ess technical design report - lunds universitetexecutive editor: s. peggs1. structural editor: r....

24
ESS Technical Design Report Release 3.08 April 23, 2013

Upload: others

Post on 18-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

ESS Technical Design Report

Release 3.08April 23, 2013

Page 2: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

ESS Technical Design ReportApril 23, 2013ESS-doc-274http://eval.esss.lu.se/cgi-bin/public/DocDB/ShowDocument?docid=274

ISBN 978-91-980173-2-8

Page 3: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

Executive editor: S. Peggs1.

Structural editor: R. Kreier1.

Contributing editors: C. Carlile1, R. Miyamoto1, A. Pahlsson2, M. Trojer2, J. G. Weisend II1.

Chapter editors: M.-L. Ainalem1, K. H. Andersen1, K. Batkov1, P. Carlsson1, D. Ene1, B. Heden1,K. Hedin1, A. J. Jackson1, P. Jacobsson1, O. Kirstein1, G. Lanfranco1, Y. Lee1, M. Lindroos1, J. Mal-ovrh Rebec3, G. Trahern1, J. Yeck1.

Contributors: M. Aberg1, N. Ahlfors1, R. Ainsworth4, C. Alba-Simionesco5, S. Alimov6 N. Aliouane7

B. Alling8, K. Andersson9, M. Andersson1, N. H. Andersen9, D. Anevski10, S. Ansell11, V. Antonelli12,D. Argyriou1, L. Arleth13, E. Babcock14, S. Barbanotti15, F. Beckmann16, P. M. Bentley1, P. Beran17,L. Berden1, F. Bergstedt1, J. Bermejo18, M. Berrada14, M. Bertelsen13, Y. Beßler14, T. Bigault19, J. Birch8,J. O. Birk13, J. Bobnar3, C. Bohme1, A. Bollhalder7, P. Boni12, H. N. Bordallo13, P. Bosland5, S. Bousson20,W. G. Bouwman21, G. Brandl12, S. Brault20, J. Brinch21, R. Brinkmann15, H. Brueck15, T. Bruckel14,J. C. Buffet19, M. Bulat6, R. Burge7, I. Bustinduy18, M. Butzek14, X. X. Cai22, R. Caniello23, M. Car-denas13, G. Castro24, H. Carlsen13, L. Celona21, Y. Chen25, N. Cherkashyna1, S. Choroba15, B. Chey-mol1, M. Christensen26, N. B. Christensen27, E. P. Cippo28, A. Class25, K. Clausen19, U. Clemens14,J. F. Clergeau19, M. Comunian21, C. Cooper-Jensen1, J. Correa19, G. Croci23, G. Cuk3, L. Cussen6,Y. Dai7, H. Danared1, D. Dancila29, C. Darve1, T. Davenne11, P. de Vicente18, P. P. Deen1, M. Dell’Anno Boul-ton1, S. Deledda22, C. Densham11, R. De Prisco1, M. Desmons5, G. Devanz5, F. M. Dominguez18, P. Duch-esne20, R. Duperrier1, P. Duthil20, H. Eckerlebe16, S. Eckert30, H.-J. Eckholt15, T. Ekelof29, J. Embs7,M. Eneroth1, R. Engels14, C. Engling15, M. Eshraqi1, R. Fabbri14, C. Fazio25, J. Fenske16, J. Fet-zer25, U. Filges7, U. Fischer25, K. G. Fissum10, M. Forster7, A. France5, A. Franciosi31, P. Freeman6,32,H. Frielinghaus14, C. Frojdh33, C. Frost11, T. Gahl1, S. Gallimore1, S. Gammino21, N. Gandalfo20,R. Georgii12, G. Gerbeth30, G. Gervasini23, B.-E. Ghidersa25, A. Ghiglino18, L. Giacomelli28, O. Gonza-lez18, G. Gorini28, V. Goryashiko29, M. Gohran1, K. Gajewski29, A. Goukassov26, D. Graf7, F. Grespan24,A. Gromov7, G. Grosso23, U. Greuter7, C. Grunzweig7, B. Guerard19, S. Gysin1, K. Habicht6, H. Hahn1,E. A. L. Hakansson34, S. Hall1,10, R. Hall-Wilton1, B. R. Hansen9, U. B. Hansen35, T. Hansson1, T. Har-aldsen22, V. Haramus16, C.-H. Hardh1, H. Hassan1, H. Hassanzadegan1, B. C. Hauback22, W. Haussler12,W. Hees1, G. Helgesen22, P. Henry1, L. Hermansson29, A. Hiess1, A. Hilger6, T. Hofmann6, C. Hoglund1,8,L. Hoitzner7, A. I. S. Holm27, S. Holm36, L. Høpfner35, C. Horstmann16, A. Houben37, L. Hultman8,M. Imam1,8, A. Ioffe14, J. Iversen15, S. Iyengar34, P. Jacobs37, C. L. Jacobsen35, H. Jacobsen35, J. Ja-cobsen13, A. Jansson1, K. Jensch15, J. Jensen8, M. Jensen9, X. J. Jin25, A. J. Johansson34, R. Jongeling1,F. Juranyi7, C. Kagi7, R. Kampmann16, K. Kanaki1, N. Kardjilov6, S. Kecskes25, P. Keller7, G. Kem-merling14, M. Kenzelmann7, A. Khaplanov1, C. Kharoua1, I. Khokhriakov16, K. Kiefer6, B. Kildetoft1,T. Kittelmann1, H. Kleines14, K. Klenø35, E. B. Klinkby9, B. Klosgen38, E. B. Knudsen9, K. Knud-sen22, J. Kohlbrecher7, M. Konnecke7, A. Konobeev25, P. Korelis7, T. Kottig1, L. Kramer12, J. Krasna3,J. Krebs7, Z. Kroflic3, V. Krsjak39, S. Kynde13, B. Laatsch14, P. Ladd1, E. Laface1, B. Lauritzen9,R. E. Lechner1, K. Lefmann35, E. Lehmann7, M. Lehmann7, F. Leseigneur20, K. Lieutenant6, L. Lilje15,R. Linander1, H. Lindblad1, B. Lindenau14, I. Llamas-Jansa22, T. Lofnes29, W. Lohstroh12, D. Lott16,P. Lukas17, J. Lundgren1, M. Lundin40, H. Moller1, M. Magan18, I. Manke6, M. Marko7, N. Martin12,D. Mascali24, A. Matheisen15, S. Mattauch14, D. McGinnis1, M. Meissner1, P. Mereu24, M. Meshkian34,F. Mezei1, W.-D. Moeller15, J. Molander1, S. Molloy1, K. Mortensen13, J.-F. Moulin16, A. Milocco28,M. Monkenbusch14, M. Morgano7, T. Muhlebach7, M. Muller16, J. L. Munoz18, G. Nagy7, D. Nekrassov6,L. Neri24, K. Neuhaus15, J. Neuhausen7, C. Niedermayer7, J. B. Nielsen9, S. Nielsen9, B. Nilsson40, P. Nils-son1, E. Noah1, E. Nonboel9, P. Norby9, A. Nordt1, G. Nowak16, E. Oksanen1, G. Olivier20, G. Olry20,T. Panzner7, S. Pape-Møller27, C. Pappas21, T. Parker1, S. Pasini14, H. Pedersen8, S. Peetermans7, J. Pers-son1, B. Petersen15, S. Petersson33, S. Petersson Arskold1, J. Pieper41, A. Pietropaolo23, J. Pilch17,A. Piquet5, F. Piscitelli19, A. Pisent24, E. Platacis25, F. Plewinski1, J. Plomp21, J. Plouin5, A. Pon-ton1, S. Pospisil42, B. Pottin5, H. F. Poulsen9, S. O. Poulsen9, P. Radahl1, P. K. Pranzas16, M. Proell15,O. Prokhnenko6, K. Prokes6, E. Rampnoux20, E. Rantsiou7, N. Rasmussen35, O. Rasmussen9, K. Raths-man1, M. Rebai28, T. Reiss7, M. Rescic3, D. Reschke15, C. Rethfeldt6, M. Reungoat44, D. Reynet20,D. Richter14, M. Rieth25, T. H. Rod35, D. M. Rodriguez1, I. Rodriguez1,14 K. Rolfs6, M. Rouijaa16, R. Ru-ber29, U. Rucker14, C. Ruegg7, H. Rønnow32, M. Russina6, A. Ryberg29, P. Sabbagh1, A. Sadeghzadeh1,

