energies for a sustainable future

112

Upload: channing-fisher

Post on 30-Dec-2015

49 views

Category:

Documents


2 download

DESCRIPTION

ENERGIES FOR A SUSTAINABLE FUTURE. The potential of Renewable Energies. F.P. Neirac – CEP – Ecole des Mines. ENERGIES FOR A SUSTAINABLE FUTURE. History Energy and economy The case of Renewable Energies. Energy. Classification PV Solar concentrating technologies Wind Geothermy - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ENERGIES FOR A SUSTAINABLE FUTURE
Page 2: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGIES FOR AENERGIES FOR ASUSTAINABLE SUSTAINABLE

FUTUREFUTURE

The potential of The potential of Renewable EnergiesRenewable Energies

F.P. Neirac – CEP – Ecole des Mines

Page 3: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGIES FOR AENERGIES FOR ASUSTAINABLE SUSTAINABLE

FUTUREFUTURE

F.P. Neirac – CEP – Ecole des Mines

EnergyEnergyEnergyEnergy

Renewable Renewable EnergiesEnergies

Renewable Renewable EnergiesEnergies

SynthesisSynthesisSynthesisSynthesis

•History•Energy and economy•The case of Renewable Energies

•Classification•PV•Solar concentrating technologies•Wind•Geothermy•Biomass•Solat thermal

Page 4: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

HISTORY OF ENERGYEnergyEnergyEnergyEnergy

-15 Billions of year :

The Big-Bag

-18000 Lighting

Paleolithic

-5 Billions of years :

The Sun

-500 Millions of years :The Life

-300 Millions of years

Creation of the fossil ressources

-400000 : The Fire(Homo-Erectus)

-4,5 Billions :The Earth

Mesolithic

Wind energy(vertical axis,

Asia)

Agriculture

Middle Age

-10000 BC -8000 BC -3000 BC -2000 BC +1000 AD

The wheel

-200 BC

Age of fire

-10000 BC

DomesticationOf animals

Intensification of energy use : wood

and muscular traction

+700 AD

Hydraulic energy,Mills

Page 5: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

HISTORY OF ENERGYEnergyEnergyEnergyEnergy

Wind mills(horizontal axis)

1200

1810

1300

First use of coal(wood depletion)

Industrial revolution,Massive use of coal

The steam engine

First oil well (Pennsylvania, Edwin Drake, USA)

1787

1859

1800

First electric generator (Volta)

1930+ 1885 1882 1938 1942

First Oil Crisi

1973

First coal electric plant (New-York)

Hydraulic Energy

Massive use of oil

Atomic fissionFirst nuclear

reactorUniversity of

Chicago

1980

Second oil crisis

Page 6: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

HISTORY OF ENERGYEnergyEnergyEnergyEnergy

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000

Coal Renewables (except hydro.)

O il Natural gas

Hydropower Nuclear

Page 7: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

0

3

6

9

0 2 4 6

Evolution of energy needs from 1990 …

Population (billions

Tep

/hab

North America

Latin America

Western Europe

China

South AfricAfricaMiddle East

Russia FSUAustralia Japan

Source : « World Energy Assessment », UNDP, UNDESA, CME, 2001

9 billions of TEP

Page 8: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

0

3

6

9

0 2 4 6 8 10

Population mondiale, en milliards d’habitants

Conso

mm

ati

on

par

hab

itant

en

tep … to 2050

Amérique du Nord

Amérique latine

Europe de l’Ouest

Chine … Asie du SudAfrique

Moyen-Orient

Russie-PECO

Australie Japon

20 billions of tep

Page 9: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Since 200 years, the economic growth has been linked to an exponential use of energy

• Today, humanity has to face a double challenge :CO2Fossil reserves

Page 10: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• CO2 :

Futur

ResourcesUse

Past + 2000 Future

CO2

Page 11: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Fossil Reserves depletion :

Oil consumption continues to increase !

