ee155/255 green electronics - stanford...

49
EE155/255 Green Electronics Power Circuits 10/4/17 Prof. William Dally Computer Systems Laboratory Stanford University

Upload: others

Post on 27-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

EE155/255 Green Electronics

Power Circuits10/4/17

Prof. William DallyComputer Systems Laboratory

Stanford University

Page 2: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Course Logistics• HW2 due Monday 10/9• Lab groups have been formed• Lab1 signed off this week• Lab2 out

EE155/255 Lecture 4 - Power Circuits

Page 3: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Course at a GlanceNo Date Topic HWout HWin Labout Labck Lab HW

1 9/25/17 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/27/17 EmbeddedProg/PowerElect.3 10/2/17 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/4/17 PowerElectronics-2(circuits)5 10/9/17 Photovoltaics 3 2 3 2 PVMPPT MotorcontrolMatlab6 10/11/17 FeedbackControl7 10/16/17 ElectricMotors 4 3 4 3 Motorcontrol-Lab/ Feedback8 10/18/17 IsolatedConverters9 10/23/17 SolarDay 5/PP 4 5 4 PS IsolatedConverters10 10/25/17 Magnetics11 10/30/17 SoftSwitching 6 5/PP 6 5 Magnetics MagneticsandInverters12 11/1/17 ProjectDiscussions13 11/6/17 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/8/17 Thermal&EMI15 11/13/17 QuizReview C116 11/15/17 Grounding,andDebuggingQ 11/15/17 Quiz-intheevening

11/20/17 ThanksgivingBreak C211/22/17 ThanksgivingBreak

17 11/27/17 Wrapup18 11/29/17 GuestLecture C319 12/4/17 GuestLecture20 12/6/17 NoClass

TBD Projectpresentations P12/15/17 Projectwebpagedue

EE155/255 Lecture 4 - Power Circuits

Page 4: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Test SetupMulti-Level PV System

EE155/255 Lecture 4 - Power Circuits

Page 5: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Prim

ary

and

Seco

ndar

y PC

Bs

EE155/255 Lecture 4 - Power Circuits

Page 6: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Course to Date• We need sustainable energy systems• At the core they are voltage converters• Periodic steady-state analysis, buck and boost• Intelligent control + power path• Intelligent control done with event-driven embedded software• Real devices have switching and conduction loss – and parasitics

EE155/255 Lecture 4 - Power Circuits

Page 7: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Last Time• DC and AC characteristics of MOSFETs, Diodes, and IGBTs• Switches in pairs• One switch does the work• Turn on transient• Diode reverse recovery• Parasitics• Gate drive and Miller capacitance

EE155/255 Lecture 4 - Power Circuits

Page 8: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Turn-On and Turn-Off Loss

EE155/255 Lecture 4 - Power Circuits

Page 9: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Turn-On Loss

EE155/255 Lecture 4 - Power Circuits

IP

ILQRR QD

ID

VDS

s

t1 t2 t3

Page 10: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Turn-OffBuck with Diode

Excess current charges drain node.

Integrate to get switching energy

E =VDDtr16IL +

13I1

!

"#

$

%&

ID

VDS

IL

trtc

I1

EE155/255 Lecture 4 - Power Circuits

Page 11: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Turn-OffBuck with Diode

If current ramps faster than voltage nearly ZVSID

VDS

IL

tr

tc

V1

E = 16V1ILtc

EE155/255 Lecture 4 - Power Circuits

Page 12: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Parasitic Losses

LP

C2

CL

L1D1

M1

C1

EE155/255 Lecture 4 - Power Circuits

Page 13: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Gate Drive

EE155/255 Lecture 4 - Power Circuits

Page 14: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Gate Driver

RGH

RGL

M1

source

drain

Control &Protection+

-VGH

in

Gate-driver IC

SH

SL

EE155/255 Lecture 4 - Power Circuits

Page 15: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Effect of Miller Cap on Rise Time

M1

iG

CDG

EE155/255 Lecture 4 - Power Circuits

Page 16: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Effect of Miller Cap on Rise Time

M1

iG

CDG

dVDdt

=iGCDG

Δt = ΔVDCDG

iG

Example: i = 0.5A, C = 100pF, DV = 400V

EE155/255 Lecture 4 - Power Circuits

Page 17: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Bootstrap Supply

M1

i

M2

V1

+-

High-SideGate Drive

Low-SideGate Drive

VGL

+-

inH

inL

GND

X

G1

G2

CB

RB DB V

EE155/255 Lecture 4 - Power Circuits

Page 18: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Dead Time

EE155/255 Lecture 4 - Power Circuits

Page 19: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Too Little Dead Time (11.6kW loss)

1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs-5V

0V

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V0V

2V

4V

6V

8V

10V

12V

14V

16V-3.0KA

-2.5KA

-2.0KA

-1.5KA

-1.0KA

-0.5KA

0.0KA

0.5KA

1.0KA

1.5KA

2.0KA

2.5KA

3.0KA-10KW

0KW

10KW

20KW

30KW

40KW

50KW

60KW

70KW

80KW

90KW

100KW

110KW

V(m1)

V(p1l) v(p1h)-v(m1) V(1:gl) V(1:gh)-v(m1)

Ix(1:h:1) Ix(1:l:3)

ix(1:h:1)*(v(d)-v(m1)) ix(1:l:1)*v(m1)

4mJ3.4mJ

2500A

3.4mJ3.7mJ

EE155/255 Lecture 4 - Power Circuits

Page 20: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

0.6 0.8 1 1.2 1.4 1.6 1.8v G

(V)

0

10

0.6 0.8 1 1.2 1.4 1.6 1.8

v X (V

)

0

20

40

0.6 0.8 1 1.2 1.4 1.6 1.8

i M1 (k

A)

0

1

2

3

t (µ s)0.6 0.8 1 1.2 1.4 1.6 1.8

P M1 (k

W)

0

50

100

0

5

10

15

0

5

10

15

The “Real” Gate Signal

EE155/255 Lecture 4 - Power Circuits

Page 21: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Too Much Dead-Time (340W loss)(Still pretty good)

1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs-5V

0V

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V-2V

0V

2V

4V

6V

8V

10V

12V

14V

16V-700A

-600A

-500A-400A

-300A

-200A

-100A

0A100A

200A

300A

400A

500A600A

700A

800A-4KW

0KW

4KW

8KW

12KW

16KW

20KW

24KW

28KW

32KW

36KW

40KW

V(m2)

V(p2l) V(p2h)-v(m2) V(2:gl) V(2:gh)-v(m2)

Ix(2:h:1) Ix(2:l:3)

ix(2:h:1)*(v(d)-v(m2)) ix(2:l:1)*v(m2)

700mV diode drop

740A

0.27mJ

EE155/255 Lecture 4 - Power Circuits

Page 22: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Just Right (310W loss)

1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs-5V

0V

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V-2V

0V

2V

4V

6V

8V

10V

12V

14V

16V-350A

-280A

-210A

-140A

-70A

0A

70A

140A

210A

280A

350A

420A-0.3KW

0.0KW

0.3KW

0.6KW

0.9KW

1.2KW

1.5KW

1.8KW

2.1KW

2.4KW

2.7KW

V(m4)

V(p4l) v(p4h)-v(m4) v(4:gh)-v(m4) V(4:gl)

Ix(4:h:1) Ix(4:l:3)

IX(4:l:1)*v(m4) ix(4:h:1)*(v(d)-v(m1))

0.19mJ3uJ

Conduction loss is I2R = 502 x 1m ~ 25W

Slower gate rise

Short duration diode drop

EE155/255 Lecture 4 - Power Circuits

Page 23: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Too much dead time is better than too little

EE155/255 Lecture 4 - Power Circuits

Page 24: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Snubbers

EE155/255 Lecture 4 - Power Circuits

Page 25: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Dampen Ringing Nodes

LD and Cj resonate when M is on

Parallel RS dampens tank

Series CS limits dissipation

EE155/255 Lecture 4 - Power Circuits

Page 26: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Inductance on Drain

8uJ turn-on

42uJ turn-off

EE155/255 Lecture 4 - Power Circuits

Page 27: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

With Snubber (1nF, 5W)

8uJ turn-on

2uJ in snubber

42uJ turn-off

EE155/255 Lecture 4 - Power Circuits

Page 28: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Design Procedure

Pick RS ~ 1/wCj

Pick CS so t >= p/w

OrEs = CSV2/2

EE155/255 Lecture 4 - Power Circuits

Page 29: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Example Cycle

EE155/255 Lecture 4 - Power Circuits

Page 30: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

IGBT Half Bridge

EE155/255 Lecture 4 - Power Circuits

VS+-

GD

QH

QL

CCGH

GD

CCGL

DH

DL

SL

X

CH

RX

CX

IL

LSL

LS

Page 31: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

50

i QH

(A)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−20

0

20

40

i DL (A

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

100

200

300

400

v x (V)

t (µs)

0

200

400

v CEH

(V)

One Switching Cycle

EE155/255 Lecture 4 - Power Circuits

1

2

Page 32: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Turn-On Transient

EE155/255 Lecture 4 - Power Circuits

60 80 100 120 140 160 1800

50

i QH

(A)

60 80 100 120 140 160 180−20

0

20

40

i DL (A

)

60 80 100 120 140 160 1800

200

400

v X (V)

60 80 100 120 140 160 180390

400

410

v CH

(V)

60 80 100 120 140 160 180−10−5

05

1015

v GEH

(V)

t (ns)

0

200

400

v CEH

(V)

−20

0

20

40

i QL (A

)

0

10

20

P QH

(kW

)

−10−5051015

v GEL

(V)

1 2

2

𝐸~60𝑛𝑠×22𝑘𝑊

2 = 660µ𝐽

𝐸 = 773µ𝐽

𝐿𝑑𝑖𝑑𝑡

Hig

h-Si

de T

urn

On

Page 33: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

EE155/255 Lecture 4 - Power Circuits

Hig

h-Si

de T

urn

Off

1.55 1.6 1.65 1.7 1.750

20

40

i QH

(A)