Page 4: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

M. Sales6,36, Z. Salhi14, R. Santiago-Kern29, J. Saroun17, T. Satogata45, F. Saxild9, J. Schaffran15,J. Schefer7, J. Scherzinger10, M. Schild7, B. Schillinger12, H. Schlarb15, P. Schmakat12, A. Schreyer16,W. Schroeder14, P. Schurtenberger10, C. Schulz6, M. Schulz12, W. Schweika1,14, M. Seifert12, G. Severin9,R. Seviour1, M. Sharp1, T. Shea1, P. Sievers1, L. Silvi12, G. G. Simeoni12, W. Singer15, P. Sittner46,R. Sjoholm1, N. Skar-Gislinge13, S. Skelboe35, F. Sordo18, J. Stahn7, P. Staron16, I. Stefanescu12, F. Ste-fani30, W.-D. Stein6, R. Steitz6, H. Stelzer14, A. Steuwer1, M. Stormer16, M. Strobl1,6, P. Stronci-wilk14, P. Strunz17, A. Sukhanova14, I. Sutton1, K. Svedin1, H. Svensson40, A. Takibayev1, V. Talanov7,M. Tardocchi23, L. Tchelidze1, M. Telling11, S. Terron18, K. Theodor35, J-P. Thermeau20, H. D. Thom-sen27, K. Thomsen7, A. Tibbelin1, C. Tiemann14, M. Trapp6, N. Tsapatsaris1, L. Udby13, A. Ushakov6,P. Van Esch19, L. Van Eijck21, S. van Waasen14, A. A. Van Well21, C. Vasi48, E. Vassallo23, C. Vet-tier1, A. Vickery35, N. Violini14, M. Vitorovic3, R. Vivanco18, E. Vogel15, J. Voigt14, L. Von Moos13,H. P. Wacklin1, X. Wang15, X. L. Wang1, T. Weber12, R. Wedberg29, S. Weichselbaumer12, B. Wein-horst25, H. Weise15, A. Weisenburger25, P. K. Willendrup9, R. Willumeit16, T. Wilpert6, A. Wischnewski14,M. Wohlmuther7, J. Wolters14, R. A. Yogi29, L. Zanini1, K. Zagar3, K. Zeitelhack12, C. Zendler6, R. Zeng1,V. Ziemann29, M. Zoppi49, A. Zugazaga18.

1European Spallation Source2AF Consult3Control System Laboratory4Royal Holloway, University of London5Commissariat a l’Energie Atomique et aux energies alternatives6Helmholtz-Zentrum Berlin fur Materialien und Energie7Paul Scherrer Institut8Linkoping University9Technical University of Denmark

10Lund University11Science and Technology Facilities Council12Technische Universitat Mnchen13Københavns Universitet14Forschungszentrum Julich15Deutsches Elektronen-Synkrotron16Helmholtz-Zentrum Geesthacht17Nuclear Physics Institute ASCR, Rez18European Spallation Source – Bilbao19Institut Laue-Langevin20Institut de Physique Nucleaire21Delft University of Technology22Institute for Energy Technology23Consiglio Nazionale delle Ricerche – Milano24Istituto Nazionale di Fisica Nucleare25Karlsruhe Institute of Technology26Laboratoire Leon Brillouin27Aarhus University28Milano-Bicocca University29Uppsala University30Helmholtz-Zentrum Dresden-Rossendorf31Sincrotrone Trieste S.C.p.A. di interesse nazionale32Ecole Polytechnique Federale de Lausanne33Mid Sweden University34Lunds Tekniska Hogskola35Niels Bohr Institute36Copenhagen University37Rheinisch-Westfalische Technische Hochschule Aachen38University of Southern Denmark39Slovak University of Technology, Bratislava40The MAX IV Laboratory41University of Tartu42Czech Technical University in Prague43Institute of Nuclear Techniques – Budapest44Centrum vyzkumu Rez s.r.o.45Thomas Jefferson National Accelerator Facility46Institute of Physics of the ASCR, Prague47IHEP – Protvino48Consiglio Nazionale delle Ricerche – Messina49Consiglio Nazionale delle Ricerche – Firenze

Page 5: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

Brief Contents

Executive Overview xxi

1 Introduction 1

2 Neutron Science and Instruments 9

3 Target Station 149

4 Accelerator 267

5 Integrated Control System 391

6 Specialised Technical Services 449

7 Conventional Facilities 477

8 Integration 533

9 Commissioning 543

10 Emission Control 563

11 Safety and Security 593

12 Conclusions 605

i

Page 6: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,
Page 7: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

Contents

Executive Overview xxi

1 Introduction 11.1 The evolving story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 The ESS programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Neutron Science and Instruments 92.1 Neutrons in the scientific landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The complexity of nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1.2 The grand challenges of society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.3 Neutrons in the landscape of experimental techniques . . . . . . . . . . . . . . . . . 112.1.4 ESS in the landscape of neutron sources . . . . . . . . . . . . . . . . . . . . . . . . 132.1.5 The unique capabilities of ESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Science drivers for the instrument suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2.1 Soft condensed matter research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.2 Life science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2.3 Magnetic and electronic phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.2.4 Chemistry of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.2.5 Energy research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.2.6 Engineering materials and geosciences . . . . . . . . . . . . . . . . . . . . . . . . . . 372.2.7 Archaeology and heritage conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 412.2.8 Fundamental and particle physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Design drivers for the instrument suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452.3.1 White-beam instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462.3.2 Monochromatic instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482.3.3 Neutron optics and transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 The reference instrument suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492.4.1 A balanced reference suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Catalogue: The reference suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552.6 Neutron science support facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.6.1 User programme, academic activities and sample handling . . . . . . . . . . . . . . . 992.6.2 Laboratories for life science and soft condensed matter research . . . . . . . . . . . . 1012.6.3 Laboratories for chemistry, physics and materials science . . . . . . . . . . . . . . . . 1022.6.4 Facilities for engineering and other research areas . . . . . . . . . . . . . . . . . . . . 1032.6.5 Laboratory work space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.7 Instrument support and neutron technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 1042.7.1 Detector systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042.7.2 Chopper systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162.7.3 Neutron optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212.7.4 Sample environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262.7.5 Electrical engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.8 Data management and software for instruments and users . . . . . . . . . . . . . . . . . . . 1322.8.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342.8.2 Experiment planning and the user office . . . . . . . . . . . . . . . . . . . . . . . . . 1362.8.3 Instrument control and data acquisition software . . . . . . . . . . . . . . . . . . . . 138

iii

Page 8: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

2.8.4 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.8.5 Computational support for analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3 Target Station 1493.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.1.1 Summary of basic requirements and design choices . . . . . . . . . . . . . . . . . . . 1503.1.2 Target station layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533.1.3 Quality assurance and risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1583.1.4 Target station operations and maintenance . . . . . . . . . . . . . . . . . . . . . . . 1593.1.5 Target station control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623.1.6 Global simulation of target station system . . . . . . . . . . . . . . . . . . . . . . . . 1663.1.7 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.2 Neutronic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1723.2.1 Target and moderator concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1723.2.2 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1733.2.3 Neutronic codes and nuclear data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1733.2.4 Optimisation of the beam-target interface . . . . . . . . . . . . . . . . . . . . . . . . 1743.2.5 Neutronic design of the target-moderator-reflector system . . . . . . . . . . . . . . . 1773.2.6 Support to beam extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1793.2.7 Neutronic support to engineering design . . . . . . . . . . . . . . . . . . . . . . . . . 1813.2.8 Development of optimisation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

3.3 Monolith and plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853.3.1 Monolith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853.3.2 Target design requirements and configuration . . . . . . . . . . . . . . . . . . . . . . 1883.3.3 Analysis of spallation material arrangement and behaviour . . . . . . . . . . . . . . 1913.3.4 Target vessel and beam entrance window . . . . . . . . . . . . . . . . . . . . . . . . 1963.3.5 Target shaft, seal, bearing and drive . . . . . . . . . . . . . . . . . . . . . . . . . . . 2003.3.6 Target monitoring instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2053.3.7 Moderators and reflector system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2073.3.8 Proton beam window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2143.3.9 Beam ports and beam extraction system . . . . . . . . . . . . . . . . . . . . . . . . . 2173.3.10 Irradiation ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2203.3.11 Tune-up dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3.4 Fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2243.4.1 Gaseous cooling circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2253.4.2 Water cooling systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2313.4.3 Moderator liquid hydrogen cooling circuit . . . . . . . . . . . . . . . . . . . . . . . . 2323.4.4 Active fluids purification and storage systems . . . . . . . . . . . . . . . . . . . . . . 234

3.5 Handling and logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2363.5.1 Active cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2363.5.2 Casks and associated handling devices . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3.6 Fallback and comparative target technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 2463.6.1 Water cooled rotating tungsten target . . . . . . . . . . . . . . . . . . . . . . . . . . 2463.6.2 Liquid lead bismuth eutectic target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

4 Accelerator 2674.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4.1.1 Accelerator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2694.1.2 Linac configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