Page 12: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Fossil Reserves depletion :

The proved reserves in 1999 …

Page 13: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Fossil Reserves depletion :

… and the evolution in 2005

Page 14: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Proved World

Reserves

A cube5.7x5.7x5.7

km3

1200GBl

EnergyEnergyEnergyEnergy

Page 15: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

1200MBl

World consumption :

80 M Bl/j=

150 m3/s

Flow of the Seine river :

250 m3/s

IntroductiIntroductionon

IntroductiIntroductionon

Page 16: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

•Situation for oil :Actual reserves are estimated at 1200 Gbl (180 Gtep) ~ 40 years of actual consumptionReserves could increase :

•Improvement of recovering factors

•Non conventional oil (heavy oil, tar sands, …)

Page 17: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

•Situation for oil :Actual reserves are estimated at 1200 Gbl (180 Gtep) ~ 40 years of actual consumptionReserves could increase :

•Improvement of recovering factors

•Non conventional oil (heavy oil, tar sands, …)The reality is that we consume each year more oil than we discover …

Page 18: ENERGIES FOR A SUSTAINABLE FUTURE

World Oil: Depletion, Geopolitics, CO2

1850

We Are Here

1850 2050

Page 19: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Situation for Natural Gas :Actual reserves are estimated at 155 Tm3

(139 Gtep) ~ 60 years of actual consumption (2.5 Tm3/y)

More NG is discovered each year than we consume

However, if we would have to replace oil and coal consumption by NG, R/P would become only 17 years

Page 20: ENERGIES FOR A SUSTAINABLE FUTURE

World Gas: Depletion, Geopolitics, CO2

1900

We Are Here

2050

Page 21: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Situation for coal :Huge reserves : R/P > 230 yearsNo intense prospection : reserves could

increaseCoal is mainly consumed where it is

produced

Page 22: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Situation for coal :Huge reserves : R/P > 230 yearsNo intense prospection : reserves could

increaseCoal is mainly consumed where it is

produced

• However : coal is the most polluting and CO2 emitting

fossil energyMining has strong environmental impacts

Page 23: ENERGIES FOR A SUSTAINABLE FUTURE

World Coal: Depletion, Land Impacts, CO2

1850

We Are Here

2150

Page 24: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Situation for uranium : With the known resources (4 MT) and the actual

consumption (60000 t/y), R/P ~ 70 y With surgeneration, reserves could last over 1000

years

• Drawbacks : Nuclear energy is very capital intensive, investments

are not favored by deregulation Social acceptability Risks of dissemination

Page 25: ENERGIES FOR A SUSTAINABLE FUTURE

World Nuclear: Surgeneration is needed

1950

We Are Here

Uranium

BreederReactors

2075

Page 26: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Situation for RES :

Today RES accounts for 14 % of the world electricity production

Page 27: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ENERGY IS THE OXYGEN OF THE ECONOMIC LIFE

EnergyEnergyEnergyEnergy

• Situation for RES :

84 % of this production is hydroelectricity"New" RES (PV, Wind, …) account for less

than 1 %

Page 28: ENERGIES FOR A SUSTAINABLE FUTURE

Renewable Energy: Infinite, Clean

We Are Here

Page 29: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Page 30: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Extra-terrestrial radiation :1400 W/m2

Is Renewable energy really "Inifinite" ?

• Solar Energy :Life time : 5 billions of yearsEnergy received annually by the earth :

R=6400 km

Radiation received in the cross section: 1.8 1011 MWEnergy received in 1 year : 1,6 1015 MWh ~ 130 106 MTEPWorld energy consumption : 3500 MTEP

Solar Energy > 30000 times World Energy Consumption !

Page 31: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Is Renewable energy really "Inifinite" ?

• Practically, energy received at the ground level is reduced :Atmosphere, cloudsEarth rotationGround radiation ~ 10000 times WEC

• Orders of magnitude :France : 3 kWh/m2 day (North) to 5 kWh

(South)Serbia : likely more (6 kWh/m2 day)

Page 32: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Is Renewable energy really "Inifinite" ?