1.55 1.6 1.65 1.7 1.750

10

20

30

40

i DL (A

)

1.55 1.6 1.65 1.7 1.750

200

400v X (V

)

1.55 1.6 1.65 1.7 1.75

400

405

410

415

v CH (V

)

t (µs)

0

200

400

v CEH

(V)

0

2

4

6

8

P QH

(kW

) 𝐸 = 230𝜇𝐽

𝐿𝑑𝑖𝑑𝑡

1

2

Page 34: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Lab Half-Bridge Module

EE155/255 Lecture 4 - Power Circuits

Page 35: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

The Half-Bridge Module

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 4 - Power Circuits

Page 36: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Bootstrap Supply

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 4 - Power Circuits

Page 37: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Bootstrap Supply

EE155/255 Lecture 4 - Power Circuits

Page 38: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Drain Voltage Filter

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 4 - Power Circuits

Page 39: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Drain Voltage Filter300nH Input Inductance

EE155/255 Lecture 4 - Power Circuits

Page 40: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

SPICE

EE155/255 Lecture 4 - Power Circuits

Page 41: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

SPICE Example – A Voltage Doubler

EE155/255 Lecture 4 - Power Circuits

Page 42: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

A Voltage Doubler* Simple voltage "doubler".include "gel.lib".param td=100n tr=100n tf=100n tw=2.5u tcy=5u ncy=2.param l1=22uH c1=10uF r1=10

* call half-bridge subcircuitxhb vd mid g g 0 v12 gel_hb

* circuitl1 vin mid {l1}c1 vd 0 {c1}r1 vd 0 {r1}

* suppliesv12 v12 0 12vin vin 0 24

* stimulusVG g 0 PULSE(0 5 {td} {tr} {tf} {tw} {tcy} {ncy})

.ic i(l1)=9.2

.ic v(vd)=42.8

.tran {ncy*tcy}

EE155/255 Lecture 4 - Power Circuits

Page 43: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Turn-On Transient

EE155/255 Lecture 4 - Power Circuits

Page 44: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Steady State

EE155/255 Lecture 4 - Power Circuits

Page 45: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Close up of Drain Current

EE155/255 Lecture 4 - Power Circuits

Page 46: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

With PID Control

EE155/255 Lecture 4 - Power Circuits

Page 47: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

A Warning• SPICE (or any simulator) is a Verification tool, not a Design tool• Design your circuit first

– Use Excel, Matlab, a calculator etc… to calculate component values• Then simulate your circuit to check operation and fine-tune parameters• Don’t try to design your circuit using SPICE

• Simulation is not a substitute for thinking

EE155/255 Lecture 4 - Power Circuits

Page 48: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Summary of Power Circuits• Real switches have limitations

– Conduction losses (RON for FETs, VCE for IGBTs, Diode drop)– Switching losses (finite ton, toff, trr)

• With current source load, current ramps, then voltage falls • And voltage rises before current falls• May be dominated by reverse recovery time• Complicated by inductance

– Parasitic L and C• Power MOSFETs

– Switch quickly, have linear I-V, integral diode• IGBTs

– Diode-like I-V, slower switching• Diodes

– Have reverse recovery time• Switches operate in pairs

– For one-way converters, one switch may be a diode– Synchronous rectification – make both switches FETs to reduce loss– Need “dead time” to avoid “shoot through” current

• Gate-drive circuits control rise and fall times– Supply Miller capacitance

• Bootstrap supply needed for high-side driver• Snubbers dampen voltage and current transients• Use SPICE as a verification tool, not a design tool

EE155/255 Lecture 4 - Power Circuits

Page 49: EE155/255 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_100417.pdfEE155/255 Green Electronics Power Circuits 10/4/17 Prof. William

Course at a GlanceNo Date Topic HWout HWin Labout Labck Lab HW

1 9/25/17 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/27/17 EmbeddedProg/PowerElect.3 10/2/17 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/4/17 PowerElectronics-2(circuits)5 10/9/17 Photovoltaics 3 2 3 2 PVMPPT MotorcontrolMatlab6 10/11/17 FeedbackControl7 10/16/17 ElectricMotors 4 3 4 3 Motorcontrol-Lab/ Feedback8 10/18/17 IsolatedConverters9 10/23/17 SolarDay 5/PP 4 5 4 PS IsolatedConverters10 10/25/17 Magnetics11 10/30/17 SoftSwitching 6 5/PP 6 5 Magnetics MagneticsandInverters12 11/1/17 ProjectDiscussions13 11/6/17 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/8/17 Thermal&EMI15 11/13/17 QuizReview C116 11/15/17 Grounding,andDebuggingQ 11/15/17 Quiz-intheevening

11/20/17 ThanksgivingBreak C211/22/17 ThanksgivingBreak

17 11/27/17 Wrapup18 11/29/17 GuestLecture C319 12/4/17 GuestLecture20 12/6/17 NoClass

TBD Projectpresentations P12/15/17 Projectwebpagedue

EE155/255 Lecture 4 - Power Circuits