si �2

es desconocida

T (X

1

, . . . ,Xn

;µ) =¯

X � µSpn

⇠ t

n�1

.

Iµ =

2

4x � t

↵2

,n�1

ss

2

n

, x + t

↵2

,n�1

ss

2

n

3

5 , donde P⇣t

n�1

� t

↵2

,n�1

⌘=

2

.

Miguel Chong Inferencia

Page 19: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalo de confianza para la varianza de una poblacion normal.

Sea (X

1

, . . . ,Xn

) una muestra aleatoria simple de tamano n, procedente de una

poblacioin N

�µ,�2

con µ conocida, entonces

T (X

1

, . . . ,Xn

;�2

) =

nX

i=1

(X

i

� µ)2

�2

⇠ �2

n

.

I�2

=

2

4P

n

i=1

(x

i

� µ)2

�2

1�↵2

,n

,

Pn

i=1

(x

i

� µ)2

�2

↵2

,n

3

5 , donde P��2

n

�2

u,n

�= u.

Ahora con µ desconocida, entonces se verifica que:

(n � 1)S

2

�2

⇠ �2

n�1

.

I�2

=

2

4 (n � 1) s

2

�2

1�↵2

,n�1

,(n � 1) s

2

�2

↵2

,n�1

3

5 .

Miguel Chong Inferencia

Page 20: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalo para diferencia de medias en poblaciones normales

Sean

⇣X

1

, . . . , Xn

X

⌘y

⇣Y

1

, . . . , Yn

Y

⌘dos muestras aleatorias simples e independientes de tamanos n

X

y n

Y

,

procedentes de las poblaciones N

⇣µX

,�2

X

⌘y N

⇣µY

,�2

Y

⌘respectivamente.

Si �2

X

y �2

Y

son conocidas entonces

T (X

1

, . . . , Xn

X

, Y1

, . . . , Yn

Y

;µX

� µY

) =

�¯

X � ¯

Y

�� (µ

X

� µY

)

s�2

X

n

X

+

�2

Y

n

Y

⇠ N (0, 1) .

IµX

�µY

=

2

64x � y � z↵2

vuut�2

X

n

X

+

�2

Y

n

Y

, x � y + z↵2

vuut�2

X

n

X

+

�2

Y

n

Y

3

75 .

Si �2

X

= �2

Y

= �2

son desconocidas

T (X

1

, . . . , Xn

X

, Y1

, . . . , Yn

Y

;µX

� µY

) =

pn

x

n

Y

pn

X

+ n

Y

� 2

pn

x

+ n

Y

�¯

X � ¯

Y

�� (µ

X

� µY

)

q(n

X

� 1) S

2

X

+ (n

Y

� 1) S

2

Y

⇠ t

n

X

+n

Y

�2

IµX

�µY

= [x � y ± W ] , con W = t↵2

,nX

+n

Y

�2

sn

x

+ n

Y

n

x

n

Y

vuut (n

X

� 1) S

2

X

+ (n

Y

� 1) S

2

Y

n

X

+ n

Y

� 2

.

Miguel Chong Inferencia

Page 21: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Por ultimo si �2

X

6= �2

Y

y son desconocidas

T (X

1

, . . . , Xn

X

, Y1

, . . . , Yn

Y

;µX

� µY

) =

�¯

X � ¯

Y

�� (µ

X

� µY

)

sS

2

X

n

X

+

S

2

Y

n

Y

! t⌫ ,

donde ⌫ =

S

2

X

n

X

+

S

2

Y

n

Y

!2

⇣S

2

X

/nX

n

X

�1

2

+

⇣S

2

Y

/nY

n

Y

�1

2

. Tenemos que

IµX

�µY

=

2

64x � y � t↵2

,⌫

vuut s

2

X

n

X

+

s

2

Y

n

Y

, x � y + t↵2

,⌫

vuut s

2

X

n

X

+

s

2

Y

n

Y

3

75 .

Miguel Chong Inferencia

Page 22: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalo de confianza para la razon de varianzas con poblaciones normales

Sean dos poblaciones X y Y normales N

⇣µX

,�2

X

⌘y N

⇣µY

,�2

Y

⌘independientes, de las cuales seleccionamos

dos muestras aleatorias e independientes, de tamanos n

X

y n

Y

,

⇣X

1

, . . . , Xn

X

⌘y

⇣Y

1

, . . . , Yn

Y

⌘, entonces

pueden presentarse fundamentalmente dos situaciones:

a) Supongamos que µX

y µY

son conocidas.

Si definimos como

S

⇤2X

=

1

n

X

n

XX

i=1

(X

i

� µX

)

2 , S

⇤2Y

=

1

n

Y

n

YX

i=1

(Y

i

� µY

)

2 .

entonces

T

X

1

, . . . , Xn

X

, Y1

, . . . , Yn

Y

;

�2

X

�2

Y

!=

�2

Y

�2

X

·S

⇤2X

S

⇤2Y

⇠ F

n

X

,nY

.