4.2 Beam physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2754.2.1 Superconducting linac design and beam dynamics . . . . . . . . . . . . . . . . . . . 2754.2.2 Studies of errors and fault tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . 2784.2.3 End-to-end simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2804.2.4 Energy gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2814.2.5 Beam loss and collimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2824.2.6 Same-order and higher-order cavity modes . . . . . . . . . . . . . . . . . . . . . . . . 283

Page 9: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

4.2.7 Cost savings proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2854.3 Normal conducting linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

4.3.1 Ion source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2854.3.2 Low energy beam transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2884.3.3 LEBT chopping and collimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2904.3.4 Radio frequency quadrupole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2914.3.5 RF design of the 5 m RFQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2954.3.6 Medium energy beam transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2994.3.7 MEBT buncher cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3034.3.8 Drift tube linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

4.4 Superconducting RF linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3104.4.1 Cryogenic operating parameters and flow process . . . . . . . . . . . . . . . . . . . . 3124.4.2 Cryogenic heat loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

4.5 Spoke cavities and cryomodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3154.5.1 Mechanical design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3184.5.2 Cold tuning system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3204.5.3 Fundamental power coupler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3224.5.4 Cryomodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

4.6 Elliptical cavities and cryomodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3294.6.1 Mechanical design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3334.6.2 Cold tuning system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3344.6.3 Fundamental power coupler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3354.6.4 Cryomodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

4.7 High energy beam transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3404.7.1 Layout, optics and beam distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3404.7.2 Collimators and beam dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3434.7.3 Magnets and power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

4.8 Radio frequency systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3474.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3474.8.2 Low level RF control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3494.8.3 Low level distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3504.8.4 Klystrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3524.8.5 Modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3534.8.6 Spoke RF power (352 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3614.8.7 High power RF distribution (702 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . 3654.8.8 RF gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

4.9 Beam instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3714.9.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3714.9.2 Beam loss monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3754.9.3 Beam current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3764.9.4 Beam position and phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3774.9.5 Faraday cups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3794.9.6 Wire scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3804.9.7 Non-invasive profile monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3844.9.8 Halo monitoring and emittance measurement . . . . . . . . . . . . . . . . . . . . . . 3854.9.9 Longitudinal bunch shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3874.9.10 Beam-on-target monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

4.10 Cost savings proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

5 Integrated Control System 3915.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

5.1.1 Architecture and organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3925.1.2 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3965.1.3 Hardware framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3985.1.4 Software framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3985.1.5 Device integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Page 10: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

5.1.6 Naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4005.2 Control system core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

5.2.1 Safety, the core requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4015.2.2 Machine protection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4015.2.3 Personnel protection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4115.2.4 Relationship of ICS and the target safety system . . . . . . . . . . . . . . . . . . . . 4125.2.5 Timing and synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4125.2.6 Timing system services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4175.2.7 Control system services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

5.3 The control box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4225.3.1 Distribution and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4235.3.2 Prototyping support and the control equipment catalogue . . . . . . . . . . . . . . . 4265.3.3 Neutron instrument and sample environment control . . . . . . . . . . . . . . . . . . 4275.3.4 Infrastructure control and programmable logic controllers . . . . . . . . . . . . . . . 428

5.4 Beam line element databases (BLED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4295.4.1 Design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4295.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4315.4.3 Configuration databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4345.4.4 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4365.4.5 Online and offline proton beam modelling and simulation . . . . . . . . . . . . . . . 437

5.5 Software development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4415.6 The human machine interface and the user experience . . . . . . . . . . . . . . . . . . . . . 444

5.6.1 User roles and profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4445.6.2 High-level application program standards . . . . . . . . . . . . . . . . . . . . . . . . 446

6 Specialised Technical Services 4496.1 Cryogenic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

6.1.1 The linac cryoplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4516.1.2 Test stand and instruments cryoplant . . . . . . . . . . . . . . . . . . . . . . . . . . 4556.1.3 Target cryoplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4556.1.4 Distribution system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4566.1.5 Safety factors for cryoplant capacities . . . . . . . . . . . . . . . . . . . . . . . . . . 458

6.2 Vacuum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4606.2.1 Accelerator vacuum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4606.2.2 Instruments and neutron beam lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

6.3 Test stands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4646.3.1 Uppsala test stand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4646.3.2 Lund test stand phase I: RF equipment tests . . . . . . . . . . . . . . . . . . . . . . 4686.3.3 Lund test stand phase II: elliptical cryomodule acceptance tests . . . . . . . . . . . . 470

7 Conventional Facilities 4777.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

7.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4797.1.2 Architectural design competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4837.1.3 Feasibility study, preliminary design and detailed design . . . . . . . . . . . . . . . . 4847.1.4 Construction, commissioning, operation, and decommissioning . . . . . . . . . . . . 4857.1.5 Building information modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

7.2 Location and conditions at the site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4887.2.1 Archaeology and environs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4887.2.2 Ground conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4907.2.3 Preliminary values from the ground and geotechnical investigations . . . . . . . . . . 4947.2.4 Utility supplies to the site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

7.3 Logistics, earthworks and buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4967.3.1 Heavy lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4987.3.2 Earthworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4997.3.3 Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Page 11: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

7.3.4 Accelerator buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5037.3.5 Target building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5067.3.6 Experimental halls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5087.3.7 Central laboratory, DMSC, office and auxiliary buildings . . . . . . . . . . . . . . . . 508

7.4 Electric power services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5117.4.1 Medium voltage systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5127.4.2 Low and extra low voltage systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5167.4.3 Electrical environment and grounding . . . . . . . . . . . . . . . . . . . . . . . . . . 518

7.5 Water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5197.5.1 Cooling water system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5197.5.2 Deionised process water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5207.5.3 Cooling water requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5217.5.4 Cooling water interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5227.5.5 Waste water and storm water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

7.6 Main services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5267.6.1 Compressed air and gas systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5267.6.2 Heating and ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5277.6.3 Fire extinguishing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5297.6.4 Security systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

8 Integration 5338.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5348.2 Quality, norms and standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5348.3 Design integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5368.4 Coordinate systems, survey and alignment, and installation . . . . . . . . . . . . . . . . . . 5398.5 Life-cycle management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5418.6 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

9 Commissioning 5439.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5449.2 Strategy and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5449.3 Conventional facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5479.4 Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5509.5 Target station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5549.6 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5579.7 Integrated control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5589.8 Operational lessons learnt from other facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 561

10 Emission Control 56310.1 Radiation safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56410.2 Radiological characterisation of the waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

10.2.1 Source term for waste disposal classification . . . . . . . . . . . . . . . . . . . . . . . 56710.2.2 Source terms for environmental analysis . . . . . . . . . . . . . . . . . . . . . . . . . 567

10.3 Waste management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57110.3.1 Waste classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57210.3.2 Rate of waste generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57310.3.3 Management of radioactivity on-site . . . . . . . . . . . . . . . . . . . . . . . . . . . 57310.3.4 Transportation of radioactive waste off-site . . . . . . . . . . . . . . . . . . . . . . . 57510.3.5 Waste treatment and conditioning options . . . . . . . . . . . . . . . . . . . . . . . . 57710.3.6 Requirements for final repository capacity . . . . . . . . . . . . . . . . . . . . . . . . 577

10.4 Operational waste and emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57810.4.1 Radioactive waste in fluid cooling systems – preliminary estimates . . . . . . . . . . 57910.4.2 Source term for atmospheric releases . . . . . . . . . . . . . . . . . . . . . . . . . . . 58110.4.3 Tritium control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

10.5 Environmental impact analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58310.5.1 Dose calculations and methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Page 12: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

10.5.2 Groundwater migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58510.5.3 Accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

10.6 Decommissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

11 Safety and Security 59311.1 Safety principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

11.1.1 Confinement barriers and defence-in-depth . . . . . . . . . . . . . . . . . . . . . . . 59511.2 The licensing application and regulatory processes . . . . . . . . . . . . . . . . . . . . . . . 59711.3 Radiological safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

11.3.1 Safety functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60011.3.2 Safety systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

11.4 Conventional safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60311.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

12 Conclusions 605

Page 13: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

List of Figures

1 Non-destructive imaging of an Indonesian dagger sheath. . . . . . . . . . . . . . . . . . . . xxiii2 Dirac strings and a Skyrmion lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii3 Neutron beamline and reference instrument suite layout. . . . . . . . . . . . . . . . . . . . xxv4 Target station functionalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi5 Block diagram of the ESS accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii6 Tunnel perspective, showing elliptical cavity cryomodules. . . . . . . . . . . . . . . . . . . xxviii7 Simulation results in support of a robust linac design. . . . . . . . . . . . . . . . . . . . . . xxviii8 Maps of the ESS location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx9 Preliminary layout of the main components on the ESS site. . . . . . . . . . . . . . . . . . xxxi10 Architectural impression of the central campus and the target station. . . . . . . . . . . . xxxii

