ee101: op amp circuits (part 3) - iit bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · lpfv...

76
EE101: Op Amp circuits (Part 3) M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay M. B. Patil, IIT Bombay

Upload: others

Post on 21-Feb-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

EE101: Op Amp circuits (Part 3)

M. B. [email protected]

www.ee.iitb.ac.in/~sequel

Department of Electrical EngineeringIndian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Page 2: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Introduction to filters

Consider v(t) = v1(t) + v2(t) = Vm1 sinω1t + Vm2 sinω2t .

−1

0

1

0 5 10 15 20t (msec)

0 5 10 15 20t (msec)

v2

v1v

LPF vo = v1v

HPFv vo = v2

A low-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the low-frequencycomponent v1(t) and remove the high-frequency component v2(t).

A high-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the high-frequencycomponent v2(t) and remove the low-frequency component v1(t).

There are some other types of filters, as we will see.

M. B. Patil, IIT Bombay

Page 3: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Introduction to filters

Consider v(t) = v1(t) + v2(t) = Vm1 sinω1t + Vm2 sinω2t .

−1

0

1

0 5 10 15 20t (msec)

0 5 10 15 20t (msec)

v2

v1v

LPF vo = v1v

HPFv vo = v2

A low-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the low-frequencycomponent v1(t) and remove the high-frequency component v2(t).

A high-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the high-frequencycomponent v2(t) and remove the low-frequency component v1(t).

There are some other types of filters, as we will see.

M. B. Patil, IIT Bombay

Page 4: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Introduction to filters

Consider v(t) = v1(t) + v2(t) = Vm1 sinω1t + Vm2 sinω2t .

−1

0

1

0 5 10 15 20t (msec)

0 5 10 15 20t (msec)

v2

v1v

LPF vo = v1v

HPFv vo = v2

A low-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the low-frequencycomponent v1(t) and remove the high-frequency component v2(t).

A high-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the high-frequencycomponent v2(t) and remove the low-frequency component v1(t).

There are some other types of filters, as we will see.

M. B. Patil, IIT Bombay

Page 5: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Introduction to filters

Consider v(t) = v1(t) + v2(t) = Vm1 sinω1t + Vm2 sinω2t .

−1

0

1

0 5 10 15 20t (msec)

0 5 10 15 20t (msec)

v2

v1v

LPF vo = v1v

HPFv vo = v2

A low-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the low-frequencycomponent v1(t) and remove the high-frequency component v2(t).

A high-pass filter with a cut-off frequency ω1 < ωc < ω2 will pass the high-frequencycomponent v2(t) and remove the low-frequency component v1(t).

There are some other types of filters, as we will see.

M. B. Patil, IIT Bombay

Page 6: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal low-pass filter

0

1

0

ωc

vo(t)

ω

H(jω)

H(jω

)

vi(t)

0

LPF

0ωcωc

ωω

Vi(jω

)

Vo(jω

)

Vo(jω) = H(jω) Vi (jω) .

All components with ω < ωc appear at the output without attenuation.

All components with ω > ωc get eliminated.

(Note that the ideal low-pass filter has ∠H(jω) = 1, i.e., H(jω) = 1 + j0 .)

M. B. Patil, IIT Bombay

Page 7: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal low-pass filter

0

1

0

ωc

vo(t)

ω

H(jω)

H(jω

)

vi(t)

0

LPF

0ωcωc

ωω

Vi(jω

)

Vo(jω

)

Vo(jω) = H(jω) Vi (jω) .

All components with ω < ωc appear at the output without attenuation.

All components with ω > ωc get eliminated.

(Note that the ideal low-pass filter has ∠H(jω) = 1, i.e., H(jω) = 1 + j0 .)

M. B. Patil, IIT Bombay

Page 8: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal low-pass filter

0

1

0

ωc

vo(t)

ω

H(jω)

H(jω

)

vi(t)

0

LPF

0ωcωc

ωω

Vi(jω

)

Vo(jω

)

Vo(jω) = H(jω) Vi (jω) .

All components with ω < ωc appear at the output without attenuation.

All components with ω > ωc get eliminated.

(Note that the ideal low-pass filter has ∠H(jω) = 1, i.e., H(jω) = 1 + j0 .)

