dosimetry and beam calibration - aapm.org

75
1 Dosimetry and beam calibration Hugo Palmans 1,2 and Stanislav Vatnitksy 1 1 EBG MedAustron GmbH, Wiener Neustadt, Austria 2 National Physical Laboratory, Teddington, UK

Upload: others

Post on 12-Mar-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

1

Dosimetry and beam calibration

Hugo Palmans1,2 and Stanislav Vatnitksy1

1 EBG MedAustron GmbH, Wiener Neustadt, Austria 2 National Physical Laboratory, Teddington, UK

2

Overview - Learning objectives

โ€ข What are potential primary standard instruments for proton dosimetry, how do they work specifically for protons.

โ€ข The principles of reference dosimetry using calibrated ionization chambers

โ€ข Dosimetry protocols and data

โ€ข Reference dosimetry of small and scanned beams

โ€ข Instruments for micro- and nano-dosimetry

3

Calorimetry

Radiation energy turns into heat

heat is tiny, but measurable โ€“ our primary standards for

absorbed dose are calorimeters

4

๐ท๐‘š๐‘’๐‘‘ = ๐‘๐‘š๐‘’๐‘‘โˆ†๐‘‡

Calorimetry: principle

C

(j.kg-1.k-1)

T/D

(mk.Gy-1)

(m2.s-1)

water 4182 0.24 1.44x10-7

graphite 704 1.42 0.80x10-4

๐ท๐‘š๐‘’๐‘‘ = ๐‘๐‘š๐‘’๐‘‘โˆ†๐‘‡1

1 โˆ’ โ„Žฮ ๐‘˜๐‘–

๐œ•๐‘‡

๐œ•๐‘ก= ๐›ผ๐›ป2๐‘‡ +

๐œ•๐ท

๐‘๐œ•๐‘ก

5

Water calorimeter โ€“ phantom & enclosure

Cooling fluid

Air 4ยบC

Beam

6

Water calorimetry - heat conduction

Total

Field

Cylinder

Probe

photons protons

7

Water calorimetry - scanned protons

Sassowsky and Pedroni (2005) Phys Med Biol. 50:5381-400

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

time / s

tem

pera

ture

in

cre

as

e /

mK

heat source / arbitrary units

temperature increase

8

Water calorimetry - scanned protons

Gagnebin et al. (2010) Nucl Instrum Meth B 268:524-528

9

Water calorimeter โ€“ chemical heat defect

080915

H2O+ e

- H2O*

H3O+ e

-aq Hโ€ข OHโ€ข

+ (10-7s)

H2 H2O2 OH-

(10-12 s)

10

Water calorimetry / chemical heat defect protons Experiment Simulations

H20/Ar

H20/H2

H20+NaCOOH/O2

0,0

1,0

2,0

3,0

LET (keV.mm-1)

G (

100 e

V-1

)

10-1 100 101 102

H+ OHโ€ข

eยฏaq

Hโ€ข

OHยฏ

H2

HO2

H2O2

60Co (100 MeV) (1MeV) protons

0,00

1,00

2,00

3,00

4,00

0,0 0,2 0,4 0,6 0,8 1,0 t (s)

G (

100eV

-1) (-) H2O

H2 Hโ€ข H2O2

H+ OHโ€ข e-

aq

OH-

11

Water calorimetry / chemical heat defect protons

0.98

1.00

1.02

1.04

1.06

1.08

0 200 400 600

D acc / Gy

D ca

l / D ca

l , ss

0 200 400

H 2 O/H 2

H 2 O/ Ar

NaCOOH /O 2

85 MeV protons

60 Co

H 2 O/H 2

H 2 O/ Ar

0.98

1.00

1.02

1.04

1.06

1.08

0 200 400 600

D acc / Gy

D ca

l / D ca

l , ss

0 200 400

H 2 O/H 2

H 2 O/ Ar

NaCOOH /O 2

85 MeV protons

60 Co

H 2 O/H 2

H 2 O/ Ar

Palmans et al (1996) Med. Phys. 23:643-50

12

Water calorimetry / chemical heat defect ions

Brede et al. 2006 Phys. Med. Biol. 51:3667-82

-1

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140

LET / keV mm-1

ch

em

ical

he

at

de

fec

t /

%

p d

He C

13

Chemical heat defect โ€“ scanned beams Sassowsky and Pedroni (2005) Phys Med Biol. 50:5381-400