1.1 Top level organigramme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 An overview of the schedule for key activities. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Using neutrons to explore different length and time scales. . . . . . . . . . . . . . . . . . . 122.2 The unique capabilities of ESS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Small angle neutron scattering imaging of a mixed surfactant suspension. . . . . . . . . . . 182.4 Vibrational spectra from polyethylene oxide polymer chain conformation. . . . . . . . . . . 192.5 Small angle neutron scattering of doxorubicin release. . . . . . . . . . . . . . . . . . . . . . 212.6 A map of the drug acetazolamide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.7 The membrane protein bacteriorhodopsin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.8 A state-of-the art quasi-elastic neutron scattering study. . . . . . . . . . . . . . . . . . . . 252.9 Dirac strings and a Skyrmion lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.10 Time evolution of a quasi-elastic neutron spectroscopy spectrum for cement. . . . . . . . . 332.11 Radiographic image of an operating fuel cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 342.12 Measured and calculated inelastic neutron scattering spectra of activated dihydrogen-Ti. . 352.13 Phonon response of the thermoelectric material Zn4Sb3. . . . . . . . . . . . . . . . . . . . 362.14 Neutron diffraction of inertia welded turbine disks. . . . . . . . . . . . . . . . . . . . . . . 382.15 Neutron diffraction measurements of gneiss composed of quartz, feldspar and mica. . . . . 392.16 Neutron tomography of a titanosaur egg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402.17 Non-destructive imaging of an Indonesian dagger sheath. . . . . . . . . . . . . . . . . . . . 422.18 Structure and development of the universe in space and time. . . . . . . . . . . . . . . . . 432.19 Single-pulse source brightness as a function of time. . . . . . . . . . . . . . . . . . . . . . . 462.20 Time-distance diagrams for white-beam instruments. . . . . . . . . . . . . . . . . . . . . . 472.21 Time-distance plot using 4-fold repetition-rate multiplication. . . . . . . . . . . . . . . . . 482.22 Comparison of a SANS instrument at ESS and current world-leading SANS instruments. . 502.23 Performance of powder diffractometers at leading large-scale facilities and at ESS. . . . . 512.24 Reference instrument suite layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552.25 Neutron experiment sample flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002.26 Global supply and demand for 3He gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062.27 Thin film vapour deposition by magnetron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.28 Large-area thin film deposition of boron carbide. . . . . . . . . . . . . . . . . . . . . . . . . 1082.29 Prototype tests of thin film technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092.30 Prototype tests incorporating 10B thin films at very small angles. . . . . . . . . . . . . . . 1102.31 Coated grooved cathodes for improved detection efficiency. . . . . . . . . . . . . . . . . . . 1102.32 Prototype of a small wavelength-shifting fibre detector under test. . . . . . . . . . . . . . . 112

ix

Page 14: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

2.33 The Anger method of neutron detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132.34 A micropattern detector using Gd-MSGC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142.35 Delivery schedule for neutron chopper systems. . . . . . . . . . . . . . . . . . . . . . . . . 1172.36 Parallel axis prompt pulse choppers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192.37 Choppers with aluminium discs and conventional bearings. . . . . . . . . . . . . . . . . . . 1202.38 Fermi or E0 choppers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212.39 Reflectivity of supermirrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222.40 Adaptive optics and shielded neutron guides. . . . . . . . . . . . . . . . . . . . . . . . . . . 1232.41 Radiation and heat-tolerant neutron guides. . . . . . . . . . . . . . . . . . . . . . . . . . . 1242.42 Spin polarising supermirror analyser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252.43 Comparison of simulated and measured neutron beam profiles. . . . . . . . . . . . . . . . . 1262.44 Sample environment examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282.45 Instrument motion control components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302.46 Cable topologies for instrument motion control technologies. . . . . . . . . . . . . . . . . . 1302.47 Multi-axis robotic and hexapod sample tables. . . . . . . . . . . . . . . . . . . . . . . . . . 1322.48 IT services and infrastructure provided by the Data Management and Software Centre. . . 1332.49 The relationship between the ESS-DMSC in Copenhagen, and ESS in Lund. . . . . . . . . 1332.50 The software suite needed to support users from idea to publication. . . . . . . . . . . . . 1352.51 Live streaming data reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402.52 Separation of simulated data into components, in a virtual instrument for data reduction. 1422.53 Two examples of how intensive computing can be used in data interpretation. . . . . . . . 1442.54 Simulated density plot for a thermal powder diffractometer. . . . . . . . . . . . . . . . . . 1442.55 Results from grand canonical Monte Carlo simulations of water adsorption in concrete. . . 1452.56 Two examples of complementary neutron scattering and scientific computing techniques. . 146

3.1 Target station building plan view and elevation cuts. . . . . . . . . . . . . . . . . . . . . . 1533.2 Perspective view of the target station building through a vertical section. . . . . . . . . . . 1543.3 Target station utility rooms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563.4 State diagram for transitions between ESS modes during normal operations. . . . . . . . . 1603.5 Proton beam trip assumptions for beam-class target station systems. . . . . . . . . . . . . 1623.6 Description of the beam trip cycles for the target. . . . . . . . . . . . . . . . . . . . . . . . 1623.7 Relationship between ICS thresholds, mechanical design values and operating domains. . . 1633.8 Illustration of TSS interfaces to external systems, e.g. ICS and PPS. . . . . . . . . . . . . 1653.9 The model of the target helium loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663.10 Model of the full target loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1673.11 MCNPX model of the target station monolith. . . . . . . . . . . . . . . . . . . . . . . . . . 1733.12 MCNPX model of the moderators and target zone. . . . . . . . . . . . . . . . . . . . . . . 1743.13 Cold brightness and moderator heat load obtained under different simulation conditions. . 1753.14 Neutronic performance and moderator heat load versus proton current density. . . . . . . 1763.15 MCNPX model of the target and surrounding moderator and reflector. . . . . . . . . . . . 1773.16 Sensitivity studies of the bottom premoderator thickness and moderator diameter. . . . . . 1783.17 ESS absolute peak brightness compared to the ILL. . . . . . . . . . . . . . . . . . . . . . . 1783.18 Neutron pulse shapes at 2 A, 4 A and 6 A out of the moderator. . . . . . . . . . . . . . . . 1793.19 Calculated dependence of cold neutron brightness on opening angle around a moderator. . 1803.20 Neutron and gamma dose rate measurement configuration at SINQ. . . . . . . . . . . . . . 1813.21 Map of cold neutrons emitted from the surface of the moderator. . . . . . . . . . . . . . . 1833.22 Graphical description of the bispectral spectrum. . . . . . . . . . . . . . . . . . . . . . . . 1843.23 Monolith general layout – perspective view and side view. . . . . . . . . . . . . . . . . . . 1863.24 The general layout of the liner system and its double seal design. . . . . . . . . . . . . . . 1873.25 Exploded view of the bulk shielding assembly and the water-cooled shielding block. . . . . 1893.26 Spallation material arrangement showing the serpentine pattern of the helium flow. . . . . 1903.27 Helium velocity streamlines and temperature distributions. . . . . . . . . . . . . . . . . . . 1923.28 Temperature field and heat flux in target tungsten cut-planes. . . . . . . . . . . . . . . . . 1923.29 The calculated velocity and pressure fields in helium flow. . . . . . . . . . . . . . . . . . . 1923.30 Transient temperature for a given sector at different locations. . . . . . . . . . . . . . . . . 1933.31 Temperature fields at the vessel, in the tungsten and at the beam entrance window. . . . . 193