M. B. Patil, IIT Bombay

Page 9: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

Low−pass

0ωc

ω

H(jω

)

0

1

0

High−pass

ωc

ω

H(jω

)

0

1

0

Band−pass

ωL ωH

ω

H(jω

)

0

1

0

Band−reject

ωL ωH

ω

H(jω

)

M. B. Patil, IIT Bombay

Page 10: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

Low−pass

0ωc

ω

H(jω

)

0

1

0

High−pass

ωc

ω

H(jω

)

0

1

0

Band−pass

ωL ωH

ω

H(jω

)

0

1

0

Band−reject

ωL ωH

ω

H(jω

)

M. B. Patil, IIT Bombay

Page 11: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

Low−pass

0ωc

ω

H(jω

)

0

1

0

High−pass

ωc

ω

H(jω

)0

1

0

Band−pass

ωL ωH

ω

H(jω

)

0

1

0

Band−reject

ωL ωH

ω

H(jω

)

M. B. Patil, IIT Bombay

Page 12: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

Low−pass

0ωc

ω

H(jω

)

0

1

0

High−pass

ωc

ω

H(jω

)0

1

0

Band−pass

ωL ωH

ω

H(jω

)

0

1

0

Band−reject

ωL ωH

ωH

(jω

)

M. B. Patil, IIT Bombay

Page 13: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 14: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 15: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 16: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 17: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 18: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 19: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 20: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 21: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 22: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 23: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Ideal filters

1

0

−1

0

1.5

−1.5 0 5 10 15 20

t (msec)

v

v3

v1

v2

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

V1

V2 V3

Let us see the effect ofa few filters on v(t).

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

H(jω)

1

0

−1

0

1

0 0.5 1 1.5 2 2.5

f (kHz)

H(jω)

1.5

0

−1.5 0 5 10 15 20

t (msec)

M. B. Patil, IIT Bombay

Page 24: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitableH(jω) that can be obtained with circuit elements. For example,

H(s) =1

a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

represents a 5th-order low-pass filter.

* Some commonly used approximations (polynomials) are the Butterworth,Chebyshev, Bessel, and elliptic functions.

* Coefficients for these filters listed in filter handbooks. Also, programs for filterdesign are available on the internet.

M. B. Patil, IIT Bombay

Page 25: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitableH(jω) that can be obtained with circuit elements. For example,

H(s) =1

a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

represents a 5th-order low-pass filter.

* Some commonly used approximations (polynomials) are the Butterworth,Chebyshev, Bessel, and elliptic functions.

* Coefficients for these filters listed in filter handbooks. Also, programs for filterdesign are available on the internet.

M. B. Patil, IIT Bombay

Page 26: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitableH(jω) that can be obtained with circuit elements. For example,

H(s) =1

a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

represents a 5th-order low-pass filter.

* Some commonly used approximations (polynomials) are the Butterworth,Chebyshev, Bessel, and elliptic functions.

* Coefficients for these filters listed in filter handbooks. Also, programs for filterdesign are available on the internet.

M. B. Patil, IIT Bombay

Page 27: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

0

1

0

IdealIdeal

Practical

Practical

Low−pass High−pass

0

1

00

00

0 ωω ω

ωcωc

ω

ωcωs

Amin

Amax|H||H||H| |H|

ωsωc

Amax

Amin

* A practical filter may exhibit a ripple. Amax is called the maximum passbandripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g.,Amin = 60 dB.

* ωs : edge of the stop band.

* ωs/ωc (for a low-pass filter): selectivity factor, a measure of the sharpness of thefilter.

* ωc < ω < ωs : transition band.

M. B. Patil, IIT Bombay

Page 28: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

0

1

0

IdealIdeal

Practical

Practical

Low−pass High−pass

0

1

00

00

0 ωω ω

ωcωc

ω

ωcωs

Amin

Amax|H||H||H| |H|

ωsωc

Amax

Amin

* A practical filter may exhibit a ripple. Amax is called the maximum passbandripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g.,Amin = 60 dB.

* ωs : edge of the stop band.

* ωs/ωc (for a low-pass filter): selectivity factor, a measure of the sharpness of thefilter.

* ωc < ω < ωs : transition band.

M. B. Patil, IIT Bombay

Page 29: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

0

1

0

IdealIdeal

Practical

Practical

Low−pass High−pass

0

1

00

00

0 ωω ω

ωcωc

ω

ωcωs

Amin

Amax|H||H||H| |H|

ωsωc

Amax

Amin

* A practical filter may exhibit a ripple. Amax is called the maximum passbandripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g.,Amin = 60 dB.

* ωs : edge of the stop band.

* ωs/ωc (for a low-pass filter): selectivity factor, a measure of the sharpness of thefilter.

* ωc < ω < ωs : transition band.

M. B. Patil, IIT Bombay

Page 30: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

0

1

0

IdealIdeal

Practical

Practical

Low−pass High−pass

0

1

00

00

0 ωω ω

ωcωc

ω

ωcωs

Amin

Amax|H||H||H| |H|

ωsωc

Amax

Amin

* A practical filter may exhibit a ripple. Amax is called the maximum passbandripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g.,Amin = 60 dB.