14

Water calorimetry - uncertainty

080915

Seuntjens and Duane 2009 Metrologia 46:S39

15

Graphite calorimetry

080915

15

Beam

DC Dw

16

Palmans et al (2004) Phys Med Biol 49:3737

Graphite calorimetry

NPL primary standard level proton calorimeter under development:

Core

Inner jacket

Outer jacket

Annular PCB

Graphite vacuum body

17

Graphite calorimetry

Seuntjens and Duane (2009) Metrologia 46:S39-58

18

๐ท๐‘š =๐ธ๐‘š

๐‘š๐‘š ๐‘˜

๐ท๐‘š = ๐‘๐‘,๐‘š โˆ†๐‘‡ ๐‘˜

Quasi-adiabatic mode

Isothermal mode

Graphite calorimetry โ€“ operation modes

19

Graphite โ€“ heat defect?

Schulz et al (1990) Phys. Med. Biol. 35:1563-74

graphite:

kHD = 1.004 ยฑ 0.003

A150:

kHD = 1.042 ยฑ 0.004

Dose conversion graphite calorimetry

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0 50 100 150 200 250

proton energy / MeV

(L/

)w,g

or

(<E

>

/A)w

,g

Stopping power ratio

Total non-elastic absorption

Emitted protons

Emitted deuterons Emitted alpha particles

?

w

g

ggww

SzDzD

)()( kfl

w

g

ggww

SzDzD

)()(

21

Dose conversion graphite calorimetry โ€“ stopping power ratio

1.110

1.115

1.120

1.125

1.130

0.0 0.5 1.0 1.5 2.0 2.5 3.0

z w-eq / g cm-2

sw

,g

0.0 5.0 10.0 15.0 20.0 25.0

ICRU49

Geant4

Burns & Paul

22

Dose conversion graphite calorimetry โ€“ fluence correction factor

0.96

0.98

1.00

1.02

0.0 0.5 1.0 1.5 2.0 2.5 3.0

z w-eq / g cm-2

kfl

0.96

0.98

1.00

1.02

1.04

1.06

0.0 5.0 10.0 15.0 20.0 25.0

60 MeV

200 MeV

23

Step aside โ€“ kfl other low-Z materials

Geant4 simulations

24

Graphite calorimetry โ€“ heat transfer within core

24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

100 110 120 130 140

tem

peratu

re r

ise /

mK

time / s

thermistor

1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

100 110 120 130 140

tem

peratu

re r

ise /

mK

time / s

thermistor

1

1.0

1.2

1.4

1.6

1.8

2.0

104 105 106 107 108

tem

peratu

re r

ise /

mK

time / s

thermistor

1thermistor

2

1.0

1.2

1.4

1.6

1.8

2.0

104 105 106 107 108

tem

peratu

re r

ise /

mK

time / s

thermistor 1

thermistor 2

25

Graphite calorimetry โ€“ uncertainty Seuntjens and Duane 2009 Metrologia 46:S39

sw,air 1.0

kfl 0.5

Dw 1.2

(remember water calorimetry: 0.4%)

26

Absolute dosimetry โ€“ Fluence based methods

N protons A

med

med

S

A

N D

27

Absolute dosimetry โ€“ Faraday cup

guard

collecting electrode housing entrance window

winding

N protons

(e.g. Pedroni et al 2005, Phys Med Biol 50:541-61, Grusell et al 1995, Phys Med Biol 40:1831-40)

B

28

Absolute dosimetry โ€“ Activation measurement

12C(p,pn)11C reaction

4p bg-coincidence counting

(Nichoporov 2003, Med Phys 30:972-8)

29

Graphite calorimetry โ€“ dose-area-product

Large area ion chamber: pdd(z)

Faraday cup: N/MU

S/ฯ: DAP(z0 or zref)

Integrate lateral dose profiles over all spots

Calorimeter: DAP(zref)