• Illustration :A 100 m2 three levels buildingEnergy needsheating (150 kWh/m2 y) : 45000 kWhElectr. (35 kWh/m2 y) : 10500 kWhTotal : 55500 kWh

Incident Solar Energy on 100 m2 :ISE (kWh/y) ISE/needs

3 kWh/m2d 110000 25 kWh/m2d 185000 3.36 kWh/m2d 220000 4

Page 33: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Is Renewable energy really "Inifinite" ?

• Illustration n° 2:Ennergy produced by 1 m2 PV panel

- France : 100 kWh/m2/year for a photovoltaic panel

450 TWh yearly electricity

Equivalent PV surface = 5000 km2

Comparison : buildings ground surface = 10000 km2

Page 34: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Is Renewable energy really "Inifinite" ?

• In terms of "orders of magnitude", RES have the potential to become an important energy source

• However, tremendous obstaclesCostsVariability :

• In time (sun, wind, hydro, biomass, …)• In space (towns, deserts, …)

Difficulty (impossibility ?) to be stored

Page 35: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Classification ofrenewable energy sources

• RES inside the global scheme of energy sources :

Page 36: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Classification ofrenewable energy sources

Page 37: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

Classification ofrenewable energy sources

Page 38: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RenewablRenewable Energiese Energies

RenewablRenewable Energiese Energies

REVIEW OF THE MAIN RES

• Photovoltaic energy• Solar concentrating technologies • Wind energy• Geothermal energy• Biomass

Page 39: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

PVPVEnergyEnergy

PVPVEnergyEnergy

The Photovoltaic Energy

• Technical aspects• Efficiency of the PV conversion• The PV industry• Use of PV energy• Economic aspects

Page 40: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Technical Aspect

(90 % of the market) :

Silicium Made from sand

(1800°C) Purified Amorphous (a-Si) Monocristallin (mc-Si) Poly-cristallin (c-Si)

PVPVEnergyEnergy

PVPVEnergyEnergy

Page 41: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Silicium Lingot Lingot scié

Wafer

PVPVEnergyEnergy

PVPVEnergyEnergy

Technical Aspect

Page 42: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Wafer Cell

ConnexionModule

Doping +

Antirefl.

PVPVEnergyEnergy

PVPVEnergyEnergy

Technical Aspect

Page 43: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Other materials GaAs : Spatial, 30 %

efficiency CdTe : "cheap", 10%

efficiency CuInSe2, ou CIS : 17 %

Dye-cells (Titane Dioxide de titane), polymers, photo-electro-chemical, organic…

Research is going on …

PVPVEnergyEnergy

PVPVEnergyEnergy

Technical Aspect

Page 44: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Solar spectrum : Photons issued from the solar radiation do not have the

same energy

PVPVEnergyEnergy

PVPVEnergyEnergy

Efficiency

Page 45: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Semi-conductors : Depending on their nature, they allow some "solar" photons

to extract electrons and to create an electric curent

PVPVEnergyEnergy

PVPVEnergyEnergy

Efficiency

Page 46: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Theoretical efficiency :

PVPVEnergyEnergy

PVPVEnergyEnergy

Efficiency

Page 47: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Practical efficiency : The actual efficiency of the best commercial panels is around

15 % Practically, the real efficiency is affected by :

• Temperature influence• Mismatch (deviation from the optimal voltage)• Losses• …

The real efficiency is today 10 %

• Surfacic production : Assuming a location with 1000 kWh/m2 year (~ 3 kWH/m2d) The productibility is around 100000 MWh/km2

PVPVEnergyEnergy

PVPVEnergyEnergy

Efficiency

Page 48: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• The World PV Market :

PVPVEnergyEnergy

PVPVEnergyEnergy

The PV industry

0

200

400

600

800

1000

1200

1998 1999 2000 2001 2002 2003 2004

Ma

rke

t S

ize

in M

Wp

Off-Grid & Consumer on-Grid

40 % p.a.