* ωs : edge of the stop band.

* ωs/ωc (for a low-pass filter): selectivity factor, a measure of the sharpness of thefilter.

* ωc < ω < ωs : transition band.

M. B. Patil, IIT Bombay

Page 31: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

0

1

0

IdealIdeal

Practical

Practical

Low−pass High−pass

0

1

00

00

0 ωω ω

ωcωc

ω

ωcωs

Amin

Amax|H||H||H| |H|

ωsωc

Amax

Amin

* A practical filter may exhibit a ripple. Amax is called the maximum passbandripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g.,Amin = 60 dB.

* ωs : edge of the stop band.

* ωs/ωc (for a low-pass filter): selectivity factor, a measure of the sharpness of thefilter.

* ωc < ω < ωs : transition band.

M. B. Patil, IIT Bombay

Page 32: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

0

1

0

IdealIdeal

Practical

Practical

Low−pass High−pass

0

1

00

00

0 ωω ω

ωcωc

ω

ωcωs

Amin

Amax|H||H||H| |H|

ωsωc

Amax

Amin

* A practical filter may exhibit a ripple. Amax is called the maximum passbandripple, e.g., Amax = 1 dB.

* Amin is the minimum attenuation to be provided by the filter, e.g.,Amin = 60 dB.

* ωs : edge of the stop band.

* ωs/ωc (for a low-pass filter): selectivity factor, a measure of the sharpness of thefilter.

* ωc < ω < ωs : transition band.

M. B. Patil, IIT Bombay

Page 33: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

For a low-pass filter, H(s) =1

nXi=0

ai (s/ωc )i

.

Coefficients (ai ) for various types of filters are tabulated in handbooks. We now lookat |H(jω)| for two commonly used filters.

Butterworth filters:

|H(jω)| =1p

1 + ε2(ω/ωc )2n.

Chebyshev filters:

|H(jω)| =1p

1 + ε2C2n (ω/ωc )

where

Cn(x) = cosˆn cos−1(x)

˜for x ≤ 1,

Cn(x) = coshˆn cosh−1(x)

˜for x ≥ 1,

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-passfilter by (s/ωc )→ (ωc/s) .

M. B. Patil, IIT Bombay

Page 34: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

For a low-pass filter, H(s) =1

nXi=0

ai (s/ωc )i

.

Coefficients (ai ) for various types of filters are tabulated in handbooks. We now lookat |H(jω)| for two commonly used filters.

Butterworth filters:

|H(jω)| =1p

1 + ε2(ω/ωc )2n.

Chebyshev filters:

|H(jω)| =1p

1 + ε2C2n (ω/ωc )

where

Cn(x) = cosˆn cos−1(x)

˜for x ≤ 1,

Cn(x) = coshˆn cosh−1(x)

˜for x ≥ 1,

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-passfilter by (s/ωc )→ (ωc/s) .

M. B. Patil, IIT Bombay

Page 35: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

For a low-pass filter, H(s) =1

nXi=0

ai (s/ωc )i

.

Coefficients (ai ) for various types of filters are tabulated in handbooks. We now lookat |H(jω)| for two commonly used filters.

Butterworth filters:

|H(jω)| =1p

1 + ε2(ω/ωc )2n.

Chebyshev filters:

|H(jω)| =1p

1 + ε2C2n (ω/ωc )

where

Cn(x) = cosˆn cos−1(x)

˜for x ≤ 1,

Cn(x) = coshˆn cosh−1(x)

˜for x ≥ 1,

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-passfilter by (s/ωc )→ (ωc/s) .

M. B. Patil, IIT Bombay

Page 36: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters

For a low-pass filter, H(s) =1

nXi=0

ai (s/ωc )i

.

Coefficients (ai ) for various types of filters are tabulated in handbooks. We now lookat |H(jω)| for two commonly used filters.

Butterworth filters:

|H(jω)| =1p

1 + ε2(ω/ωc )2n.

Chebyshev filters:

|H(jω)| =1p

1 + ε2C2n (ω/ωc )

where

Cn(x) = cosˆn cos−1(x)

˜for x ≤ 1,

Cn(x) = coshˆn cosh−1(x)

˜for x ≥ 1,

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-passfilter by (s/ωc )→ (ωc/s) .