1 � ↵ = P"F↵

2

,nX

,nY

<�2

Y

�2

X

·S

⇤2X

S

⇤2Y

< F

1�↵2

,nX

,nY

#

= P

2

4 1

F

1�↵2

,nX

,nY

S

⇤2X

S

⇤2Y

<�2

X

�2

Y

<1

F↵2

,nX

,nY

S

⇤2X

S

⇤2Y

3

5 .

I

�2

X

�2

Y

=

2

4 1

F

1�↵2

,nX

,nY

S

⇤2X

S

⇤2Y

!,

1

F↵2

,nX

,nY

S

⇤2X

S

⇤2Y

!3

5 .

Miguel Chong Inferencia

Page 23: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

b) y por otro lado, supongamos que µX

y µY

son desconocidas.

Entonces

T

X

1

, . . . ,Xn

X

,Y1

, . . . ,Yn

Y

;

�2

X

�2

Y

!=

�2

Y

�2

X

· S

2

X

S

2

Y

⇠ F

n

X

�1,nY

�1

.

I �2

X

�2

Y

=

"1

F

1�↵2

,nX

�1,nY

�1

S

2

X

S

2

Y

!,

1

F

↵2

,nX

�1,nY

�1

S

2

X

S

2

Y

!#.

Miguel Chong Inferencia

Page 24: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalos de confianza para poblaciones no normales

Ahora haremos intervalos de confianza cuando la distribucion de lapoblacion no necesariamete es una normal.

Nuestro objetivo es dar metodos para hacer intervalos de confianzacuando la poblacion tenga una distribucion distinta a la normal osimplemente se desconozca.

Miguel Chong Inferencia

Page 25: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Desigualdad de Chebychev para una variable aleatoria X con mediaE (X ) y varianza Var (X ), entonces

P [|X � E (X ) | k] � 1� Var (X )

k

2

.

Miguel Chong Inferencia

Page 26: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Supongamos que no conocemos la distribucion de la poblacion, usando ladesigualdad de Chebychev podemos hacer un intervalo de confianza parala media µ de cualquier distribucion con varianza �2 conocida (y finita).

Sea X

1

, . . . ,Xn

es una muestra aleatoria procedente de una distribucionF (x , µ), con varianza �2 conocida.

Como X un buen estimador de µ y E�X

�= µ, Var(X ) = �2

n

, entonces

P⇥|X � µ| k

⇤� 1�

�2

n

k

2

= 1� �2

nk

2

.

y si queremos un nivel de confianza mayor o igual al (1� ↵)⇥ 100%,

1� �2

nk

2

= 1� ↵ ) �2

nk

2

= ↵

) k =

r�2

n↵=

�pn↵

.

Miguel Chong Inferencia

Page 27: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Por lo tanto usando la desigualdad de Chebychev tenemos que

P|X � µ| �p

n↵

�� 1� ↵,

o equivalentemente

PX � �p

n↵ µ X +

�pn↵

�� 1� ↵.

De la desigualdad anterior tenemos que el intervalo de confianza alnivel del (1� ↵)⇥ 100% o superior para µ es

Iµ =

X � �p

n↵, X +

�pn↵

�.

Miguel Chong Inferencia

Page 28: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalo de confianza usando muestras grandes

Cuando tengamos muestras grandes hablaremos de:

1 La distribucion asintotica del estimador de maximaverosimilitud, o

2 el Teorema Central del Lımite.

Miguel Chong Inferencia

Page 29: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalos de confianza para muestras grandes usando el

estimador de maxima verosimilitud

Cuando hablamos del las propiedades del EMV ✓EMV

para elparametro ✓, dijimos que para muestras grandes y

✓d! N

⇣✓,Var(✓)

en donde Var(✓) incide con la CICR, es decirVar(✓) = 1

nE⇣

@ ln f (x ;✓)@✓

⌘2

� , es decir, que es asintoticamente eficiente.

✓ � ✓qVar(✓)

d! N (0, 1)

Miguel Chong Inferencia

Page 30: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Y por lo tanto

P

2

4�z

↵2

✓ � ✓qVar(✓)

z

↵2

3

5 = 1� ↵.

Despejando

P✓ � z

↵2

qVar(✓) ✓ ✓ + z

↵2

qVar(✓)

�= 1� ↵,

por lo tanto el intervalo de confianza al (1� ↵)⇥ 100% es

I✓ =

✓ � z

↵2

qVar(✓), ✓ + z

↵2

qVar(✓)

�.

Miguel Chong Inferencia

Page 31: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Entonces un algoritmo general para construir intervalos deconfianza a partir del EMV es el siguiente:

1. Calculamos el estimador de maxima verosimilitud ✓del parametro ✓.

2. Despues calculamos Var(✓) o la CICR, que coincidenen este caso cuando el tamano de muestra es grande.

3. Si Var(✓) es funcion del parametro ✓, se sustituye ✓por su estimador de maxima verosimilitud ✓.

4. Por ultimo se hace el intervalo de confianza al(1� ↵)⇥ 100% .

Miguel Chong Inferencia

Page 32: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalos de confianza para muestras grandes aplicando el

Teorema Central del Limite

Supongamos una muestra aleatoria X

1

, . . . ,Xn

suficientementegrande procedente de una poblacion con distribucion desconocida yvarianza �2

X

finita conocida y deseamos obtener un intervalo deconfianza al nivel del (1� ↵)⇥ 100% para la media, desconocida,µ de la poblacion.