Page 49: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• The European PV Market :

PVPVEnergyEnergy

PVPVEnergyEnergy

The PV industry

0 100 200 300 400 500 600 700 800

Total 2006e

Total 2005e

Total 2004

Allemagne

Luxembourg

Espagne

France

Pays-Bas

Italie

Autriche

Suisse

RU

Grèce

Belgique

Danemark

Suède

Finlande

Portugal

Pologne

MW

Page 50: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Structure of a PV System :

PVPVEnergyEnergy

PVPVEnergyEnergy

PV Systems

Isolated system Grid connected system

Page 51: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Grid connected systems (Switzerland) :

PVPVEnergyEnergy

PVPVEnergyEnergy

PV Systems

Page 52: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Grid connected systems (Germany) :

PVPVEnergyEnergy

PVPVEnergyEnergy

PV Systems

Page 53: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Grid connected systems : The Reichstag in Berlin 370 m2, 37 kWp

PVPVEnergyEnergy

PVPVEnergyEnergy

PV Systems

Page 54: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Stand alone systems (DC current) :

PVPVEnergyEnergy

PVPVEnergyEnergy

PV Systems

Page 55: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Hybrid systems (AC current) :

PVPVEnergyEnergy

PVPVEnergyEnergy

PV Systems

Page 56: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Actually PV is one of the most expensive ways to produce energy

• The cost of electricity production by a RE system is linked to : Its investment cost Its productibility

• For PV systems : Investment cost ~ 3000-7000 €/kWp(wind turbine : 1000 €/kW) Productibility ~ 1000 hours / year(wind turbine : 2000-4000 hours/year)

PVPVEnergyEnergy

PVPVEnergyEnergy

Economic aspects

Page 57: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• But the costs can only decrease : Learning curve of PV cells

PVPVEnergyEnergy

PVPVEnergyEnergy

Economic aspects

PV modules learning curves (measured 1977-99; projected 2000-20)

1999

1999

0,1

1,0

10,0

100,0

1 10 100 1000 10000 100000

Cumulative Production Volume [MWp]

ASP [const $/Wp] ASP all modules (const $/Wp) [12PVSEC]

ASP c-Si Power Modules (const$/Wp) [12EPVSEC]

ASP ThinFilm Power Modules (const $/Wp)

Page 58: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

• Optimistic assumption : PV could become competitive before 30 years …

PVPVEnergyEnergy

PVPVEnergyEnergy

Economic aspects

Page 59: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Technical aspect

• Use of the direct solar radiation • Concentration on a receptor

• Conversion in thermal energy (high temperature)

• Transfer to a conversion cycle (steam turbine, stirling engine, …)

• Thermodynamic conversion from heat to electricity

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 60: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Trough collecors

The sun radiation is collected at the focal line of a cylindro parabolic mirror

Installed capacity : 390 MW(California > 90%)SEGS (Solar Electric Generating

System)75% solaire 25% gaz naturel

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 61: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

TOWER PLANTS

French prototype THEMIS1 MW in Mont Louis, (Pyrennean)

Various heat transfer fluids :•water-beam (USA, JPN, IT, RU)•Sodium (ES, PFS Almeria)•Melteld salts (FR, Themis)

Réalisations :SOLAR I (water) : 1818 héliostats10 MW, 510 °C, 100 barsSOLAR II ( melteld salts)

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 62: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Efficiencies

Trough plants

• Global efficiency ~ 15-16%• Capacity factor ~ 25%Tower plants

• Global efficiency ~ 15%• Trends : 20%

• Surface productivity : 100 000 MWh/km2/year

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 63: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Parabolic concentrators

• Concentration : 600 à 2000 T° ~1 500°C

• Small systems : 25 kW – D ~ 10 m

• Use of a stirling engine at the focal point of the parabole

• Rdt ~ 23%• Facteur de capacité ~12,5% version hybride 50% possible

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 64: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Economic aspects

Investment cost Trends

Trough 2 700 €/kW SEGS1 080 €/kW ISCCS215 €/m2 110 – 130 €/m2

Towers 4 400 €/kW475 €/m2

2 500 €/kW (2030)200 €/m2

Parabole 10 à 14 000 €/kW (7 000 €/kW)

1 600 €/kW (10 000 unités/an)100 €/m2

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 65: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Numerous projects all over the world