M. B. Patil, IIT Bombay

Page 37: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters (low-pass)

−100

0

0

1

−100

0

0

1

Butterworth filters:

Chebyshev filters:

2

3

n=1

45

n=1

2

34

5

n=1

4

3

2

5

3

4

5

2

n=1

0.01 0.1 1 10 100

0 2 3 4 5 1

0.01 0.1 1 10 100

0 2 3 4 5 1

ω/ωc

|H|(

dB)

ω/ωc

|H|

ω/ωc

|H|(

dB)

ω/ωc

|H|

ǫ = 0.5

ǫ = 0.5

M. B. Patil, IIT Bombay

Page 38: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Practical filters (high-pass)

Butterworth filters:

Chebyshev filters:

0

1

−100

0

0

1

−100

0

n=1

2

4

5

n=1

2

3

45

3

n=1

2

345

n=1

2

34

5

0.01 0.1 1 10 100

0.01 0.1 1 10 100

0 1 2 3 4

0 1 2 3 4

ω/ωc

|H|

ω/ωc

|H|(

dB)

ω/ωc

|H|

ω/ωc

|H|(

dB)

ǫ = 0.5

ǫ = 0.5

M. B. Patil, IIT Bombay

Page 39: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Passive filter example

R

C

VoVs100Ω

5µF

(Low−pass filter)

with ω0 = 1/RC .

H(s) =(1/sC)

R + (1/sC)=

1

1 + (s/ω0),

(SEQUEL file: ee101_rc_ac_2.sqproj)

f (Hz)

−60

−40

−20

0

20

105104103102101

|H|(

dB)

M. B. Patil, IIT Bombay

Page 40: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Passive filter example

R

C

VoVs100Ω

5µF

(Low−pass filter)

with ω0 = 1/RC .

H(s) =(1/sC)

R + (1/sC)=

1

1 + (s/ω0),

(SEQUEL file: ee101_rc_ac_2.sqproj)

f (Hz)

−60

−40

−20

0

20

105104103102101

|H|(

dB)

M. B. Patil, IIT Bombay

Page 41: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Passive filter example

R

C

VoVs100Ω

5µF

(Low−pass filter)

with ω0 = 1/RC .

H(s) =(1/sC)

R + (1/sC)=

1

1 + (s/ω0),

(SEQUEL file: ee101_rc_ac_2.sqproj)

f (Hz)

−60

−40

−20

0

20

105104103102101

|H|(

dB)

M. B. Patil, IIT Bombay

Page 42: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Passive filter example

Vs VoR

CL0.1mF

100Ω

4µF

(Band−pass filter)

with ω0 = 1/√

LC .

H(s) =(sL) ‖ (1/sC)

R + (sL) ‖ (1/sC)=

s(L/R)

1 + s(L/R) + s2LC

0

f (Hz)

(SEQUEL file: ee101_lc_1.sqproj)

−20

−40

−60

−80

105104103102

|H|(

dB)

M. B. Patil, IIT Bombay

Page 43: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Passive filter example

Vs VoR

CL0.1mF

100Ω

4µF(Band−pass filter)

with ω0 = 1/√

LC .

H(s) =(sL) ‖ (1/sC)

R + (sL) ‖ (1/sC)=

s(L/R)

1 + s(L/R) + s2LC

0

f (Hz)

(SEQUEL file: ee101_lc_1.sqproj)

−20

−40

−60

−80

105104103102

|H|(

dB)

M. B. Patil, IIT Bombay

Page 44: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Passive filter example

Vs VoR

CL0.1mF

100Ω

4µF(Band−pass filter)

with ω0 = 1/√

LC .

H(s) =(sL) ‖ (1/sC)

R + (sL) ‖ (1/sC)=

s(L/R)

1 + s(L/R) + s2LC

0

f (Hz)

(SEQUEL file: ee101_lc_1.sqproj)

−20

−40

−60

−80

105104103102

|H|(

dB)

M. B. Patil, IIT Bombay

Page 45: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters (“Active” filters)

* Op Amp filters can be designed without using inductors. This is a significantadvantage since inductors are bulky and expensive. Inductors also exhibitnonlinear behaviour (arising from the core properties) which is undesirable in afilter circuit.

* With Op Amps, a filter circuit can be designed with a pass-band gain.

* Op Amp filters can be easily incorporated in an integrated circuit.

* However, at high frequencies (∼ MHz), Op Amps no longer have a high gain→ passive filters.

* Also, if the power requirement is high, Op Amp filters cannot be used→ passive filters.

M. B. Patil, IIT Bombay

Page 46: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters (“Active” filters)

* Op Amp filters can be designed without using inductors. This is a significantadvantage since inductors are bulky and expensive. Inductors also exhibitnonlinear behaviour (arising from the core properties) which is undesirable in afilter circuit.

* With Op Amps, a filter circuit can be designed with a pass-band gain.

* Op Amp filters can be easily incorporated in an integrated circuit.

