douglas bryman university of british columbia

42
Douglas Bryman University of British Columbia 0 0 K O PIO :M easurem entof A Rare O pportunity L K Frascatti May 26, 2005

Upload: torgny

Post on 08-Feb-2016

46 views

Category:

Documents


2 download

DESCRIPTION

Douglas Bryman University of British Columbia. Frascatti May 26, 2005. Seeking Answers with Rare K Decays. Cartoon from Jewish Daily Forward (1920’s). Even more important : Probing the flavor structure of ‘new physics’. No tree level contributions Suppression by CKM hierarchy - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Douglas Bryman University of British Columbia

Douglas BrymanUniversity of British Columbia

00 KOPIO: Measurement of A Rare Opportunity

LK

Frascatti May 26, 2005

Page 2: Douglas Bryman University of British Columbia

Seeking Answers with Rare K Decays

Cartoon from Jewish Daily Forward (1920’s)

Page 3: Douglas Bryman University of British Columbia

Rare Decays play key roles for SM parameters.

• No tree level contributions• Suppression by CKM hierarchy• Dominated by short distance physics• Precise determination of CKM parameters• Dominated by direct CP violation in amplitude (K-K mixing effects negligible)

SM

BSM• Still dominated by short distance physics!• Still dominated by direct CP violation in amplitude.• Unique access to new CP-violating phases

0 0: LSpecial Case K i jq q

Even more important:Probing the flavor structure of ‘new physics’.

Page 4: Douglas Bryman University of British Columbia

0 0 in the SMLK

* 2 5t

2

20

s

2

5

4

td

4

0 0 10

10

10

11

( ):

( ) 1.8 10 ( )

4.1 10 3.0

( ) 1.0 10

Standard Mode =I l

0.6 10

I mV Vm A

I

=

mB

B

t

t

tL

Buras

x X x

x A

x A

x

K

K

2 117.8 1.2 10x

Page 5: Douglas Bryman University of British Columbia

0 0

0 0

7B( ) 5.9 10 (90% )

10 9

12

11

KTEV (FNAL) result:

KEK E391a:

KOPIO (BNL): Single

10 10 ??

10

Discovery B(" ( ") 5 10

event Sen

or

sitiv

5 ) for

it

>1

y

0

L

L

K x CL

K x

"SM" e0 vents

[ , ] 9Limit based on via iso 1.4 10spin : Grossman NirK x

0 0Experiments Seeking LK

LOI at JPARC

Page 6: Douglas Bryman University of British Columbia

0 0 0 3L

0 2L

0 0L

0 0 0 0L

10

10

0.93

0.36

0.1255

10Background suppression factor needed: 10

Mode Branching Ratio

K

K

K

K

0 0

Primary Backgrounds

Measurement

x

xe

LK

0.2105

Others

Page 7: Douglas Bryman University of British Columbia

The Challenge

• B(KL0) ~ 310-11 ;

need huge flux of K’s -> high rates• Weak Kinematic signature (2 particles missing)• Backgrounds with 0 up to 1010 times larger• Veto inefficiency on extra particles must be 10-4

• Neutrons dominate the beam– make 0 off residual gas – require high vacuum– halo must be very small– hermeticity requires photon veto in the beam

• Need convincing measurement of background

_

Page 8: Douglas Bryman University of British Columbia

The Secrets of Rare Decay Experiments

“BC”

Page 9: Douglas Bryman University of British Columbia

“BC”

Page 10: Douglas Bryman University of British Columbia

KOPIO Concepts

Page 11: Douglas Bryman University of British Columbia

• Maximize micro-bunched beam from the AGS• Measure everything! (Energy, Position, Angle, Time)• Eliminate extra charged particles or photons

* KOPIO: 0 inefficiency < 10-8

• Suppress backgrounds * Predict backgrounds from data: dual cuts* Use “Blind analysis” techniques * Test predictions “outside-the-box”

• Weight candidate events with S/N likelihood function

Concepts

Kaon Center of Mass Measurements

Page 12: Douglas Bryman University of British Columbia

-3

100 Tp/spill (Upgraded from present 70 Tp)~5.5 s spill, 2.3 s interspill period25 MHz micro-buching frequencyBunch width 200ps

Interbunch extinction 10

Proton Beam:

Kaon Beam42.5 degree tak

: e-off

8 L

angle Soft momentum spectrum [0.5,1.5 GeV]