30

Dose determination with ion chamber

Q: charge produced in the air of the chamber W: mean energy required to produce an ion-pair in air Unfortunately, for commercially available chambers, the volume V is not known with the necessary accuracy (would otherwise be a primary standard!). We have to rely on methods other than โ€œfirst principlesโ€, which involve the use of ion chamber calibration factors (courtesy Pedro Andreo)

p s D D air w, air w

Wair m

Q D

air

air Wair

V

Q

air

31

Simple absorbed dose protocol

๐ท๐‘ค,๐‘„ = ๐‘€๐‘„๐‘๐ท,๐‘ค,๐‘„

But we have ๐‘๐ท,๐‘ค,๐‘„0with ๐‘„0 โ‰  ๐‘„ โ†’

๐ท๐‘ค,๐‘„ = ๐‘€๐‘„๐‘๐ท,๐‘ค,๐‘„0๐‘˜๐‘„,๐‘„0

This is formalism of IAEA TRS-398 and ICRU Report 78

32

Derivation ๐‘˜๐‘„,๐‘„0

๐ท๐‘ค,๐‘„0 = ๐ท๐‘Ž๐‘–๐‘Ÿ,๐‘„0 ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0

๐ท๐‘ค,๐‘„ = ๐ท๐‘Ž๐‘–๐‘Ÿ,๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

33

Derivation ๐‘˜๐‘„,๐‘„0

๐ท๐‘ค,๐‘„0 = ๐ท๐‘Ž๐‘–๐‘Ÿ,๐‘„0 ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0

๐ท๐‘ค,๐‘„ = ๐ท๐‘Ž๐‘–๐‘Ÿ,๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

๐ท๐‘ค,๐‘„0 = ๐‘€๐‘„0๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„0 ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0 with ๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„0 =

๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„0

๐œŒ๐‘Ž๐‘–๐‘Ÿ๐‘‰

๐ท๐‘ค,๐‘„ = ๐‘€๐‘„๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„๐‘๐‘„ with ๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„ =

๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐œŒ๐‘Ž๐‘–๐‘Ÿ๐‘‰

๐‘˜๐‘„,๐‘„0 =๐‘๐ท,๐‘ค,๐‘„

๐‘๐ท,๐‘ค,๐‘„0=

๐ท๐‘ค,๐‘„ ๐‘€๐‘„

๐ท๐‘ค,๐‘„0 ๐‘€๐‘„0

=๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„0 ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0

๐‘˜๐‘„,๐‘„0 =๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„0 ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0

๐‘๐ท,๐‘Ž๐‘–๐‘Ÿ,๐‘„0 =๐‘๐ท,๐‘ค,๐‘„0

๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0

note that in AAPM notation ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ =๐ฟ

๐œŒ ๐‘Ž๐‘–๐‘Ÿ

๐‘ค

34

Factorisation

๐ท๐‘ค,๐‘„ = ๐‘€๐‘„

1

๐œŒ๐‘Ž๐‘–๐‘Ÿ๐‘‰๐‘๐‘Ž๐‘ฃ๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

Helpful to compare codes of practice:

e.g. TRS-398: 1

๐œŒair๐‘‰cav=

๐‘๐ท,๐‘ค,๐‘„0๐‘Šair ๐‘„0 ๐‘ ๐‘ค,air ๐‘„0

๐‘๐‘„0

ICRU 59: 1

๐œŒair๐‘‰cav=

๐‘๐พ(1โˆ’๐‘”)๐ดwall๐ดion

๐‘Šair ๐‘๐‘ wall,๐‘” ๐œ‡en ๐œŒ air,wall๐พhum

35

Wair / protons

TRS-398

36

Wair / protons

TRS-398

37

Ion chambers : water to air stopping power ratio

1.125

1.130

1.135

1.140

1.145

1.150

1.155

1.160

0 50 100 150 200 250

Eeff (MeV)

(S/

) air

Janni (1982)

ICRU report 49 (1993)

Medin and Andreo (1997)

w

38

Ion chambers โ€“ perturbation correction factors for proton beams

Overall perturbation correction factor

pQ = 1 assumed in IAEA TRS-398 and ICRU 78

Gradient correction factors

pdis = 1 assumed in SOBP or plateau

Secondary electron correction factors

ignored in IAEA TRS-398 and ICRU 78

39

Gradient corrections for cylindrical ionization chambers

Palmans 2001, Phys Med Biol. 46:1187-1204

40

Ion chambers โ€“ cavity theory for pcav protons

SA d-electrons

med

air

air med

S D D

med

air

air

S D

cav,e p

med

air

med

air

e cav

S S p

SA

,

41

Compared with Medin and Andreo (1997)