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Solar Solar ConetratioConetratio

n n technologitechnologi

eses

Page 66: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Technical aspect

• Wind energy has been the most developed RES since 20 years

• Technological progress have been made :Mechanics (blades)Electric generatorsGearboxesSize (scale effect)

Wind Wind EnergyEnergy

Wind Wind EnergyEnergy 22

19891985 1992 1993 1996

15 m

30 m

46 m

37 m 600 kW

500 kW

300 kW

50 kW

46 m

112 m

4.500 kW

1.500 kW

70 m

200x

Page 67: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Efficiency

• Wind turbine efficiency is limited by the Betz factor

• Surface productivity : ~ 15000 mWh/km2/year

Wind Wind EnergyEnergy

Wind Wind EnergyEnergy

Page 68: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Economical aspect

• Main effect : the costs have been largely reduced :

Wind Wind EnergyEnergy

Wind Wind EnergyEnergy

CDR éolien à terre ; t = 8 % (cEUR/kWh)

6,89

4,87

5,74

4,06

4,59

3,25

0

1

2

3

4

5

6

7

8

9

2000 2005 2010 2015 2020 2025 2030

2000 h/an

2400 h/an

3000 h/an

Page 69: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Perspectives for Europe

European Wind Energy Association (EWEA) :

Predicted in: Prédiction

1991 4,000 MW en 2000 (100,000 MW in 2030)

1997 8,000 MW en 2000 (100,000 MW in 2020) 40,000 MW en 2010

13,000 MW realised en 2000

2000 60,000 MW in 2010 (incl. 5,000 MW offshore)

150,000 MW in 2020 (incl. 50,000 MW offshore)

Wind Wind EnergyEnergy

Wind Wind EnergyEnergy

Page 70: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Actual situation

• Only 20 countries are concerned (from which numerous developong countries)

• 8.4 GW installed today• Estimated potential 50 GW in

2030• Philippines : 22 % of the

national electric energy• Indonesia :19 GW planned in

the next 30 years

MWe installés (1999)

36%

22%9%

9%

7%

6%4% 4% 3%

USA Philippines ItalieMexique Indonésie JaponNouvelle Zélande Amerique centrale Reste du monde

GeothermGeothermal Energyal Energy

GeothermGeothermal Energyal Energy

Page 71: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Actual situation

GeothermGeothermal Energyal Energy

GeothermGeothermal Energyal Energy

Page 72: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Technical aspect

• Power ranging from 350 kW to 55 MW

• Used as base power plants at nominal power

GeothermGeothermal Energyal Energy

GeothermGeothermal Energyal Energy

Page 73: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Economic aspects GeothermGeothermal Energyal Energy

GeothermGeothermal Energyal Energy

Installed Power Investment costs Energy cost

World Bank (US $ / kWe) (US c / kWh)

< 5 MWe 1600 – 3700 5,0 – 10,5

5-30 MWe 1300 – 2500 4,0 – 7,0

> 30 MWe 1150 – 2200 2,5 – 6,0

EUropean Commission (€ / kWe) (c€ / kWh)

15 MWe 2300 – 2400 5,5

30 MWe 1800 – 1900 4,5

55 MWe 1400 – 1500 3,7

Page 74: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Actual Situation

• It is estimated that 14 % of the world energy conumption is issued from biomass (> nuclear + hydro)

• Biomass is the only accessible energy source for over 2 billions of people

• In DC's: Low efficiencies Severe local environmental impacts (desertification)Africa (~90%) - India (45%) - China (30%)

• Industrialised countries : small contribution : < 1% (UK,D) à > 12% (FI,DK)New developments (biogaz, biocarburants, wood/electricity,...)