3x10 K / spill, 8 % decay 10 GHz neutrons

Nominal AGS BeamParameters

40 ns between microbunches

=200 ps

Page 13: Douglas Bryman University of British Columbia

KOPIO Collaboration6 countries 19 institutions 80 scientists 10 Grad students

Arizona State University J.R. Comfort, J. Figgins

Brookhaven National Laboratory D. Beavis, I-H. Chiang, A. Etkin, J.W. Glenn, A. Hanson, D. Jaffe, D. Lazarus, K. Li, L. Littenberg, G. Redlinger, C. Scarlett, M. Sivertz, R. Strand

University of Cinncinnati K. Kinoshita

IHEP, Protvino G.Britvich, V. Burtovoy, S.Chernichenko, L, Landsberg, A. Lednev, V. Obraztsov, R.Rogalev, V.Semenov, M. Shapkin, I.Shein, A.Soldatov, N.Tyurin, V.Vassil'chenko, D. Vavilov, A.Yanovich

INR, Moscow A. Ivashkin, D.Ishuk, M. Khabibullin, A. Khotjanzev, Y. Kudenko, A. Levchenko, O. Mineev, N. Yershov and A.Vasiljev.

INFN-University of Perugia G. Anzivino, P. Cenci, E. Imbergamo, A. Nappi, M. Valdata

KEK M. Kobayashi

Kyoto University of Education R. Takashima

Kyoto University K. Misouchi, H. Morii, T. Nomura, N. Sasao, T. Sumida

Virginia Polytechnic Institute & State University M. Blecher, N. Graham, A. Hatzikoutelis

University of New Mexico B. Bassalleck, N. Bruner, D.E. Fields, J. Lowe, T.L. Thomas

University of Montreal J.-P. Martin

Stony Brook University N. Cartiglia, I. Christidi, M. Marx, P. Rumerio, D. Schamberger

TRIUMF P. Amaudruz, M. Barnes, E. Blackmore, J. Doornbos, P. Gumplinger, R. Henderson, N. Khan, A. Mitra, T. Numao, R. Poutissou, F. Retiere, A. Sher, G. Wait

University of British Columbia D. Bryman, M. Hasinoff, J. Ives

Tsinghua University S. Chen

University of Virginia E. Frlez, D. Pocanic

University of Zurich P. Robmann, P. Trüol, A. van der Schaaf, S. Scheu

Yale University G. Atoyan, S.K. Dhawan, V. Issakov, H. Kaspar, A. Poblaguev, M.E. Zeller

Page 14: Douglas Bryman University of British Columbia
Page 15: Douglas Bryman University of British Columbia

0

+ -Reconstruct first e e in "Preradiator" Point to K decay vertex in vacuum.

Primary detection mode: Secondary mode:2 photons covert in preradiator 1 photon in preradiator, 1 in BV

Page 16: Douglas Bryman University of British Columbia

KOPIO Signal and Background Estimates

The key features of the KOPIO approach have been established by measurements supported by simulations

• Micro-bunching and neutral beam design• Photon pointing, energy resolution• Vetoing – charged particles and photons

Page 17: Douglas Bryman University of British Columbia

-3

Bunch Width (Extinction) Resolution (250 MeV)

200 ps

Exp

25

ected P

mr (10

erform

)

E Resolut

anc

ion

e

t Resolution 90ps E

2.7% E ( )

Photon Veto Inefficiency E949

( )

Charged Particle Inefficiency

or better

//

GeV

GeV

-5 + -4 - 10 ( ),1 ( 0 )

Page 18: Douglas Bryman University of British Columbia

AGS Microbunching Beam testMicrobunch width Interbunch extinction

Studied the RF extraction mechanismproposed for KOPIO & measured a microbunch rms width of 244 ps --KOPIO requires <300 ps rms

Measured the inter-bunch extinction ratio(flux between bunches/within bunch).KOPIO requires ~ 10-3.

93 MHz 4.5 MHz

Page 19: Douglas Bryman University of British Columbia

Preradiator

64 Layers (4% X0/layer, 2.7 X0)256 Chambers288 Scintillator Plates (1200 m2)

150,000 Channels Readout

4m

Page 20: Douglas Bryman University of British Columbia

.

.

.

.

.

.

.

ExtrudedScintillator &WLS fibers

8 mm

e

e

Preradiator Angle Measurement of e e

Cathode strip drift chambers

.

.

.

.

.

.

.

.

.

Page 21: Douglas Bryman University of British Columbia

KOPIO Prototype Measurements – BNL LEGS Tagged Photon Beams

Preradiator Angular resolution: 25 mr at 250 MeV/c

Simulations agree with measurements.