Page 15: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

3.32 The geometry and power density profile of heat transfer around the target. . . . . . . . . . 1943.33 Von Mises stress distribution in tungsten, just before and after the proton pulse. . . . . . . 1953.34 Typical 0.2% yield and ultimate tensile strengths for tungsten and molybdenum sheets. . . 1953.35 The maximum principal stress distribution in a vertically sliced tungsten plate. . . . . . . 1963.36 The 33 target sectors, separated by 33 structural beams. . . . . . . . . . . . . . . . . . . . 1963.37 Schematic cross section of the target vessel with SHELL model applied pressure values. . . 1973.38 Von Mises stress distribution and vertical deformation of the target wheel. . . . . . . . . . 1973.39 The ESS target vessel with positions and contact surfaces. . . . . . . . . . . . . . . . . . . 1983.40 Target vessel von Mises stress field and total deformation under loading. . . . . . . . . . . 1983.41 Path positions for the structural assessment of the target vessel. . . . . . . . . . . . . . . . 1993.42 The target shaft installation environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2013.43 The target shaft design concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2023.44 The sealing concept for the target wheel’s bearing and drive unit. . . . . . . . . . . . . . . 2033.45 The static seal configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2043.46 Drive, seal and bearing unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2043.47 An optical path to monitor target vessel temperatures and vibrations. . . . . . . . . . . . . 2063.48 Temperature field and streamlines in the liquid hydrogen moderator. . . . . . . . . . . . . 2073.49 Von Mises stress and deformation in the cold moderator. . . . . . . . . . . . . . . . . . . . 2083.50 Weld positions and the associated stress safety factors for the cold moderator test vessel. . 2083.51 Tensile strengths and yield strengths for Al-6061-T6 at 77 K and 293 K. . . . . . . . . . . 2093.52 The two parts of the water moderator: the premoderator and the thermal moderator. . . . 2103.53 The water temperature field in the two parts of the water moderator. . . . . . . . . . . . . 2103.54 The temperature field in the inner reflector. . . . . . . . . . . . . . . . . . . . . . . . . . . 2113.55 The moderator plug and the moderator-reflector plug. . . . . . . . . . . . . . . . . . . . . 2123.56 Cut views through the target and instrument planes of the moderator plug. . . . . . . . . 2123.57 Vertical handling tool for the moderator-reflector plug. . . . . . . . . . . . . . . . . . . . . 2133.58 The proton beam window and frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153.59 The proton beam window module and plug, including inflatable seals and sealing system. . 2163.60 The potential neutron beam port configuration from a horizontal plane view. . . . . . . . 2173.61 Two ways to shield closed beamline positions. . . . . . . . . . . . . . . . . . . . . . . . . . 2183.62 A cross section view of the neutron beam port with shielded handling cask in place. . . . . 2193.63 The neutron beam ports with a close up view of the neutron beam window. . . . . . . . . 2203.64 Three potential locations for fast neutron ports. . . . . . . . . . . . . . . . . . . . . . . . . 2213.65 MCNPX model layout from the HEBT port to the reflector plug. . . . . . . . . . . . . . . 2213.66 Neutron spectra and integrated flux in the target-moderator-reflector assembly. . . . . . . 2223.67 Tune-up dump overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2233.68 The helium circuit of the target cooling system and its principal components. . . . . . . . 2263.69 A double seal with an enclosure fed by helium. . . . . . . . . . . . . . . . . . . . . . . . . . 2273.70 A cyclonic filtering system with an electrostatic recirculator in the helium circuit. . . . . . 2283.71 Temperature evolution of the target wheel cooling system. . . . . . . . . . . . . . . . . . . 2303.72 Liquid hydrogen cryogenic system flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . 2333.73 Simplified flow chart of helium in the target, monolith and purification systems. . . . . . . 2353.74 The active cells system layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373.75 The flow of active cell logistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373.76 Shielded cask on top of active cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2403.77 Process cell equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2413.78 Maintenance cell and transfer area equipment . . . . . . . . . . . . . . . . . . . . . . . . . 2423.79 Cut views of the water-cooled target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2473.80 Temperatures in the water-cooled target as a function of time for one pulse cycle. . . . . . 2483.81 Sketch of tungsten rod placement in a sector of the water-cooled target wheel. . . . . . . . 2503.82 The beam entrance window before the tungsten rods in the water-cooled target wheel. . . 2513.83 Geometrical model for a cannelloni target. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2533.84 The liquid lead bismuth eutectic target system, with or without windows. . . . . . . . . . 2553.85 Comparison of neutronic performance of the baseline target and the META:LIC target. . . 2563.86 Heat deposition and maximum pressure for a ramped proton beam pulse. . . . . . . . . . . 2573.87 META:LIC design with enforced flow detachment. . . . . . . . . . . . . . . . . . . . . . . . 258

Page 16: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

3.88 Mean temperature distribution in the windowless target option. . . . . . . . . . . . . . . . 2593.89 Velocity distribution of liquid lead bismuth eutectic at times t = 1.5 s and t = 3 s. . . . . . 2593.90 Development of the free surface flow in the windowless target. . . . . . . . . . . . . . . . . 2603.91 Mock-up of the META:LIC target body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2603.92 META:LIC enclosure concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

4.1 Block diagram of the FDSL 2012 10 02 accelerator lattice. . . . . . . . . . . . . . . . . . . 2684.2 The power delivered to a 50 mA beam in each of the RF cavities. . . . . . . . . . . . . . . 2704.3 Evolution of key parameters along the longitudinal axis of the RFQ. . . . . . . . . . . . . 2714.4 The beam distribution in longitudinal phase space at the RFQ output. . . . . . . . . . . . 2724.5 Full (3σ) beam distribution envelopes in the MEBT. . . . . . . . . . . . . . . . . . . . . . 2734.6 Evolution of emittances along the MEBT and DTL. . . . . . . . . . . . . . . . . . . . . . . 2744.7 End coordinates and overall dimensions of the accelerator, from ion source to target. . . . 2744.8 Rate of phase advance, from the DTL to the end of the high-β section. . . . . . . . . . . . 2764.9 Hoffman stability plot showing the rate of emittance exchange. . . . . . . . . . . . . . . . . 2774.10 Synchronous phase from the DTL to the end of the high-β section. . . . . . . . . . . . . . 2774.11 RMS beam sizes and emittances, from the MEBT to the end of the high-β section. . . . . 2784.12 Maximum beam radius versus distance with increasing errors. . . . . . . . . . . . . . . . . 2794.13 Particle density as a function of distance and radius along the linac. . . . . . . . . . . . . . 2804.14 Longitudinal acceptance of the linac, referred to the entrance of the DTL. . . . . . . . . . 2804.15 Cavity voltage and beam energy versus distance along the linac. . . . . . . . . . . . . . . . 2814.16 Particle distributions after the MEBT, with and without collimation. . . . . . . . . . . . . 2834.17 Phase space distribution of a macro-pulse, for two lattices. . . . . . . . . . . . . . . . . . . 2844.18 The average longitudinal emittance as a function of the external coupling factor Qex. . . . 2844.19 Ion source, matching transformer, and extraction to the low energy beam transport. . . . . 2864.20 Magnetic field profile in the ion source, generated by three independent shielded coils. . . . 2864.21 Electric field distribution inside the ion source plasma chamber. . . . . . . . . . . . . . . . 2874.22 Ion source matching transformer, used to reduce the reflected power. . . . . . . . . . . . . 2884.23 Transverse beam emittance ellipses at extraction from the ion source. . . . . . . . . . . . . 2884.24 Preliminary layout of the ion source and the low energy beam transport. . . . . . . . . . . 2894.25 LEBT chopper and RFQ collimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2904.26 Proton beam trajectory in the LEBT and its phase space distribution at the exit. . . . . . 2914.27 Secondary (H+

2 ) beam trajectory in the LEBT and its distribution on the collimator. . . . 2924.28 Chopped proton beam trajectory in the LEBT its distribution on the RFQ collimator. . . 2924.29 Beam pulse rise time out of the LEBT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2924.30 RFQ inter-vane voltage and the 2D frequency shift. . . . . . . . . . . . . . . . . . . . . . . 2944.31 Beam power loss along the RFQ, and longitudinal distribution at RFQ output. . . . . . . 2944.32 3D views of the RFQ input, showing vane undercuts. . . . . . . . . . . . . . . . . . . . . . 2944.33 Distribution of RFQ tuners and field-sampling locations. . . . . . . . . . . . . . . . . . . . 2954.34 RFQ inductance eigenfunctions, normalised spectra, and linear filter-bank transmittances. 2964.35 Power dissipated by the RFQ tuner assembly. . . . . . . . . . . . . . . . . . . . . . . . . . 2964.36 The RFQ half-circular power coupler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2974.37 Magnetic perturbations from the RFQ power coupler on the tuning bead trajectory. . . . . 2974.38 Single-mode perturbation analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2984.39 Medium energy beam transport layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2994.40 MEBT collimator scrapers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3004.41 Beam phase space distribution at the input and output of the MEBT. . . . . . . . . . . . 3014.42 Evolution of halo parameters and emittances along the MEBT. . . . . . . . . . . . . . . . 3014.43 Maximum integrated field strength for each MEBT steerer in a misalignment study. . . . . 3034.44 Electromagnetic model of the buncher cavity power coupler. . . . . . . . . . . . . . . . . . 3044.45 Temperature and stress in the MEBT buncher cavities. . . . . . . . . . . . . . . . . . . . . 3054.46 Engineering detail of the MEBT buncher cavity cooling channels. . . . . . . . . . . . . . . 3054.47 Overall layout and dimensions of the four tanks of the drift tube linac. . . . . . . . . . . . 3064.48 Evolution of three key parameters along the DTL. . . . . . . . . . . . . . . . . . . . . . . . 3074.49 Hoffman stability and beam distribution evolution in the DTL. . . . . . . . . . . . . . . . 3084.50 Magnetic fringe fields on the drift tube nose in DTL tank 1. . . . . . . . . . . . . . . . . . 308