0.998

1.000

1.002

1.004

1.006

1.008

0.5 1.0 1.5 2.0 2.5

log(E eff )

p ca

v o

r s

w,a

ir

cavity model monoE

Medin and Andreo (1997)

plateau

0.97.z 0

42

Ion chambers โ€“ cavity theory for pwall d-electrons SA

protons

(cfr. Nahum, in Dosimetry in Radiotherapy. Vienna: IAEA, 1988: for electron beams.)

med

air

air med

S D D

med

wall

S wall

med

air

air

S D

wall,e p

SA

med

air

wall

air

wall,e p S

SA

med

wall

S S

SA

43

Secondary electron -> pwall and pcel

Palmans 2011, IDOS

44

Ionization chamber perturbations

0.995

1.000

1.005

1.010

1.015

1.020

0 5 10 15

Chamber #

D

w,N

E2

57

1

/D

w

,Ch

C-C &PTW30002

A150-Al &NE2581

PMMA-Al &PTW30001

Nylon66-Al

IC18

ExrT2

45

In summary: ๐‘˜๐‘„,๐‘„0 โ€“ ๐‘„0 is 60Co

Palmans 2012, Dosimetry, In: Proton Therapy Physics / Paganetti

46

In summary: ๐‘˜๐‘„,๐‘„0 โ€“ ๐‘„0 is a proton beam

for ALL chambers !!!

47

Influence quantities

Pressure, temperature, humidity

Polarity effects

Ion recombination

48

Initial recombination

E

49

Volume recombination

50

Volume recombination โ€“ continuous radiation โ€“ plane-parallel chamber

-> 2-voltage: quadratic

๐‘˜๐‘  =

๐‘‰1๐‘‰2

2โˆ’1

๐‘‰1๐‘‰2

2โˆ’๐‘€1๐‘€2

+ -

0 x d

dx

+ -

0 x d

dx

๐‘˜๐‘  = 1 +๐‘š2๐‘”

๐‘‰2๐‘–๐‘ ๐‘Ž๐‘ก

51

Volume recombination โ€“ pulsed radiation โ€“ plane-parallel chamber

-> 2-voltage: linear

k+V/d

kโ€“V/d

t=T1

k+V/d

kโ€“V/d

t=T2

k+V/d

kโ€“V/d

t=T3

k+V/d

kโ€“V/d

t=T

0 d

t=0

- +

๐‘˜๐‘  =๐‘ข

๐‘™๐‘› 1 + ๐‘ข

โ‰ˆ 1 +๐‘ข

2

๐‘ข =๐›ผ

๐‘’ ๐‘˜โˆ’ + ๐‘˜+๐‘Ÿ๐‘‘2

๐‘‰

52

Ion recombination in ionization chambers

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

Time (in 1/8 revolutions)

Do

se

ra

te (

Gy s

-1)

surface

z = 23 mmz = 20 mm

z = 10 mm

1.000

1.010

1.020

1.030

1.040

1.050

1.060

1.070

1.080

0.0 1.0 2.0 3.0

IV or IV,eff (nA)

I V/I

V/n

(d)

0.998

1.000

1.002

1.004

1.006

1.008

1.010

1.012

1.014

1.016

1.018

Equ

ation

(1)

Pulse

d (B

oag)

Mar

kus 1

Mar

kus 2

pio

n

53

Ion recombination for time-dependent spatial ionisation distribution in cavity

Similar as for IMRT deliveries [4], in the near saturation regime:

๐‘๐‘–๐‘œ๐‘› =๐‘–๐‘ ๐‘Ž๐‘ก๐‘–๐‘‰

โ‰ˆ 1 +๐ด

๐‘‰+๐ต

๐‘‰2 ๐œ† ๐‘ ๐‘Ž๐‘ก

2๐‘ง, ๐‘ก ๐‘‘๐‘ง๐‘‘๐‘ก

๐œ† ๐‘ ๐‘Ž๐‘ก ๐‘ง, ๐‘ก ๐‘‘๐‘ง๐‘‘๐‘ก

where V is the polarizing voltage, ๐œ† ๐‘ ๐‘Ž๐‘ก ๐‘ง is the linear ionization rate density, A is an initial recombination parameter and B a volume recombination parameter.