* However, at high frequencies (∼ MHz), Op Amps no longer have a high gain→ passive filters.

* Also, if the power requirement is high, Op Amp filters cannot be used→ passive filters.

M. B. Patil, IIT Bombay

Page 47: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters (“Active” filters)

* Op Amp filters can be designed without using inductors. This is a significantadvantage since inductors are bulky and expensive. Inductors also exhibitnonlinear behaviour (arising from the core properties) which is undesirable in afilter circuit.

* With Op Amps, a filter circuit can be designed with a pass-band gain.

* Op Amp filters can be easily incorporated in an integrated circuit.

* However, at high frequencies (∼ MHz), Op Amps no longer have a high gain→ passive filters.

* Also, if the power requirement is high, Op Amp filters cannot be used→ passive filters.

M. B. Patil, IIT Bombay

Page 48: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters (“Active” filters)

* Op Amp filters can be designed without using inductors. This is a significantadvantage since inductors are bulky and expensive. Inductors also exhibitnonlinear behaviour (arising from the core properties) which is undesirable in afilter circuit.

* With Op Amps, a filter circuit can be designed with a pass-band gain.

* Op Amp filters can be easily incorporated in an integrated circuit.

* However, at high frequencies (∼ MHz), Op Amps no longer have a high gain→ passive filters.

* Also, if the power requirement is high, Op Amp filters cannot be used→ passive filters.

M. B. Patil, IIT Bombay

Page 49: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters (“Active” filters)

* Op Amp filters can be designed without using inductors. This is a significantadvantage since inductors are bulky and expensive. Inductors also exhibitnonlinear behaviour (arising from the core properties) which is undesirable in afilter circuit.

* With Op Amps, a filter circuit can be designed with a pass-band gain.

* Op Amp filters can be easily incorporated in an integrated circuit.

* However, at high frequencies (∼ MHz), Op Amps no longer have a high gain→ passive filters.

* Also, if the power requirement is high, Op Amp filters cannot be used→ passive filters.

M. B. Patil, IIT Bombay

Page 50: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

1 k

10 k

10 n

Vs

RL

C

R1

R2

Vo

20

0

−20

f (Hz)

105104103102101

|H|(

dB)

Op Amp filters are designed for Op Amp operation in the linear region→ Our analysis of the inverting amplifier applies, and we get,

Vo = −R2 ‖ (1/sC)

R1Vs (Vs and Vo are phasors)

H(s) = −R2

R1

1

1 + sR2C

This is a low-pass filter, with ω0 = 1/R2C .

(SEQUEL file: ee101 op filter 1.sqproj)

M. B. Patil, IIT Bombay

Page 51: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

1 k

10 k

10 n

Vs

RL

C

R1

R2

Vo

20

0

−20

f (Hz)

105104103102101

|H|(

dB)

Op Amp filters are designed for Op Amp operation in the linear region→ Our analysis of the inverting amplifier applies, and we get,

Vo = −R2 ‖ (1/sC)

R1Vs (Vs and Vo are phasors)

H(s) = −R2

R1

1

1 + sR2C

This is a low-pass filter, with ω0 = 1/R2C .

(SEQUEL file: ee101 op filter 1.sqproj)

M. B. Patil, IIT Bombay

Page 52: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

1 k

10 k

10 n

Vs

RL

C

R1

R2

Vo

20

0

−20

f (Hz)

105104103102101

|H|(

dB)

Op Amp filters are designed for Op Amp operation in the linear region→ Our analysis of the inverting amplifier applies, and we get,

Vo = −R2 ‖ (1/sC)

R1Vs (Vs and Vo are phasors)

H(s) = −R2

R1

1

1 + sR2C

This is a low-pass filter, with ω0 = 1/R2C .

(SEQUEL file: ee101 op filter 1.sqproj)

M. B. Patil, IIT Bombay

Page 53: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

1 k

10 k

10 n

Vs

RL

C

R1

R2

Vo

20

0

−20

f (Hz)

105104103102101

|H|(

dB)

Op Amp filters are designed for Op Amp operation in the linear region→ Our analysis of the inverting amplifier applies, and we get,

Vo = −R2 ‖ (1/sC)

R1Vs (Vs and Vo are phasors)

H(s) = −R2

R1

1

1 + sR2C

This is a low-pass filter, with ω0 = 1/R2C .

(SEQUEL file: ee101 op filter 1.sqproj)

M. B. Patil, IIT Bombay

Page 54: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

1 k

10 k

10 n

Vs

RL

C

R1

R2

Vo

20

0

−20

f (Hz)

105104103102101

|H|(

dB)

Op Amp filters are designed for Op Amp operation in the linear region→ Our analysis of the inverting amplifier applies, and we get,

Vo = −R2 ‖ (1/sC)

R1Vs (Vs and Vo are phasors)

H(s) = −R2

R1

1

1 + sR2C

This is a low-pass filter, with ω0 = 1/R2C .