X

d! N

✓µ,

�2

X

n

◆.

Miguel Chong Inferencia

Page 33: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Supongamos que se cumplen la hipotesis sabemos por el TeoremaCentral del Lımite que cuando n es suficientemente grande

nX

i=1

X

i

� E

nX

i=1

X

i

!

vuutVar

nX

i=1

X

i

! =

nX

i=1

X

i

� nµX

pn�

X

=1

n

1

n

nX

i=1

X

i

� nµX

pn�

X

=X � µ

X

�Xpn

d! Z

Miguel Chong Inferencia

Page 34: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Lo anterior lo usamos como cantidad pivotal o pivote, y tendrıamos

P"�z

↵2

X � µX

�Xpn

z

↵2

#= 1� ↵

y de manera analoga a como procedıamos anteriormente,llegaremos a que el intervalo de confianza al nivel del(1� ↵)⇥ 100% sera

Iµ =

X � z

↵2

�Xpn

, X + z

↵2

�Xpn

La diferencia con los intervalos obtenidos anteriormente en queaquellos eran exactos y ahora son aproximados.

Miguel Chong Inferencia

Page 35: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Cuando �2

X

es desconocida se toma como valor aproximado lavarianza muestra1 S

2, y se obtendrıa como intervalo de confianza

Iµ =

X � z

↵2

Spn

, X + z

↵2

Spn

para n es grande

Miguel Chong Inferencia

Page 36: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Intervalo de confianza para proporciones y muestras grandes

Sea X

1

, . . . ,Xn

una muestra aleatoria simple de tamano n, de una

poblacion Ber(p). Sea U =nX

i=1

X

i

la v.a. que cuenta los exitos y

por lo tanto el estadıstico proporcion muestral que nos servira paraestimar p sera la v.a. P

x

= U

n

. La distribucion binomial se puedeaproximar por una normal cuando n es grande (n � 30), usando elTeorema Central del Lımite. Entonces el estadıstico muestral sigueuna distribucion normal

p =U

n

d! N

✓p,

p(1� p)

n

p � pqp(1�p)

n

d! N (0, 1)

Miguel Chong Inferencia

Page 37: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Y por lo tanto

P

2

4�z

↵2

p � pqp(1�p)

n

z

↵2

3

5 = 1� ↵

P"p � z

↵2

rp(1� p)

n

p p + z

↵2

rp(1� p)

n

#= 1� ↵

Pero los lımite dependen de los parametros desconocido p,entonces si n es suficientemente grande se sutituye p por suestimador p.

Entonces el intervalo de confianza al nivel del (1� ↵)⇥ 100% parael parametro p es

I

p

=

"p � z

↵2

rp(1� p)

n

, p + z

↵2

rp(1� p)

n

#.

Miguel Chong Inferencia

Page 38: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Distribucion de la diferencia de proporciones

Habıamos visto que si X1

, . . . ,Xn

x

una muestra aleatoria simple detamano n

x

, de una poblacion Ber(px

), y Y

1

, . . . ,Yn

y

es una muestraaleatoria simple de tamano n

y

, de una poblacion Ber(py

). Entonces ladiferencia de medias la estimabamos como

p

x

� p

y

=U

n

x

� V

n

y

donde U =n

xX

i=1

X

i

y V =

n

yX

i=1

Y

i

.

Entonces la distribucion muestral de la diferencia de proporciones tendraaproximadamente (para n

x

y n

y

grandes) una distribucion normal conmedia y desviacion tıpica

µp

x

�p

y

= p

x

� p

y

�2

p

x

�p

y

=p

x

q

x

n

x

+p

y

q

y

n

y

p

x

� p

y

d! N

⇣p

x

� p

y

,�2

p

x

�p

y

⌘.

Miguel Chong Inferencia

Page 39: Estad´ıstica Miguel Angel Chong R.´ miguel@sigma.iimas.unam.mx 15 de octubre del … · 2013. 10. 15. · solo tendremos un intervalo de confianza, no conocemos si nuestro intervalo

Entonces

P

2

4�z

↵2

p

x

� p

y

� (p

x

� p

y

)qp

x

q

x

n

x

+

p

y

q

y

n

y

z

↵2

3

5= 1� ↵

Pp

x

� p

y

� z

↵2

rp

x

q

x

n

x

+

p

y

q

y

n

y

p

x

� p

y

p

x

� p

y

+ z

↵2

rp

x

q

x

n

x

+

p

y

q

y

n

y

�= 1� ↵

Nuevamente los lımites estan en funcion de de los parametros, entonces si n

x

y

n

y

son grandes podemos sustituir p

x

y p

y

por sus estimadores

Y por lo tanto

I

p

x

�p

y

=

"p

x

� p

y

� z

↵2

sp

x

q

x

n

x

+

p

y

q

y

n

y

, px

� p

y

+ z

↵2

sp

x

q

x

n

x

+

p

y

q

y

n

y

#.

Miguel Chong Inferencia