BIOMASSBIOMASSBIOMASSBIOMASS

Page 75: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

The Biomass cycleBIOMASSBIOMASSBIOMASSBIOMASS

Page 76: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Efficiency

• Biomass efficiency is extremely low : 1-5 %

• Surface productivity : ~ 1500 MWh/km2/year

BIOMASSBIOMASSBIOMASSBIOMASS

Page 77: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Biomass Pathways

Biomass & residues

Gasturbine

CombustionCo-combustion

Pyrolysis

vapour

Biocarbs

Wood coal

SynGasCO-H2

BiogasCO2-CH4-vapeur

Gazéification

Anareobic digestion

SteamTurbine

Gasengine

BIOMASSBIOMASSBIOMASSBIOMASS

Page 78: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Objective

18

4275

Chauffage Electricité Transports

MTep

MTepMTep

Objectifs 2010 en EUROPE

6.8

38

Chauffage Electricité

MTep

MTep

Situation 1995 en EUROPE

In EUROPE :

BIOMASSBIOMASSBIOMASSBIOMASS

Page 79: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

• Description :

Technical Aspect

Page 80: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

• Hot water solar collector :

Technical Aspect

Page 81: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

• Solar heating :

Technical Aspect

Page 82: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

• Individual house :

Integration

Page 83: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

• Individual house :

Integration

Page 84: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

• Collective building :

Integration

Page 85: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

Economic aspects Solar thermal collectors are simple systems :

Page 86: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Economic aspects

• Solar thermal collectors are simple systems : No moving parts Copper pipes and absorber, insulation, glass, absorbent

coating

• Solar water heaters are a viable option : Payback time < 10 ears without any subvention < 5 years if subsidised

• Solar heating remains more expensive Payback time < 10 years with subvention

SOLARSOLARTHERMALTHERMAL

SOLARSOLARTHERMALTHERMAL

Page 87: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

RES under development

• Oceans : Thermal gradient Waves Tidal energy Marine currents

• Biomass/hydrogen : Flash pyrolysis of waste biomass Photo-electrolysis (plancton)

• Solar tower concepts• …

OTHERSOTHERSOTHERSOTHERS

Page 88: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Are RES really expensive ?

• RES are the only • …

SYNTHESISSYNTHESISSYNTHESISSYNTHESIS

Page 89: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Are RES really expensive ?

• Environmental impacts be more and more taken into account …

SYNTHESISSYNTHESISSYNTHESISSYNTHESIS

Page 90: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Are RES really expensive ?

• … resulting in externalities :

SYNTHESISSYNTHESISSYNTHESISSYNTHESIS

Page 91: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

NO "MARKET"NO "MARKET"FOR RESFOR RES

A SIMPLE EQUATION

FOSSIL ENERGYABUNDANTAND CHEAP

NOENVIRONMENTAL

CONSTRAINTS

SYNTHESISSYNTHESISSYNTHESISSYNTHESIS

Page 92: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

??????

Today :A New Context

FOSSIL ENERGYABUNDANTAND CHEAP

NOENVIRONMENTAL

CONSTRAINTS

SYNTHESISSYNTHESISSYNTHESISSYNTHESIS

Page 93: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Page 94: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

ARMINES - Ecole des Mines de

Paris 1600 people on 4 sites : Paris, Évry, Fontainebleau, Sophia Antipolis

600 permanent staff,

1000 students (22% from abroad)

Civil engineer (120 / year) : Paris

PhD and Masters (330 /year) : On all sites

19 research centres

Page 95: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

22 millions euros of research contract with industry (about 1000 contrats with 200 companies).

25% with a foreign partner

2, 5 millions euros from patent rights on a yearly basis

Important links with industry

Page 96: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Materials sciences and engineering 355

Earth and environmental sciences 169

Energy and process engineering 148

Human and social sciences 113

Mathematics, automatics and computer sciences 161

Many areas

of engineering sciences

Page 97: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

CENTER FOR ENERGY STUDIESStaff, as of 12/31/2002: 148 (47 scientists, 67 research

students)

PARIS (staff: 74)• Heat transfers in industrial processes• Thermodynamics and systems• Solar and green buildings• Energy demand side management• Air-conditioning systems • Environmental impacts of energy

• Colloidal systems in industrial processes (16)

SOPHIA ANTIPOLIS (staff: 52)• Renewable energies• Thermal comfort in confined areas• Energy and materials• Energy storage and conversion processes• Plasma conversion process

• Remote sensing and modeling

FONTAINEBLEAU (staff: 22)• Thermodynamic of phase equilibria• Kinetics of transfers between phases