(SEQUEL file: ee101 op filter 1.sqproj)

M. B. Patil, IIT Bombay

Page 55: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

10 k

100 n1 kVs

RL

C R2R1

Vo

f (Hz)

20

0

−20

−40

105104103102101

|H|(

dB)

H(s) = −R2

R1 + (1/sC)=

sR2C

1 + sR1C.

This is a high-pass filter, with ω0 = 1/R1C .

(SEQUEL file: ee101 op filter 2.sqproj)

M. B. Patil, IIT Bombay

Page 56: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

10 k

100 n1 kVs

RL

C R2R1

Vo

f (Hz)

20

0

−20

−40

105104103102101

|H|(

dB)

H(s) = −R2

R1 + (1/sC)=

sR2C

1 + sR1C.

This is a high-pass filter, with ω0 = 1/R1C .

(SEQUEL file: ee101 op filter 2.sqproj)

M. B. Patil, IIT Bombay

Page 57: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

10 k

100 n1 kVs

RL

C R2R1

Vo

f (Hz)

20

0

−20

−40

105104103102101

|H|(

dB)

H(s) = −R2

R1 + (1/sC)=

sR2C

1 + sR1C.

This is a high-pass filter, with ω0 = 1/R1C .

(SEQUEL file: ee101 op filter 2.sqproj)

M. B. Patil, IIT Bombay

Page 58: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

10 k

100 n1 kVs

RL

C R2R1

Vo

f (Hz)

20

0

−20

−40

105104103102101

|H|(

dB)

H(s) = −R2

R1 + (1/sC)=

sR2C

1 + sR1C.

This is a high-pass filter, with ω0 = 1/R1C .

(SEQUEL file: ee101 op filter 2.sqproj)

M. B. Patil, IIT Bombay

Page 59: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

10 k

100 n1 kVs

RL

C R2R1

Vo

f (Hz)

20

0

−20

−40

105104103102101

|H|(

dB)

H(s) = −R2

R1 + (1/sC)=

sR2C

1 + sR1C.

This is a high-pass filter, with ω0 = 1/R1C .

(SEQUEL file: ee101 op filter 2.sqproj)

M. B. Patil, IIT Bombay

Page 60: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

100 k

10 k80 p

0.8µF

Vs

RL

C2

C1

R2

R1Vo

f (Hz)

20

0

100 102 104 106

|H|(

dB)

H(s) = −R2 ‖ (1/sC2)

R1 + (1/sC1)= −

R2

R1

sR1C1

(1 + sR1C1)(1 + sR2C2).

This is a band-pass filter, with ωL = 1/R1C1 and ωH = 1/R2C2 .

(SEQUEL file: ee101 op filter 3.sqproj)

M. B. Patil, IIT Bombay

Page 61: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

100 k

10 k80 p

0.8µF

Vs

RL

C2

C1

R2

R1Vo

f (Hz)

20

0

100 102 104 106

|H|(

dB)

H(s) = −R2 ‖ (1/sC2)

R1 + (1/sC1)= −

R2

R1

sR1C1

(1 + sR1C1)(1 + sR2C2).

This is a band-pass filter, with ωL = 1/R1C1 and ωH = 1/R2C2 .

(SEQUEL file: ee101 op filter 3.sqproj)

M. B. Patil, IIT Bombay

Page 62: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

100 k

10 k80 p

0.8µF

Vs

RL

C2

C1

R2

R1Vo

f (Hz)

20

0

100 102 104 106

|H|(

dB)

H(s) = −R2 ‖ (1/sC2)

R1 + (1/sC1)= −

R2

R1

sR1C1

(1 + sR1C1)(1 + sR2C2).

This is a band-pass filter, with ωL = 1/R1C1 and ωH = 1/R2C2 .

(SEQUEL file: ee101 op filter 3.sqproj)

M. B. Patil, IIT Bombay

Page 63: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

100 k

10 k80 p

0.8µF

Vs

RL

C2

C1

R2

R1Vo

f (Hz)

20

0

100 102 104 106

|H|(

dB)

H(s) = −R2 ‖ (1/sC2)

R1 + (1/sC1)= −

R2

R1

sR1C1

(1 + sR1C1)(1 + sR2C2).

This is a band-pass filter, with ωL = 1/R1C1 and ωH = 1/R2C2 .