Page 17: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

4.51 Beam losses and emittance growth in the DTL, with and without steering correction. . . . 3094.52 Superconducting sectors in the accelerator block diagram. . . . . . . . . . . . . . . . . . . 3104.53 Tunnel perspective, showing elliptical cavity cryomodules. . . . . . . . . . . . . . . . . . . 3114.54 Spoke cryomodule cryogenic flow scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3134.55 Drawing and performance of the 2 K subcooler heat exchanger. . . . . . . . . . . . . . . . 3134.56 Total cryogenic heat loads in the three superconducting sectors. . . . . . . . . . . . . . . . 3154.57 Spoke cavity parameters used to optimise the geometry. . . . . . . . . . . . . . . . . . . . 3174.58 Mechanical design of the spoke cavity and helium tank. . . . . . . . . . . . . . . . . . . . . 3184.59 Critical areas of von Mises stress, in spoke cavity leak tightness simulations. . . . . . . . . 3194.60 Spoke cavity and helium tank deformation under Lorentz pressure. . . . . . . . . . . . . . 3204.61 The spoke cold tuning system ball screw and piezo-actuators. . . . . . . . . . . . . . . . . 3214.62 Spoke cold tuning system kinematic scheme and 3D model. . . . . . . . . . . . . . . . . . . 3214.63 Adjustment of the antenna tip relative to the mouth of the spoke coupler port. . . . . . . 3234.64 Spoke coupler performance versus antenna penetration into the cavity. . . . . . . . . . . . 3244.65 Electric field distributions in the spoke power coupler. . . . . . . . . . . . . . . . . . . . . 3254.66 A spoke cryomodule string, composed of two spoke cavities. . . . . . . . . . . . . . . . . . 3264.67 Sequence and lengths of the spoke cryomodule components. . . . . . . . . . . . . . . . . . 3274.68 Spoke cryomodule cross sectional drawings and dimensions. . . . . . . . . . . . . . . . . . 3274.69 Assembling the spoke cavity and power coupler in the cryostat. . . . . . . . . . . . . . . . 3284.70 Fundamental passband modes in the high-β elliptical cavity. . . . . . . . . . . . . . . . . . 3314.71 Geometry of the high-β elliptical cavity coupler-side end-group. . . . . . . . . . . . . . . . 3314.72 Electromagnetic simulations of TM monopole modes in an elliptical cavity. . . . . . . . . . 3324.73 Average power deposited for elliptical cavity modes below cut-off frequency. . . . . . . . . 3324.74 High-β elliptical cavity with titanium helium tank and integrated piezo tuner. . . . . . . . 3334.75 Distribution of stress within the elliptical cavity cell wall. . . . . . . . . . . . . . . . . . . . 3344.76 Variation of the static Lorentz detuning coefficient with external stiffness. . . . . . . . . . 3354.77 Elliptical cavity cold tuning system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3354.78 Prototype elliptical power coupler tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3364.79 Elliptical cavity with power coupler door-knob transition and biasing system. . . . . . . . 3374.80 Sketches of the high-β elliptical cryomodule. . . . . . . . . . . . . . . . . . . . . . . . . . . 3384.81 Deformations of the elliptical cryomodule spaceframe. . . . . . . . . . . . . . . . . . . . . . 3384.82 Elliptical cryomodule helium tank with transverse and axial hanging rods. . . . . . . . . . 3384.83 Process and instrumentation diagram for the elliptical cavity cryomodule. . . . . . . . . . 3394.84 High energy beam transport line layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3414.85 Beam size envelopes along the high energy beam transport. . . . . . . . . . . . . . . . . . 3414.86 Particle density plots on the proton beam window and on the target. . . . . . . . . . . . . 3424.87 Particle density and beam power level contours along the high energy beam transport. . . 3434.88 Movable collimators in the high energy beam transport line. . . . . . . . . . . . . . . . . . 3444.89 A radiation-hard octupole magnet and the linac warm unit (LWU) magnet assembly. . . . 3464.90 Remote connect/disconnect and exchange of the last radiation hard magnet in the HEBT. 3464.91 Point-to-multipoint scheme for RF local phase reference distribution system. . . . . . . . . 3514.92 General powering scheme for klystrons and superconducting cavities. . . . . . . . . . . . . 3534.93 Potential modulator topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3554.94 Potential capacitor charger topologies that mitigate flicker and low frequency emissions. . 3574.95 Amplifier and RF distribution layout at the Uppsala test stand. . . . . . . . . . . . . . . . 3624.96 Uppsala test stand high power tetrode amplifier with DC power supply connections. . . . . 3634.97 Overview of the RF gallery and a typical waveguide penetration stub. . . . . . . . . . . . . 3694.98 Schematic layout of low energy beam transport diagnostics. . . . . . . . . . . . . . . . . . 3714.99 Instrumentation in the medium energy beam transport and the first drift tube linac tank. 3724.100 Beam pulse parameter envelope for different modes of diagnostic operation. . . . . . . . . 3744.101 Total energy deposition around a single point of beam loss in a doublet. . . . . . . . . . . 3764.102 Absolute and differential beam current measurements. . . . . . . . . . . . . . . . . . . . . 3774.103 Fourier spectrum of the voltage on a button beam position monitor. . . . . . . . . . . . . . 3784.104 Fourier spectrum of the button voltage before and after debunching. . . . . . . . . . . . . 3784.105 The drift tube linac Faraday cup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3794.106 Dose rate maps around beam dumps at 200 MeV and 623 MeV. . . . . . . . . . . . . . . . 381

Page 18: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

4.107 Maximum temperature on a carbon wire while measuring a 3 MeV slow tuning beam. . . . 3824.108 Scintillator geometry to measure the shower from a wire scanner. . . . . . . . . . . . . . . 3824.109 Wire scanner performance at a beam energy of 1 GeV. . . . . . . . . . . . . . . . . . . . . 3834.110 Diagram of the wire scanner fork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3834.111 Sketch of an ionisation beam profile monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . 3844.112 Sketch of a luminescence profile monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3854.113 Slit and grid system for emittance measurement. . . . . . . . . . . . . . . . . . . . . . . . . 3864.114 Drawing of the LINAC4 slit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3874.115 Fundamental limit of bunch length measurement as a function of energy. . . . . . . . . . . 3874.116 Schema of beam instrumentation in the approach to the target. . . . . . . . . . . . . . . . 3884.117 Locations of beam-on-target diagnostics within the target monolith. . . . . . . . . . . . . . 389

5.1 The main components of the control system architecture. . . . . . . . . . . . . . . . . . . . 3925.2 The three-tier architecture of the control system. . . . . . . . . . . . . . . . . . . . . . . . 3935.3 Functional layout of the control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3945.4 Overview of the main safety and protection systems. . . . . . . . . . . . . . . . . . . . . . 3965.5 Control system integration borders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4005.6 Simplified machine protection system architecture. . . . . . . . . . . . . . . . . . . . . . . 4055.7 Timing system overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4135.8 Timing generator overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4145.9 Timing receiver overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4155.10 Timing system prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4175.11 Interplay between the timing system and the machine protection system. . . . . . . . . . . 4195.12 A schematic example of control box software and hardware components. . . . . . . . . . . 4245.13 Control box prototypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4255.14 Integration of a neutron beamline instrument using control box methodology. . . . . . . . 4275.15 Signal exchange between the industrial control system and ICS. . . . . . . . . . . . . . . . 4285.16 Network view of the BLED architecture, with access from outside the controls network. . . 4295.17 BLED’s service-oriented architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4305.18 Control system configurator for control system computer nodes. . . . . . . . . . . . . . . . 4325.19 An overview of BLED data used for integrated control system configuration. . . . . . . . . 4355.20 Online model data flow schematic showing interfaces to BLED and XAL. . . . . . . . . . . 4395.21 Development environment services and their integration into the control system. . . . . . . 4435.22 The use of development environment services in the software development cycle. . . . . . . 444

6.1 Block diagram of the ESS cryogenic system. . . . . . . . . . . . . . . . . . . . . . . . . . . 4506.2 Schematic of the helium distribution system of the linac. . . . . . . . . . . . . . . . . . . . 4526.3 Generic schematic of the linac cryoplant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4546.4 Schematic of the linac cryogenic distribution system. . . . . . . . . . . . . . . . . . . . . . 4566.5 Cumulative heat load and pressure in the very low pressure helium return line. . . . . . . . 4576.6 Pressure drop and temperature change in the VLP return line, versus pipe diameter. . . . 4586.7 Interior layout of the Uppsala FREIA test stand hall. . . . . . . . . . . . . . . . . . . . . . 4656.8 Possible configuration of RF equipment in FREIA. . . . . . . . . . . . . . . . . . . . . . . 4666.9 Layout of the FREIA test stand cryogenic facility. . . . . . . . . . . . . . . . . . . . . . . . 4676.10 Layout of the HoBiCaT cryostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4686.11 Block diagram of the RF soak test structure in phase I of the Lund test stand. . . . . . . . 4696.12 Preliminary layout of the cryomodule site acceptance test stand in phase II. . . . . . . . . 4716.13 Block diagram of the cryomodule site acceptance test stand in phase II. . . . . . . . . . . . 4726.14 Schematic of the Lund test stand cryoplant, distribution line and test bunkers. . . . . . . . 4736.15 Location of the Lund cryomodule test stand. . . . . . . . . . . . . . . . . . . . . . . . . . . 474