ENERGY AND TECHNOLOGICAL INNOVATION :

• Methodological and experimental studies, modeling• Technological innovations• General studies on energy and the environment

22. Jul 2002

Page 98: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Centre d’EnergétiqueSophia Antipolis

• 52 people, as follows :• 23 senior researchers• 8 technical et administrative people• 21 PhDs

• Budget is 2.7 M€ of which 1.5 M€ contracts

• Research Activities at Sophia Antipolis Renewable energies Storage and conversion of energy Materials elaboration Plasma conversion Remote sensing

Page 99: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Research activities

DistributedGeneration

Evaluation and prediction :- solar resource- wind resource

Poly energy systemsbased on RE : - PV/diesel - Wind/diesel - PV/EL/FC

Planning tools (SIG)

Fuel cell Storage technologies

Page 100: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Substation

SubstationSubstation

DSO Operation centre

TSO Operation centre

Aggregator or ESP Operation centre

The system as it is today

Page 101: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Substation

Substation

Substation

DSO Operation centre

TSO Operation centre

Aggregator or ESP Operation centre

Penetration of DER on MV and LV systems

Page 102: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Evaluation of the offshore wind potentialthrough remote sensing techniques

Page 103: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

GIS : Renewable energies integration

Page 104: ENERGIES FOR A SUSTAINABLE FUTURE

104

French-Serbian Summer school - 2006

H2

O2

H2O

ElectrolyserFuel Cell

Load

PV FieldPMU

Battery230 VAC 4 kW

30 VDC 3,6 kW

12 VDC 4 kW

24 VDC 2 kWh210 VDC

3,6 kWp

12 kWh

Description of the test bench

Page 105: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Activities in the fuel cell field

• Fuel cell test bench

400 W to 10 kW power rangeFuel cell round robin tests within Europe

• Participation in different demonstration programmes at a national level

• Fuel Reforming activities

Page 106: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Matériaux à caractéristiques « énergétiques » particulières

Nouveaux matériauxMatériaux d ’électrodes-super capacités-piles à combustible

Materials with specific Characteristics for energy use

Transparent insulationSuper insulation

Electrode materials- super capacities- fuel cells

Hydrogen storage

New materials

Page 107: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Elaboration of silicon Aerogel

500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0Run 6-2 400 °C

Tra

nsm

ittan

ce

Wavelength (nm)

r642th r642td r642tr

%TR = 88 % (CSTB Grenoble)

Transparent thermal super insulation

Page 108: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Electrochemical aplications

Electrodes for PEM Fuel cell

Matérial « Aérogel »

adaptable and open prosity :

Optimal Distribution of catalyst decrease in Pt, Au … homogeneous distribution

Electronic conduction : Aérogel Carbone(1) ou SiO2 « chargé » C(2), …

Hydrophobe area (évacuation H2O compartiment cathodique)

(1) : R. Petricevic, J. Fricke, ISA6, JNCS (in press)(2) : C.A. Morris, M.L. Anderson, R.M. Stroud, C.I. Merzbacher, D.R. Rolison, Science 284 (1999) 260

Page 109: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

TECHNOLOGIE

• Puissance : 260 kW

• Température : 3,000 – 12,000 °C

• Gaz plasma : He, Ar, H2, N2, CO

• Précurseurs Hydrocarbures (Gaz, Liquides) Carbone solide (+ cat.)

• Capacité : 1 kg / heure

Page 110: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

CARBON “NECKLACES”

Carbon “Necklaces”J-C Charlier, Andrei Palnichenko,

Hanako Okuno, UCL

Page 111: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

Enveloppe bâtiment- gestion des gains directs-composants d ’enveloppe

Production répartie d ’énergie

Demand SideManagement

Buildings- heating- cooling

Building Enveloppe- Direct gains management- Enveloppe components

Decentralised Generation

Planning tool (SIG)

Page 112: ENERGIES FOR A SUSTAINABLE FUTURE

French-Serbian Summer school - 2006

LINKS

• www-cep.cma.fr

[email protected]