(SEQUEL file: ee101 op filter 3.sqproj)

M. B. Patil, IIT Bombay

Page 64: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Op Amp filters: example

100 k

10 k80 p

0.8µF

Vs

RL

C2

C1

R2

R1Vo

f (Hz)

20

0

100 102 104 106

|H|(

dB)

H(s) = −R2 ‖ (1/sC2)

R1 + (1/sC1)= −

R2

R1

sR1C1

(1 + sR1C1)(1 + sR2C2).

This is a band-pass filter, with ωL = 1/R1C1 and ωH = 1/R2C2 .

(SEQUEL file: ee101 op filter 3.sqproj)

M. B. Patil, IIT Bombay

Page 65: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Graphic equalizer

f (Hz)

20

0

−20

R2

C1

C2

a 1−a

R3A R3B

R1A R1B

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

a=0.90.7

0.5

0.3

0.1

Vs

RL

Vo

105104103102101

|H|(

dB)

R3A = R3B = 100 kΩ

R1A = R1B = 470Ω

R2 = 10 kΩ

C1 = 100 nF

C2 = 10 nF

* Equalizers are implemented as arrays of narrow-band filters, each with anadjustable gain (attenuation) around a centre frequency.

* The circuit shown above represents one of the equalizer sections.

(SEQUEL file: ee101 op filter 4.sqproj)

M. B. Patil, IIT Bombay

Page 66: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Graphic equalizer

f (Hz)

20

0

−20

R2

C1

C2

a 1−a

R3A R3B

R1A R1B

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

a=0.90.7

0.5

0.3

0.1

Vs

RL

Vo

105104103102101

|H|(

dB)

R3A = R3B = 100 kΩ

R1A = R1B = 470Ω

R2 = 10 kΩ

C1 = 100 nF

C2 = 10 nF

* Equalizers are implemented as arrays of narrow-band filters, each with anadjustable gain (attenuation) around a centre frequency.

* The circuit shown above represents one of the equalizer sections.

(SEQUEL file: ee101 op filter 4.sqproj)

M. B. Patil, IIT Bombay

Page 67: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Graphic equalizer

f (Hz)

20

0

−20

R2

C1

C2

a 1−a

R3A R3B

R1A R1B

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

a=0.90.7

0.5

0.3

0.1

Vs

RL

Vo

105104103102101

|H|(

dB)

R3A = R3B = 100 kΩ

R1A = R1B = 470Ω

R2 = 10 kΩ

C1 = 100 nF

C2 = 10 nF

* Equalizers are implemented as arrays of narrow-band filters, each with anadjustable gain (attenuation) around a centre frequency.

* The circuit shown above represents one of the equalizer sections.

(SEQUEL file: ee101 op filter 4.sqproj)

M. B. Patil, IIT Bombay

Page 68: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Sallen-Key filter example (2nd order, low-pass)

f (Hz)

40

20

0

−20

−40

−60

RARB

R1 R2C1

C2

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

RL

Vo

Vs V1

105104103102101

|H|(

dB)

R1 = R2 = 15.8 kΩ

C1 = C2 = 10 nF

RA = 10 kΩ, RB = 17.8 kΩ

V+ = V− = VoRA

RA + RB

≡ Vo/K .

Also, V+ =(1/sC2)

R2 + (1/sC2)V1 =

1

1 + sR2C2V1 .

KCL at V1 →1

R1(Vs − V1) + sC1(Vo − V1) +

1

R2(V+ − V1) = 0 .

Combining the above equations, H(s) =K

1 + s [(R1 + R2)C2 + (1− K)R1C1] + s2R1C1R2C2.

(SEQUEL file: ee101 op filter 5.sqproj)

M. B. Patil, IIT Bombay

Page 69: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Sallen-Key filter example (2nd order, low-pass)

f (Hz)

40

20

0

−20

−40

−60

RARB

R1 R2C1

C2

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

RL

Vo

Vs V1

105104103102101

|H|(

dB)

R1 = R2 = 15.8 kΩ

C1 = C2 = 10 nF

RA = 10 kΩ, RB = 17.8 kΩ

V+ = V− = VoRA

RA + RB

≡ Vo/K .

Also, V+ =(1/sC2)

R2 + (1/sC2)V1 =

1

1 + sR2C2V1 .

KCL at V1 →1

R1(Vs − V1) + sC1(Vo − V1) +

1

R2(V+ − V1) = 0 .

Combining the above equations, H(s) =K

1 + s [(R1 + R2)C2 + (1− K)R1C1] + s2R1C1R2C2.