7.1 Preliminary site layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4787.2 Preliminary functional analysis for conventional facilities. . . . . . . . . . . . . . . . . . . . 4797.3 The main areas addressed by the building programme. . . . . . . . . . . . . . . . . . . . . 4827.4 Architectural impression of the central campus and the target station. . . . . . . . . . . . 4847.5 Maps of the ESS location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Page 19: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

7.6 The ESS site in 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4907.7 Pots found on the ESS property in a grave more than 1500 years old. . . . . . . . . . . . . 4907.8 Ground resistivity versus depth along a 660 m section. . . . . . . . . . . . . . . . . . . . . 4917.9 Cone penetration test results in clay till ending in the transition zone. . . . . . . . . . . . 4917.10 Conceptual model of the soil and rock at the ESS site. . . . . . . . . . . . . . . . . . . . . 4927.11 Groundwater levels in soil and rock from 2010 to 2012. . . . . . . . . . . . . . . . . . . . . 4937.12 Undrained soil shear strength measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 4947.13 Utility supplies to the site – power, communication, heat, water and sewage. . . . . . . . . 4977.14 Preliminary layout for the target monolith crane. . . . . . . . . . . . . . . . . . . . . . . . 4997.15 Map of the three water drainage catchment areas. . . . . . . . . . . . . . . . . . . . . . . . 5017.16 Accelerator tunnel and klystron gallery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5037.17 Perspective view of the front end building. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5047.18 Plan view of the klystron gallery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5047.19 Klystron gallery cross section at the front end building (northeast end of tunnel). . . . . . 5047.20 Klystron gallery assembly hall and cold box building (southwest end of tunnel). . . . . . . 5047.21 Structural intersection of the accelerator tunnel and the klystron gallery. . . . . . . . . . . 5057.22 Perspective view of the target building and parts of experimental halls at ground level. . . 5077.23 Section through the target building, monolith, and parts of experimental halls. . . . . . . . 5077.24 Target building and experimental halls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5077.25 Typical gas-insulated 130 kV switchgear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5107.26 Primary distribution substation single-line diagram. . . . . . . . . . . . . . . . . . . . . . . 5127.27 Loop power distribution to medium voltage substations. . . . . . . . . . . . . . . . . . . . 5137.28 Two examples of the provision of spare medium voltage transformers. . . . . . . . . . . . . 5147.29 Schematic arrangement of the water cooling system. . . . . . . . . . . . . . . . . . . . . . . 5207.30 Accelerator water cooling system interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 5237.31 Target building water cooling system interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 5247.32 Cryoplant water cooling system interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5257.33 Compressed air systems: pressurised air, instrument air, and extra dry instrument air. . . 5277.34 Air-handling in the klystron gallery building. . . . . . . . . . . . . . . . . . . . . . . . . . . 5287.35 Block diagram of a typical security system structure. . . . . . . . . . . . . . . . . . . . . . 5307.36 Normal and emergency operation modes for the supervisory security system. . . . . . . . . 532

8.1 A hierarchy of standards: legislation, radiation protection, and engineering standards. . . . 5358.2 Configuration management plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5368.3 Isometric view of the ESS plant layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5378.4 Data flow between BLED and the ESS plant layout. . . . . . . . . . . . . . . . . . . . . . . 5388.5 The site-wide coordinate system and key points on the ESS site. . . . . . . . . . . . . . . . 5408.6 Survey monuments and receptacles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5418.7 The process flow for factory acceptance testing and site acceptance testing. . . . . . . . . . 542

9.1 Beam commissioning during the SNS construction period. . . . . . . . . . . . . . . . . . . 5459.2 Operational metrics for the first 5 years of SNS operations. . . . . . . . . . . . . . . . . . . 5469.3 High-level goals during the transition period to full operations. . . . . . . . . . . . . . . . . 5479.4 High level timelines for system commissioning during the transition to operations. . . . . . 5489.5 Provisional beam schedule for 2019 and 2020. . . . . . . . . . . . . . . . . . . . . . . . . . 5499.6 Instrument construction schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

10.1 Geometric model of the target, moderator and reflector assembly used in calculations. . . . 56610.2 Quadrupole activation decay curves after 40 years of irradiation. . . . . . . . . . . . . . . . 56710.3 Proton beam window activation decay curves after 5000 hours of operation. . . . . . . . . 56810.4 Activation and tritium decay in the target wheel and in the beryllium reflector. . . . . . . 56810.5 Nuclide map of total activity in the target at shut down and after 9 years of decay. . . . . 57110.6 Gamma-radiation spectra in the external layer of the target wheel. . . . . . . . . . . . . . 57610.7 Photon dose rate maps for cask and target after 5 years. . . . . . . . . . . . . . . . . . . . 57610.8 Operational and decommissioning components of waste. . . . . . . . . . . . . . . . . . . . 57810.9 Final disposition of waste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Page 20: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

10.10 Total annual dose rate from stacks of different heights. . . . . . . . . . . . . . . . . . . . . 58510.11 Groundwater migration travel times for selected radionuclides. . . . . . . . . . . . . . . . . 586

11.1 Licensing process for construction permits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Page 21: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

List of Tables

1 High level parameters, approved by the ESS Steering Committee on 18 April, 2011. . . . . xxii

1.1 ESS in comparison to other neutron sources. . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 High level parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Names and lengths of the reference instrument suite. . . . . . . . . . . . . . . . . . . . . . 542.2 Estimates of user key programme parameters in 2020 and 2025. . . . . . . . . . . . . . . . 992.3 Estimated laboratory work space requirements. . . . . . . . . . . . . . . . . . . . . . . . . 1042.4 Laboratory requirements for instrument support technical groups. . . . . . . . . . . . . . . 1052.5 Estimated detector requirements for the reference suite. . . . . . . . . . . . . . . . . . . . . 1072.6 Appropriate detector technology options for the 22 reference instruments. . . . . . . . . . 1152.7 Time frames and counts for different styles of neutron choppers systems. . . . . . . . . . . 1172.8 Instrument-by-instrument deployment of neutron optics technologies. . . . . . . . . . . . . 127

3.1 Main target station building dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543.2 Target station room and floor heights and altitudes. . . . . . . . . . . . . . . . . . . . . . . 1553.3 Confinement barrier definitions for primary, secondary and tertiary inventories. . . . . . . 1553.4 Pressure cascade values in different locations of the target station building. . . . . . . . . . 1573.5 Air pressure cascade values in the active cell rooms and in the transfer hall. . . . . . . . . 1573.6 ESS operational modes and associated accelerator, target station and instrument modes. . 1613.7 Operation and maintenance conditions assumed for the design of target station systems. . 1613.8 IEC standards potentially applicable for target safety system development. . . . . . . . . . 1643.9 The nominal chemical compositions of the target materials. . . . . . . . . . . . . . . . . . 1683.10 Physical and mechanical properties of Al-6061, SS316L(N), and tungsten. . . . . . . . . . . 1693.11 The tensile properties of non-irradiated SA316L. . . . . . . . . . . . . . . . . . . . . . . . . 1693.12 Beam profile optimisation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1753.13 Prompt heat deposition in various parts of the target station monolith. . . . . . . . . . . . 1813.14 Total gas production in various parts of the target station monolith. . . . . . . . . . . . . 1823.15 Peak dpa values per GW-day in various parts of the target station monolith. . . . . . . . . 1823.16 Temperature and heat generated by nuclear interactions in target components. . . . . . . . 1913.17 Temperature and heat generation in different tungsten blocks. . . . . . . . . . . . . . . . . 1913.18 Target vessel stresses calculated for various paths, compared with RCC-MR 2007 criteria. 1993.19 Fatigue analysis of the beam entrance window. . . . . . . . . . . . . . . . . . . . . . . . . . 2003.20 Summary of the target parameters monitored during operation. . . . . . . . . . . . . . . . 2053.21 Radiation damage and gas production in the target-moderator-reflector assembly. . . . . . 2233.22 Beam modes and parameters for the A2T tune-up dump. . . . . . . . . . . . . . . . . . . 2243.23 Key parameters of the target cooling system helium circuit. . . . . . . . . . . . . . . . . . 2273.24 Expected filtration efficiency for tungsten trioxide dust. . . . . . . . . . . . . . . . . . . . . 2293.25 Dimensions of active cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2383.26 Main parameters for the internal handling casks. . . . . . . . . . . . . . . . . . . . . . . . . 2443.27 Activity and release data for volatile elements in an LBE-based target. . . . . . . . . . . . 264