Page 22: Douglas Bryman University of British Columbia

Shashlyk Calorimeter

APD

Shashlyk modules prototyped and tested in beams.Mechanical design in progress

Page 23: Douglas Bryman University of British Columbia

Simulation: Combined Energy Resolution

2.7%( )E GeV

Shashlyk Beam Measurements

Page 24: Douglas Bryman University of British Columbia

Every detector is a photon veto!

US Wall

Barrel veto

PreradiatorPrerad outer vetoCalorimeter vetoes in D4 sweeping magnet vetoes in DS vacuum pipe

Fine-sampling lead/scintillator-based shower counters of shashlyk & bar geometry. All thick enough so punch-through not an issue. All with sufficient efficiency

Page 25: Douglas Bryman University of British Columbia

E949 Single Photon Inefficiency Measurement

+

2

1

K2 Decay

Page 26: Douglas Bryman University of British Columbia

KOPIO PV Estimates and Simulations based on improved E949 Measurements supplemented by

FLUKA calculations

1 MeV Visible Energy Threshold

Page 27: Douglas Bryman University of British Columbia
Page 28: Douglas Bryman University of British Columbia

Catcher

Aerogel Counter

beam420 modules ofPb-Aerogel counter

Page 29: Douglas Bryman University of British Columbia

Catcher R&D

New Aerogel tilesModules prototyped and tested in beams.

Page 30: Douglas Bryman University of British Columbia

Charged Particle Veto in vacuum

Page 31: Douglas Bryman University of British Columbia

Charged Particle Vetoing

185 290

10-5

10-4

10-3

PSI Measurement (Preliminary)

Data

MC

0Example Background: L e K

Momentum (MeV/c)

Plastic Scintillator – backed up by vetoes!

Page 32: Douglas Bryman University of British Columbia

KL modes simulated for background Studies

Largest back-grounds

Page 33: Douglas Bryman University of British Columbia

Other Backgrounds• K+ contamination of beam: <0.001 of signal rate• KLK+e-, K-e+: ~ 0.001 of signal rate• nN N: negligible production from residual gas in decay

volume if pressure<10-6 Torr. Requirements on reconstructed ZV(KL) suppress rate from US wall to <0.01 of signal rate

• Anti-n: far smaller than neutron background• Hyperons: <10-5 of signal rate• Fake photons < 0.05 of signal rate assuming ~10-3 10-3

suppression from (vetoing) (/n discrimination)• Two KL giving single candidate: negligible due to vetos

• (KL X) (e ): ~0.01 of signal rate

• KS 10-4 of KL background rate

_

Page 34: Douglas Bryman University of British Columbia

Kinematic Separation of Signal and Backgrounds

Signal Backgrounds

*2Pion Kinetic Energy Squared (T ) vs. Ln (Missing Energy)

Page 35: Douglas Bryman University of British Columbia

Normalization Factors and Uncertainties

• Losses Rate dependent trigger effectsSignal “self-vetoing”Accidental vetoingMultiple decays/microbunch

• Additional Uncertainties Flux

• Possible Gains Improved photon efficiency

Page 36: Douglas Bryman University of British Columbia

Optimized S/B vs. Signal (SM Events)

0 0LStandard Model Results for B(K ) Events

S/B

UltimateReach!

Page 37: Douglas Bryman University of British Columbia

Discovering/Constraining New Physics

1st yr2nd yr

3rd yr

KOPIO Proposal

Page 38: Douglas Bryman University of British Columbia

KOPIO: SM Precision

1st yr

2nd yr3rd yr

KOPIO Proposal

Page 39: Douglas Bryman University of British Columbia

Branching Ratio Measurement Precision Estimates

0 0 11L

Ultimate precision at B(K ) 3.0 10Using probability likelihood method employing all observed events : 9% (Statistical) Precision on Im : 5%t

x

Page 40: Douglas Bryman University of British Columbia

KOPIO Operations Plan

• 2010 Test Run – partial detector• 2011 Engineering Run

“Discovery phase”: Sensitivity goal:~10-10

• 2012-16 Data Acquisition

Page 41: Douglas Bryman University of British Columbia

Other Potentially Accessible Physics

Page 42: Douglas Bryman University of British Columbia

Summary and Outlook

0 0 0 0L LK K

SM SM

Extraordinary discovery potential for non-SM physics:Unique connection with underlying short distance parameters.

5 discovery if Br < 0.6Br , > 1.7 BrClean access to the CP-viola

t

ting phases of new physics.In the absence of new physics, precision on Im : <7%;Access to very high mass scales!

0 0LK

New collaborators are welcome!