ece 802-604: nanoelectronics

37
ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]

Upload: elvin

Post on 14-Jan-2016

51 views

Category:

Documents


0 download

DESCRIPTION

ECE 802-604: Nanoelectronics. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]. Lecture 27, 03 Dec 13. Molecular Electronics: Why not polyacetylene? or any conjugated “ene”? Examples of possibilities Actual performance - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ECE 802-604: Nanoelectronics

ECE 802-604:Nanoelectronics

Prof. Virginia AyresElectrical & Computer EngineeringMichigan State [email protected]

Page 2: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 27, 03 Dec 13

Molecular Electronics:

Why not polyacetylene? or any conjugated “ene”?Examples of possibilitiesActual performance

Electronic () structure brief reviewMechanical () structure brief review

New: bond alteration structure in polyacetyleneElectronic result of bond alteration structureQualitativeQuantitative

Solitons (polarons): Su-Schreiffer-Heeger (SSH) model

Page 3: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

New: Bond alteration polyacetylene: HAA types:no formula changes due to long and short bonds

“A”c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

-a +a

c

H

c

H

Page 4: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

New: Bond alteration polyacetylene: HAB types

“A”c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

-a +a

c

H

c

H

“B”

Page 5: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Two “identical” bond alterations

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

Page 6: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Describe as: a perturbation of the original.Two chances of it happening

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

A bit more

A bit moreA bit less

A bit less

Page 7: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Describe as: a perturbation on the original. Two possibilties

“A”c c c c c

H

H

H

H

H

“B”c

H

c

H

-a/2 +a/2

lessmore

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

Page 8: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Original:

“A”c c c c c

H

H

H

H

H

“B”

a

c

H

c

H

a

-a/2 +a/2

Page 9: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Two possibilities:

Page 10: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 11: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

For HW: do the 2nd nearest neighbor “B” atoms N = 2 in the original model

“A”c c c c c

H

H

H

H

H

“B”

a

c

H

c

H

a

-a/2 +a/2

Also ask: Where does HAB come form?

Page 12: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

A bit more

Now repeat with unequal bond lengths:

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

A bit moreA bit less

Now have four possibilities for where Carbon “B” is::

Page 13: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

t0 =

Example:

Units of t0 = ?

Units of x0 = ?

Units of = ?

Page 14: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

t0 =

Answer:

Units of t0 = eV

Units of x0 = eV

Units of = eV/ (distance = Ang)

is a phonon coupling coefficient:Converts the extra bit distance into the impact this perturbation has on the energy levels

Page 15: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

E-k relationship for more realistic polyacetylene with bond alteration:

Page 16: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

E-k relationship for more realistic polyacetylene with bond alteration:

Solve for E:

For polyacetylene:This bond alteration realism “opened up a gap” but it seems narrow so what’s the problem with the slow transport?

Page 17: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

+0.2 eV

- 0.2 eV

Polyactylene without bond alterations Polyactylene with bond alterations

Egap = 0.4 eV

Electrons will want to bond using the lowest energy level possible.Bond alteration configurations “lock”.

Page 18: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

+0.2 eV

- 0.2 eV

Polyactylene without bond alterations Polyactylene with bond alterations

Egap = 0.4 eV

Electrons will want to bond using the lowest energy level possible.Bond alteration configurations “lock”.The major problem:

Page 19: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

+0.2 eV

- 0.2 eV

Polyactylene with bond alterations

Egap = 0.4 eV

Minor problem:Egap: Not so narrow:

Page 20: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 27, 03 Dec 13

Molecular Electronics:

Why not polyacetylene? or any conjugated “ene”?Examples of possibilitiesActual performance

Electronic () structure brief reviewMechanical () structure brief review

New: bond alteration structureElectronic result of bond alteration structureQualitativeQuantitative

Solitons (polarons): Su-Schreiffer-Heeger (SSH) model

Page 21: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

2 “identical” bond alterations

Nomenclature: both are = “fully isomerized”: means: large segments of each chain type can form.

Page 22: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

What about this?

Some connection hereCan be neutral or charged

Page 23: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

This defect is a soliton.

Defect = “soliton”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

w

Page 24: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Neutral defect = “soliton”

w

A soliton is a defect site that separates the two “phases” of polyacetylene

“W” = the soliton “wall width”

Page 25: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

ES(

)

Neutral defect = “soliton”

w

Page 26: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

The minimum energy of the soliton ES is ALWAYS within the gap Egap!

ES(

)

Eg

ap

ES( )

Neutral defect = “soliton”

w

Page 27: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Another way to say this is that there is a localised electronic state (the soliton) at the center of the gapE

S(

)

Eg

ap

ES( )

Neutral defect = “soliton”

w

Page 28: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Plot of the probability distribution of the localised electronic state (the soliton) at the center of the gapE

S(

)

Neutral defect = “soliton”

w

Page 29: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Yet another way to say this is that “the soliton formation energy is less than that needed to create a band excitation”. That means an electron doesn’t go into the conduction band – it goes into the creation of a charged soliton

ES(

)

Eg

ap

ES( )

Neutral defect = “soliton”

w

Page 30: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

PART 01 of problem:A and B structures form

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

Page 31: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

“the soliton formation energy is less than that needed to create a band excitation”. That means an electron doesn’t go into the conduction band – it goes into the creation of a charged soliton

Neutral defect = “soliton”

w

PART 02 of problem:A and B structures are connected by a defect with its own local energy state in the middle of the bandgap.

Page 32: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

Energy of an electron in the soliton region solved using a Green’s function approach

ES(

)E

S(

)

Page 33: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

“A”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”c

H

c

H

c

H

c

H

c

H

c

H

c

H

c

H

“B”

Corresponding wavefunction for the electron in the soliton region

Page 34: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

a = 1.22 Angstroms = the x-spacing between CH groups

l is a “stretching parameter” that scales n/l

n = 0, ± 2, 4, 6,…..

(for odd n:0(n) = 0)

2

Page 35: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

A neutral soliton has an unpaired electron:

Page 36: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Two different transport situations defeated by soliton:

Situation 01 on left:This is in a single polyacetylene chain. A dopant added to polyacetylene chain, say a nitrogen atom N. Soliton becomes charged with one dopant-contributed electron. Charged soliton grabs an off-chain impurity = the parent phosphorous N+ ion at a distance of about 2 angstroms and becomes neutral. Everyone’s happy except the experimenter. Pinning results. Transport tanks.

Page 37: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Situation 02 on right:This is in a self-assembled monolayer of many aligned polyactylene chains. Experimenter liberates an electron from a neutral soliton using a laser. It’s supposed to go into the conduction band of that polyactylene chain. Actually it goes into charging up another soliton on an adjacent chain at distance of about 4 angstroms. The two solitons, the first + charged and the second - charged lock up. End of transport. The experimenter predicts it will take 20 years to finish his/her Ph.D. and tears hair out

Two different transport situations defeated by soliton: