differential amplifier cont.ese319/lecture_notes/lec_13_diffampl-ii_13.pdfdifferential amplifier...

22
ESE319 Introduction to Microelectronics 1 Kenneth R. Laker, update KRL 18Oct13 Differential Amplifier Cont. Differential amplifier with emitter resistors Single-ended output Common mode rejection ratio (CMRR)

Upload: others

Post on 25-Apr-2020

28 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

1Kenneth R. Laker, update KRL 18Oct13

Differential Amplifier Cont.● Differential amplifier with emitter resistors● Single-ended output● Common mode rejection ratio (CMRR)

Page 2: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

2Kenneth R. Laker, update KRL 18Oct13

VCC

CM DC

Quick Review

VEE

DC Bias is ALWAYS COMMON MODE

VEE

= - VCC

RC1=RC2=RC=V CC−V C

I CM

2

VC

VCI

B IB

RB1=RB2=RB=.large

Page 3: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

3Kenneth R. Laker, update KRL 18Oct13

Quick Review

Iff balancedCMRRdif =

Avdm

Avcm=∞

Zin-dm Z

in-cm

CMRRs−e=Avdm1

Avcm1=

r o

r e

Page 4: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

4Kenneth R. Laker, update KRL 18Oct13

Differential Amplifier With Emitter Resistors

Balance assumed:

RC1=RC2=RC

RE1=RE2=RE

RB1=RB2=RB

Q1=Q2 Matched Pair

IB1

IE1 I

E2

IB2

IC1 I

C2

RB1

RC1 RC2

RB2RE1 RE2

I

What is the purpose for RE1

and RE2

?

Page 5: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

5Kenneth R. Laker, update KRL 18Oct13

Differential Mode Analysis (vic = 0)

ied

ib

ib

ic

ie

ie

vid /2

vo-dm

+-

vid /2

RC RC

RE RE

re

ro

β ibdβibdre

ied

ibd ibdic

icd icd

Balanced circuit

Z i n−dm=21reRE

Avdm=vodm

v id≈

RC

REr e

Avdm1=vo1d

vid=

−RC

2 1RE≈

−RC

2REre

Avdm2=vo2d

v id=

RC

21RE≈

RC

2REre

Differential DM Voltage gain:

Single-Ended DM Voltage gains:

NOTE:1. ro for Q1 and Q2 are ignored.2. Both RB's are ignored.

Page 6: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

6Kenneth R. Laker, update KRL 18Oct13

Common Mode Analysis (vid = 0)

ibc

icc

icc

ie1

ie2

vic

vocm

+-

iic/2

RCRC

RE RE

ro

βibcβibc rere

i ic /2=ibc

Balanced circuit

Z i n−cm=1 reRE

2r o≈1 ro

Differential CM Voltage gain:

Avcm=vocm

vic=0

Single-Ended CM Voltage gains:

Avcm1=vo1c

v ic=−

RC

1reRE2 r 0≈−

RC

2 ro

Avcm2=vo2c

vic=Avcm1

NOTE:1. ro for Q1 and Q2 are ignored.2. Both RB's are ignored.

ibc

iic/2

Page 7: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

7Kenneth R. Laker, update KRL 18Oct13

Common Mode Rejection RatioCommon mode rejection ratio is the magnitude ratio of thedifferential mode gain over the common mode gain expressed in dB:

CMRR=20 log10∣Avdm1 ,2∣∣Avcm1,2∣

CMRR≈20 log10 RC

2 REr e∗2 ro

RC CMRRdb≈20 log10 ro

REr e

Avcm2=Avcm1≈−RC

2 ro

Avdm2=−Avdm1≈RC

2 REr e

Single-Ended:

Differential:

Avdm≈RC

REre

Single-Ended:

Differential:Avcm=0

Single-Ended:

Differential: CMRRdb=20 log10∣Avdm∣∣Avcm∣=∞

(iff balanced) (iff balanced)

Page 8: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

8Kenneth R. Laker, update KRL 18Oct13

ib1

ib2

ic1

ic2

ie1

ie2

vic

vocm

+-

Let RC2

> RC1

, s.t. RC1

= RC & RC2=RCRC

Avcm1=vo1c

vic≈−

RC

reRE2 r0≈−

RC

2 ro

Avcm2=vo2c

vic≈−

RCRC

2r0

.=−RC

2 r o1

RC

RC

Avcm1≈−RC

2 ro≠ Avcm2

Avcm=Avcm2−Avcm1=−RC

2 ro

RC

RC≠ 0

ie2cie1c

RC1 RC2

RE RE

ro

βib2re

βib1re

Hence!

What if the Diff Amp isn't Perfectly Balanced?

where ΔRC << RC

iic/2 iic/2

Differential Output CM Gain

Page 9: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

9Kenneth R. Laker, update KRL 18Oct13

What if the Diff Amp isn't Perfectly Balanced?

ib1

ib2

ic1

ic2

ie1

ie2

vic

vocm

+-

ie2cie1c

RC1 RC2

RE RE

ro

βib2re

βib1re

iic/2 iic/2

Let RC1

= RC and RC2=RCRC

Avcm unbal =Avcm2−Avcm1=−RC

2 r o

RC

RC

From previous slide

Avdm unbal =Avdm2−Avdm1≈RC

RC

2RE

≈RC

RE

Avdm1≈−RC

2REreAvdm2≈

−RCRC 2REre

CMRRdb=20 log10 ∣Avdm∣∣Avcmunbal ∣=20 log10 2 ro

REre

1RC /RC

≠∞

Avdm unbal ≈Avdm bal =AvdmDifferential Output

Page 10: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

10Kenneth R. Laker, update KRL 18Oct13

What if the Diff Amp isn't Perfectly Balanced?Single-ended outputs

Avdm2 bal =−Avdm1bal ≈RC

2 REr e

Avdm2 unbal ≠−Avdm2bal ≈RCRC

2REre≈

RC

2 REreAvdm1unbal =−Avdm1bal

Avcm2 bal =Avcm1 bal ≈−RC

2 ro

Avcm2 unbal ≠ Avcm2 bal ≈−RC RC

2 ro≈−

RC

2 roAvcm1unbal =−Avcm1bal

CMRRdbunbal ≈CMRRdbbal =20 log10 r o

REre

Page 11: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

11Kenneth R. Laker, update KRL 18Oct13

Differential mode (balanced) Z in−dm=vid

ibd=12r eRE

Common mode (balanced) Z in−cm=v ic

2 ibc=1

reRE

2r0

Avdm=vodm

vid≈

RC

REr eAvdm2=

vo2d

v id=−Avdm1≈

RC

2REr e

Avcm1=vo1c

vic=Avcm2≈−

RC

2 r o

CMRRdb=Avdm1 ,2

Avcm1 ,2≈20 log10 ro

reRE

Avcmunbal =vocm

vic≈

RC

2 ro

RC

RC

Single-ended-output (balanced)

CMRRdb=20 log102ro

rERE

1RC /RC

Differential-output

if Unbalanced due to RC1

≠ RC2

CMRR=∞ i.f.f. Balanced

Avcm=vocm

vic=0 i.f.f. Balanced

Summary

Avdm unbal ≈Avdm bal =Avdm

Unbalanced

Page 12: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

12Kenneth R. Laker, update KRL 18Oct13

Differential Amplifier Design● Design with ideal emitter current source bias.● Differential and common mode gain results● Add finite output resistance r

o to ideal current source.

● Replace ideal current source & ro with current mirror.

Page 13: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

13Kenneth R. Laker, update KRL 18Oct13

Quick Amplifier Design

Neglecting IB: let I

B = 0

IC

IC

IE

IE

I C=I E=5mA⇒V Rc=I C

RC=5V

Avdm1=vo1d

vid≈

−RC

2REre=−4.76

+- vo

vid /2

vicSingle-ended voltage gains w.r.t. vi\d /2and vic (for Q2 side):

Avcm1=vo1c

vic≈−

RC

2 ro=0

ideal current source, i.e. ro = ∞

V Rc=5V ⇒V C=V CC−V Rc

=7V

vid /2

VC

I10 mA

By inspection DC bias (vi-dm = vi-cm = 0) for Q1 & Q2 is common mode:

RC RC

RE RERBRB

VC V BE=0.7V

I E=I2=5mA V C=7V

re=V T

I E≈5

Page 14: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

14Kenneth R. Laker, update KRL 18Oct13

Differential- Mode AC Gain Results

“Scope” output B at collectorof Q1, i.e. .

Input voltage 0.14 V

peak arg (0o) at f = 1 kHz.

Output voltage 1.33 V

peak arg (180o).

vB=vo1d

v A=vid

vB=vo1d

Measured gain:

Avdm1=v B

v A=

vo1d

vid=−0.664V0.141V

=−4.7≈−RC

2 REr e

vB=vo1dvA=v id

500 mV/Div

-664.2000 mV141.2799 mV

Page 15: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

15Kenneth R. Laker, update KRL 18Oct13

Common Mode AC Results

Input voltage 0.14 V

peak arg (0o) at f = 1 kHz.