54

Cumulative recombination patterns and voltage-dependence continuous

pulsed

250 ฮผs pulse

55

Volume recombination vs pulse length

56

Volume recombination vs pulse length

57

Volume recombination vs pulse length

๐‘˜๐‘–๐‘œ๐‘› = 1 + ๐‘Ž๐‘‰๐‘’๐‘ฅ๐‘ โˆ’0.0023๐‘‡๐‘๐‘ข๐‘™๐‘ ๐‘’

๐‘‰2

58

Beam monitor calibration of scanned beams

59

Reference dosimetry scanned beams

Gillin et al 2010

Med Phys 37:154

๐ท๐ด๐‘ƒ๐‘ค,๐‘„๐ต๐‘ƒ =๐‘€๐‘„

๐ต๐‘ƒ๐‘๐ท๐ด๐‘ƒ,๐‘ค,๐‘„0๐ต๐‘ƒ ฮบ๐‘„,๐‘„0

๐ต๐‘ƒ

๐‘=๐ท๐ด๐‘ƒ๐‘ค,๐‘„

โˆž (๐‘† ฯ )๐‘ค

=๐ท๐ด๐‘ƒ๐‘ค,๐‘„

๐ต๐‘ƒ (๐‘† ฯ )๐‘ค

ร— ๐ถ๐น

60

Reference dosimetry scanned beams

Gillin et al 2010

Med Phys 37:154

๐ท๐ด๐‘ƒ๐‘ค,๐‘„๐ต๐‘ƒ =๐‘€๐‘„

๐ต๐‘ƒ๐‘๐ท๐ด๐‘ƒ,๐‘ค,๐‘„0๐ต๐‘ƒ ฮบ๐‘„,๐‘„0

๐ต๐‘ƒ

๐‘=๐ท๐ด๐‘ƒ๐‘ค,๐‘„

โˆž (๐‘† ฯ )๐‘ค

=๐ท๐ด๐‘ƒ๐‘ค,๐‘„

๐ต๐‘ƒ (๐‘† ฯ )๐‘ค

ร— ๐ถ๐น

61

Large-area chamber โ€“ cross calibration

๐‘DAP,๐‘ค,๐‘„cross =๐‘€๐‘„cross๐‘๐ท,๐‘ค,๐‘„0๐‘˜๐‘„cross,๐‘„0 REF

๐‘€๐‘„cross BP

ร— OAR ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐ด

62

Calculation ฮบ๐‘„,๐‘„0

ฮบ๐‘„,๐‘„0 =๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„0 ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„0๐‘๐‘„0