(SEQUEL file: ee101 op filter 5.sqproj)

M. B. Patil, IIT Bombay

Page 70: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Sallen-Key filter example (2nd order, low-pass)

f (Hz)

40

20

0

−20

−40

−60

RARB

R1 R2C1

C2

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

RL

Vo

Vs V1

105104103102101

|H|(

dB)

R1 = R2 = 15.8 kΩ

C1 = C2 = 10 nF

RA = 10 kΩ, RB = 17.8 kΩ

V+ = V− = VoRA

RA + RB

≡ Vo/K .

Also, V+ =(1/sC2)

R2 + (1/sC2)V1 =

1

1 + sR2C2V1 .

KCL at V1 →1

R1(Vs − V1) + sC1(Vo − V1) +

1

R2(V+ − V1) = 0 .

Combining the above equations, H(s) =K

1 + s [(R1 + R2)C2 + (1− K)R1C1] + s2R1C1R2C2.

(SEQUEL file: ee101 op filter 5.sqproj)

M. B. Patil, IIT Bombay

Page 71: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Sallen-Key filter example (2nd order, low-pass)

f (Hz)

40

20

0

−20

−40

−60

RARB

R1 R2C1

C2

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

RL

Vo

Vs V1

105104103102101

|H|(

dB)

R1 = R2 = 15.8 kΩ

C1 = C2 = 10 nF

RA = 10 kΩ, RB = 17.8 kΩ

V+ = V− = VoRA

RA + RB

≡ Vo/K .

Also, V+ =(1/sC2)

R2 + (1/sC2)V1 =

1

1 + sR2C2V1 .

KCL at V1 →1

R1(Vs − V1) + sC1(Vo − V1) +

1

R2(V+ − V1) = 0 .

Combining the above equations, H(s) =K

1 + s [(R1 + R2)C2 + (1− K)R1C1] + s2R1C1R2C2.

(SEQUEL file: ee101 op filter 5.sqproj)

M. B. Patil, IIT Bombay

Page 72: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Sallen-Key filter example (2nd order, low-pass)

f (Hz)

40

20

0

−20

−40

−60

RARB

R1 R2C1

C2

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

RL

Vo

Vs V1

105104103102101

|H|(

dB)

R1 = R2 = 15.8 kΩ

C1 = C2 = 10 nF

RA = 10 kΩ, RB = 17.8 kΩ

V+ = V− = VoRA

RA + RB

≡ Vo/K .

Also, V+ =(1/sC2)

R2 + (1/sC2)V1 =

1

1 + sR2C2V1 .

KCL at V1 →1

R1(Vs − V1) + sC1(Vo − V1) +

1

R2(V+ − V1) = 0 .

Combining the above equations, H(s) =K

1 + s [(R1 + R2)C2 + (1− K)R1C1] + s2R1C1R2C2.

(SEQUEL file: ee101 op filter 5.sqproj)

M. B. Patil, IIT Bombay

Page 73: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Sixth-order Chebyshev low-pass filter (cascade design)

10.7 k 10.2 k

5.1 n

2.2 n

8.25 k 6.49 k

10 n

510 p

4.64 k 2.49 k

62 n

220 p

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

20

0

−20

−40

−60

−80

f (Hz)

SEQUEL file: ee101_op_filter_6.sqproj

VsRL

Vo

105104103102

|H|(

dB)

M. B. Patil, IIT Bombay

Page 74: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Third-order Chebyshev high-pass filter

f (Hz)

20

0

−20

−40

SEQUEL file: ee101_op_filter_7.sqproj

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

−60

−80

7.68 k

54.9 k

15.4 k 154 k

100 n 100 n

100 n

VsRL

Vo

103102101100

|H|(

dB)

M. B. Patil, IIT Bombay

Page 75: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Band-pass filter example

f (Hz)

SEQUEL file: ee101_op_filter_8.sqproj

20

0

−20

−40

40

5 k

5 k

5 k

5 k

5 k

370 k5 k

7.4 n

7.4 n

(Ref.: J. M. Fiore, "Op Amps and linear ICs")

Vs

Vo

105104103102

|H|(

dB)

M. B. Patil, IIT Bombay

Page 76: EE101: Op Amp circuits (Part 3) - IIT Bombaysequel/ee101/ee101_opamp_3.pdf · 2015. 6. 30. · LPFv o = 1 A low-pass lter with a cut-o frequency ! v vHPF o =v2 1

Notch filter example

1 k

89 k

10 k

10 k10 k

10 k

10 k10 k

10 k

10 k

265 n

265 n

(Ref.: J. M. Fiore, "Op Amps and linear ICs")

f (Hz)

0

−40

−20

SEQUEL file: ee101_op_filter_9.sqproj

Vs

Vo

101 102

|H|(

dB)

M. B. Patil, IIT Bombay