Since I is an ideal currentsource => .

“Scope” output B at collectorof Q1, i.e. .vB=vo1c=0V

v A=vic

vA=v icvB=vo1c

ro=∞ Avcm1=0

CMRRdb=20 log10∣Avdm1∣∣Avcm1∣

=20 log10∣4.70 ∣=∞

Avcm1=v B

v A=

vo1c

vic= −0V0.14V

=0

Page 16: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

16Kenneth R. Laker, update KRL 18Oct13

Common Mode Results - Add ro to Model

Avcm1=vo1c

vic≈−

RC

2 r o=

−1200

=−0.005

Avdm1=vo1d

vid≈

−RC

2REre=−4.76

vid /2 vid /2

vic insert finite ro

to model non-ideal current source

10 mAI

CMRRdb=20 log10∣Avdm1

Avcm1∣=59.6 dB

Theory

RC RC

RE RERB

RB

ro

Page 17: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

17Kenneth R. Laker, update KRL 18Oct13

Common Mode Results - Add Finite roro=100 k

Output voltage 0.007 V

peak arg (180o).

Avcm1≈−0.0071.4

=−0.005

CMRRdb≈20 log104.70.005

≈59.5dB

“Scope” output B at collectorof Q1, i.e. .

Input voltage 1.4 V

peak arg (0o) at f = 1 kHz.

vB=vo1cm

v A=vic

vB=vo1cm

vB=vo1cvA=v ic

Avdm1=−4.7 (unchanged)

Page 18: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

18Kenneth R. Laker, update KRL 18Oct13

Simulation with 10 mA Current Mirror

I C3≈10mA

I REF=V CC−V BE4−V EE

Rref≈10mA

Matched 2N2222 BJTs(Q1, Q2, Q3 and Q4).

vi-cm

I C3≈10mA

I C1≈5mA I C2≈5mA

⇒ I C1= I C2≈5mA

I REF=10mA

V C1=7V

Rref =2.33k

RC RC

RE RERBRB

Rref

VBE4

Page 19: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

19Kenneth R. Laker, update KRL 18Oct13

Simulation with 10 mA Current Mirror cont.vA=v ic

vB=vo1c

Input voltage 1.4 V

peak arg (0o) at f = 1 kHz.

v A=vic

Output voltage 60 mV

peak arg (180o).

vB=vo1c

Avcm1≈−RC

2 ro≈−0.06

1.4=−0.043

Avcm1≈−0.043

Infer ro with RC=1 k

ro=−RC

2 Avcm1=1k 0.086

=11.67 k

Infer VA with ro=11.67 k

ro=V A

I C⇒V A=ro I C=58.3V

Page 20: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

20Kenneth R. Laker, update KRL 18Oct13

Simulation with 10 mA CM - Bode Plots

10 mA current: Avcm1(dB) + 3 dB frequency

f B≈9.7MHz

Avcm1db f =1 kHz ≈20 log10RC

2 ro≈20 log10

0.061.4

=−27.3 dB

Avcm1db f =9.7MHz =−24.2dB

fB = - 3 dB A

vcm1 corner frequency

Page 21: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

21Kenneth R. Laker, update KRL 18Oct13

Simulate the 10 mA Design with 2 pF Parasitics

2 pF

2 pF

f B≈2.5MHz

-3dB common mode bandwidth with 2 pF base-emitter and base collector caps.

Avcm1dB f =1 kHz≈−27dB

Avcm1dB f =2.5MHz =−24.2dB

I REF=10mAI C1≈5mA

Parasitic caps reduces Av-cm(dB) break frequency f

B from 9.7 MHz to 2.5 MHz!

vi-cm

RC RC

RE RERB RB

Rref

RECALL: 2 pF is about the capacitance between 2 rows of Protoboard pins!

Page 22: Differential Amplifier Cont.ese319/Lecture_Notes/Lec_13_DiffAmpl-II_13.pdfDifferential amplifier with emitter resistors Single-ended output ... Differential-output if Unbalanced due

ESE319 Introduction to Microelectronics

22Kenneth R. Laker, update KRL 18Oct13

Observations

1). ro can be inferred from A

vcm.

2). Minimize parasitic capacitance around mirror transistor to in-crease common mode gain -3dB bandwidth.

3). Since no differential mode current flows through the mirror tran-sistor (Q3, i.e. r

o), it should have no effect on differential mode

performance.