Main problem is ๐‘๐‘„0

Same assumptions for photon and electrons as pp chambers

63

Reference dosimetry scanned beams

Jaekel et al Phys Med

Biol2004

ฮ”X

ฮ”Y

๐ท๐‘ค,๐‘„๐‘๐‘ฆ๐‘™

=๐‘€๐‘„๐‘๐‘ฆ๐‘™๐‘๐ท,๐‘ค,๐‘„0๐‘๐‘ฆ๐‘™

๐‘˜๐‘„,๐‘„0๐‘๐‘ฆ๐‘™

๐‘=๐ท๐‘ค,๐‘„๐‘๐‘ฆ๐‘™ฮ”Xฮ”Y

(๐‘† ฯ )๐‘ค

64

Uncertainty of DAPw determination Contribution BP xcal in 60Co BP xcal in 200

MeVp

FA cal in

60Co

๐‘๐ท,๐‘ค,๐‘„0๐น๐ด 0.55 0.55 0.55

๐‘˜๐‘„,๐‘„0๐น๐ด 1.70

uniformity โˆ†๐‘ฅโˆ†๐‘ฆ 0.50

๐‘˜๐‘„๐‘๐‘Ÿ๐‘œ๐‘ ๐‘ ,๐‘„0๐น๐ด 1.70

๐œ…๐‘„,๐‘„๐‘๐‘Ÿ๐‘œ๐‘ ๐‘ ๐ต๐‘ƒ 1.60 0.10

๐‘˜๐‘–๐‘œ๐‘› ๐‘„๐น๐ด 0.50

๐ท๐ด๐‘ƒ๐‘ค,๐‘„โˆž 1.7-1.8 1.8-1.9 2.0

๐‘† ๐œŒ ๐‘ค 2.0 2.0 2.0

๐‘ =๐ท๐ด๐‘ƒ๐‘ค,๐‘„

โˆž

๐‘† ๐œŒ ๐‘ค

2.6-2.7 2.7 2.8

Microdosimetry

66

Mini-TEPC

about 3mm

Davide Moro, INFN-LNL

Cathode (A-150 plastic)

Rexoliteยฎ

Sensitive Volume: 0.9x0.9 mm2

Gas Out

Gas In

Aluminium

Rollet et al 2010, Rad Prot Dosim 143:445

62 MeVp

67

Si-microtelescope

500 ยตm 14 ยตm

9 ยตm

E stage

Guard~2 ฮผm

โˆ†E element

500 ยตm 14 ยตm

9 ยตm

E stage

Guard~2 ฮผm

โˆ†E element

Andrea Pola, Politecnico di Milano

1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

silicon telescope 21.8 mm

cylindrical TEPC 22 mm

(threshold)

cylindrical TEPC 22 mm

(no threshold)

y d

(y)

y (keV mm-1)

62 MeVp distal edge

Agosteo et al 2010 Radiat Meas 45:1284

68

Microcalorimetry

Sebastian Galer PhD: Hao et al 2003 IEEE TAS

13:622-5:

103

102

101

100

10-

1

10-

2

10-

3

10-

4

Nanodosimetry

70

Ion counter Shchemelinin et al 1997 In: Proc MicroDos 12 PTB: Hilgers et al Rad Prot Dosim 126:467 LLU: Schulte et al 2008 Z Med Phys 18:286

71

Schulte et al 2011 AIP Conf Proc 1345:249

72

Jet Counter Bantsar et al 2004 Rad Prot Dosim 110:845 Schulte et al 2011 AIP Conf Proc 1345:249

73

StarTrack - INFN

Conte et al 2010, Radiat Meas 45:1213

74

Conclusions โ€“ take home messages โ€ข Calorimeters and calibrated ionization chambers

established for proton beam reference dosimetry; main uncertainties:

-water calorimetry: heat defect

- graphite calorimetry: conversion ๐ท๐‘” โ†’ ๐ท๐‘ค

- ionometry: product ๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„ + 60Co data

โ€ข Factorisation ๐ท๐‘ค,๐‘„ = ๐‘€๐‘„1

๐œŒ๐‘Ž๐‘–๐‘Ÿ๐‘‰๐‘๐‘Ž๐‘ฃ๐‘Š๐‘Ž๐‘–๐‘Ÿ ๐‘„ ๐‘ ๐‘ค,๐‘Ž๐‘–๐‘Ÿ ๐‘„

๐‘๐‘„

allows easy comparison between codes of practice

โ€ข Advantage of calibrations in proton beams

โ€ข Issues scanned beams (DAP vs N, ion recombination)

โ€ข Some examples microdosimetry&nanodosimety instruments

75

Reading

C. P. Karger, O. Jรคkel, H. Palmans and T. Kanai, โ€œDosimetry for Ion Beam Radiotherapy,โ€ Phys. Med. Biol. 55(21) R193-R234, 2010

H. Palmans, A. Kacperek and O. Jรคkel, โ€œHadron dosimetryโ€ In: Clinical Dosimetry Measurements in Radiotherapy (AAPM 2009 Summer School), Ed. D. W. O. Rogers and J. Cygler, (Madison WI, USA: Medical Physics Publishing), 2009, pp. 669-722

H. Palmans, โ€œDosimetry,โ€ In: Proton Therapy Physics, Ed. H. Paganetti (London: Taylor & Francis), 2011, pp. 191-219

H. Palmans, โ€œMonte Carlo for proton and ion beam dosimetry,โ€ In: Monte Carlo Applications in Radiation Therapy, Ed. F. Verhaegen and J Seco, (London: Taylor & Francis), 2013, pp. 185-199