4.1 Radio frequency parameters in the FDSL 2012 10 02 lattice. . . . . . . . . . . . . . . . . . 2694.2 High level accelerator parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2694.3 Main parameters of the 5 m RFQ design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2934.4 Emittance growth and beam transmission through the 5 m RFQ at 50 mA and 90 mA. . . 293

xvii

Page 22: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

4.5 RFQ tuner position limits in mm, versus mechanical errors. . . . . . . . . . . . . . . . . . 2984.6 Medium energy beam transport operational parameters. . . . . . . . . . . . . . . . . . . . 3004.7 Emittance growth through the MEBT and final halo parameter. . . . . . . . . . . . . . . . 3024.8 Static quadrupole misalignment and buncher RF errors in the MEBT. . . . . . . . . . . . 3024.9 MEBT buncher cavity parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3044.10 Misalignment and RF errors used for drift tube linac steering correction studies. . . . . . . 3104.11 Main parameters of the spoke, medium-β and high-β sectors. . . . . . . . . . . . . . . . . . 3104.12 Cryomodule requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3114.13 Temperature and pressure levels in the cryogenic transfer lines. . . . . . . . . . . . . . . . 3124.14 Static cryomodule heat load estimates at each temperature level. . . . . . . . . . . . . . . 3144.15 Heat load estimates for spoke, medium-β and high-β cryomodules. . . . . . . . . . . . . . 3144.16 Performance at 4 K of spoke resonators worldwide. . . . . . . . . . . . . . . . . . . . . . . 3164.17 Spoke resonator cavity main parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3164.18 Spoke cavity frequency sensitivity and cold tuning system parameters. . . . . . . . . . . . 3194.19 Spoke cavity frequency sensitivity – Lorentz factors. . . . . . . . . . . . . . . . . . . . . . . 3204.20 Individual and equivalent compliances for spoke cavity cold tuning system parts. . . . . . 3224.21 Static heat loads for the spoke cryomodule. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3284.22 Medium-β and high-β elliptical cavity parameters. . . . . . . . . . . . . . . . . . . . . . . . 3304.23 Mechanical characteristics of the elliptical cavity. . . . . . . . . . . . . . . . . . . . . . . . 3344.24 Elliptical power coupler specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3354.25 Static heat load for one high-β cavity elliptical cryomodule. . . . . . . . . . . . . . . . . . 3394.26 Parameters of the high energy beam transport magnets and power supplies. . . . . . . . . 3454.27 High level RF system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3484.28 Specific RF system requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3484.29 RF system specifications that drive costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3494.30 RF phase reference distribution system requirements. . . . . . . . . . . . . . . . . . . . . . 3514.31 RF phase reference distribution system specifications for test stands and the linac. . . . . 3524.32 Logical signals in the hardwired modulator interlock link. . . . . . . . . . . . . . . . . . . . 3584.33 Properties of the demineralised water in the modulators. . . . . . . . . . . . . . . . . . . . 3594.34 Spoke amplifier requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3614.35 Component count for each medium-β and high-β RF distribution chain. . . . . . . . . . . 3664.36 High power RF distribution parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3664.37 Cooling and power demands of components to be tested on the Lund test stand. . . . . . . 3684.38 Linac parts fed from the RF gallery by 16 waveguide penetration stubs. . . . . . . . . . . . 3684.39 Power and cooling demands for the main linac sections. . . . . . . . . . . . . . . . . . . . . 3704.40 Types of beam instrumentation devices and their abbreviations. . . . . . . . . . . . . . . . 3714.41 Beam instrumentation device count, organised by accelerator section. . . . . . . . . . . . . 3724.42 Beam modes and parameters used to specify instrumentation performance. . . . . . . . . . 3754.43 Maximum temperature increase in Faraday cups for four different beam energies. . . . . . 380

5.1 Required transfer rates and protocols for different control system networks. . . . . . . . . . 3985.2 Preliminary estimates of the required number of control boxes per domain. . . . . . . . . . 3985.3 Safety integrity levels and permissible probabilities of failure. . . . . . . . . . . . . . . . . . 4035.4 Machine protection system input device names and signals. . . . . . . . . . . . . . . . . . . 4065.5 Advantages and disadvantages of alternative machine interlock system topologies. . . . . . 4075.6 Interfaces required for master, switch and node devices in the machine interlock system. . 4085.7 Primary timing system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4135.8 Evolution of support provided in control box prototypes from 2012 to 2014. . . . . . . . . 4265.9 Development environment service functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 442

6.1 Cryoplant safety factors for each cryoplant and each temperature level. . . . . . . . . . . . 4596.2 RF equipment test stand building and utilities requirements. . . . . . . . . . . . . . . . . . 4696.3 Lund test stand bunker lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4716.4 Lund test stand bunker widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4716.5 Cryomodule heat load estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4726.6 Summary of heat loads and installed capacity for the test and instruments cryoplant. . . . 472

Page 23: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,

6.7 Lund test stand phase II building and utility requirements. . . . . . . . . . . . . . . . . . . 473

7.1 Soil water content, liquid limit, and densities. . . . . . . . . . . . . . . . . . . . . . . . . . 4957.2 Soil strength and deformation characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 4957.3 Rock strength and deformation characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 4957.4 Compression modulus values obtained through constant rate of strain tests. . . . . . . . . 4957.5 A preliminary list of cranes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4987.6 Installed electrical power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5117.7 Water cooling system temperature levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5207.8 Operating hours per year in different operating modes. . . . . . . . . . . . . . . . . . . . . 5217.9 Estimated water cooling power demands in the “beam on target” mode. . . . . . . . . . . 5227.10 Number of heat pumps or heat exchangers in each cooling system. . . . . . . . . . . . . . . 5267.11 Compressed air system qualities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

8.1 Absolute locations of key points in the SWEREF-99 13 30 coordinate system. . . . . . . . 540

9.1 Tentative conventional facility commissioning schedule. . . . . . . . . . . . . . . . . . . . . 5509.2 Stage 1 target station commissioning tests, without beam. . . . . . . . . . . . . . . . . . . 5549.3 Stage 2 target station beam commissioning tests, with low power beam. . . . . . . . . . . 5569.4 Basic instrument systems tests during cold and hot commissioning . . . . . . . . . . . . . 5589.5 Matrix of beam-modes and machine-modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 559

10.1 Activity and decay heat in the tungsten target wheel. . . . . . . . . . . . . . . . . . . . . . 56610.2 Tritium activation in target station components during 5000 hours of operation. . . . . . . 56610.3 Most important nuclide contributions during the decay of target wheel activity. . . . . . . 56910.4 Most important nuclide contributions during the decay of beryllium reflector activity. . . . 56910.5 Radioactivity waste categorisation – activation levels. . . . . . . . . . . . . . . . . . . . . . 57210.6 Gamma-ray activity within the target at shut-down and after 5 years of cooling. . . . . . . 57610.7 Capacity requirements for the final waste repositories. . . . . . . . . . . . . . . . . . . . . . 57710.8 Diffusion of elements in the target and the emission of volatile elements in tungsten dust. . 57910.9 Activity per gram of collected target dust for the top five nuclides. . . . . . . . . . . . . . 58010.10 Activity and matter accumulation rates from operational waste streams. . . . . . . . . . . 58110.11 Source term for atmospheric release from tunnel ventilation during online operations. . . . 58110.12 Source term for atmospheric release from processing tritiated water. . . . . . . . . . . . . . 58210.13 Source term for atmospheric release from target dismantlement. . . . . . . . . . . . . . . . 58210.14 Annual dose rate contributions from routine releases to air during normal operation. . . . 58410.15 Dose parameters for selected radionuclides during target dismantlement releases. . . . . . . 58610.16 Sample types and rates for monitoring releases of radionuclides to the environment. . . . . 58710.17 Estimated doses following an accident with a combined volatile release fraction of 0.001%. 58810.18 Estimated doses following an accident with a combined volatile release fraction of 0.5%. . 588

11.1 Levels of defence-in-depth to compensate for potential human and technical failures.. . . . 59611.2 Confinement barriers for radiological protection. . . . . . . . . . . . . . . . . . . . . . . . . 59611.3 Classification of radiation hazard events and limits on radiological doses. . . . . . . . . . . 599

Page 24: ESS Technical Design Report - Lunds universitetExecutive editor: S. Peggs1. Structural editor: R. Kreier1. Contributing editors: C. Carlile 1, R. Miyamoto , A. P ahlsson2, M. Trojer2,