dielectric barrier discharge, ozone generation, and their ... · pdf filetime scale of the...

93
Dielectric Barrier Discharge, Ozone Dielectric Barrier Discharge, Ozone Generation, and their Applications Generation, and their Applications Complex Plasmas Summer Institute 2008 Complex Plasmas Summer Institute 2008 Jose L. Lopez Jose L. Lopez Saint Peter Saint Peter s College s College Department of Applied Science and Technology Department of Applied Science and Technology Physics Division Physics Division Jersey City, New Jersey (USA) Jersey City, New Jersey (USA)

Upload: nguyenphuc

Post on 07-Feb-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

  • Dielectric Barrier Discharge, Ozone Dielectric Barrier Discharge, Ozone Generation, and their Applications Generation, and their Applications

    Complex Plasmas Summer Institute 2008Complex Plasmas Summer Institute 2008

    Jose L. LopezJose L. LopezSaint PeterSaint Peters Colleges College

    Department of Applied Science and TechnologyDepartment of Applied Science and TechnologyPhysics DivisionPhysics Division

    Jersey City, New Jersey (USA)Jersey City, New Jersey (USA)

  • Faradays Dielectric CapacitorsFaradays Dielectric Capacitors

    Faraday's Dielectric Capacitor (circa 1837)

    Michael Faraday (1781 1867) Capacitance INCREASED!

  • Historical Ozone Tube of W. Siemens (1857)Historical Ozone Tube of W. Siemens (1857)

    Werner v. SiemensPoggendorfs Annalen der Chemie und Physik 102, 66 (1857)

    Ozone Production in an Atmospheric-PressureDielectric Barrier Discharge

  • Dielectric Barrier DischargeDielectric - Barrier Discharge Configurations

    H.E. Wagner, R. Brandenburg, et. al. The barrier discharge: basic properties and applications to surface treatment. Vacuum. 71 p417-436 (2003).

    Dielectric - Barrier Discharge ConfigurationsHigh

    VoltageAC

    Generator

    High VoltageElectrode

    GroundElectrode

    DielectricBarrier

    DielectricBarrier

    High VoltageElectrode

    GroundElectrode

    Discharge

    Discharge

  • Electric field strength E of first breakdown 150 Td (p = 1bar, T=300 K)

    Voltage Vpp

    320 kV

    Repetition frequency f 50 Hz10 kHz

    Pressure p 13 bar

    Gap distance g 0.25mm

    Dielectric material thickness d 0.52mm

    Relative dielectric permittivity r

    510 (glass)

    Typical operational conditions of barrier discharges Typical operational conditions of barrier discharges

    B. Eliasson and U. Kogelschatz. IEEE Transactions Plasma Science. Vol. 19 Issue 6, 1063-1077 (1991)

  • Single and double DBD

    Single dielectric Double dielectric

  • Role of the Dielectric

    Serves two functions:

    1.

    Limits the amount of charge transported by a single microdischarge (microplasma)

    2.

    Distributes the microdischarges over the entire electrode surface area

    The dielectric is the key for the proper functioning of the discharge.

  • Microdischarge Activity and U-Q Lissajous Figure

    B. Eliasson and U. Kogelschatz. IEEE Transactions Plasma Science. Vol. 19 Issue 6, 1063-1077 (1991)

  • H.E. Wagner, R. Brandenburg, et. al. The barrier discharge: basic properties and applications to surface treatment. Vacuum. 71: 417-436 (2003).

    Many of relevant plasma processes that are of importance to achieving our goal occur on time scales that allow us to study them.

    Optical emission spectroscopic studies will allow us to determine the temporal and spatial development of important plasma species such as radicals (OH, NO, various oxygen radicals) with high time resolution (less than 10 ns) and a spatial resolution on the scale of mm in the plasma volume following pulsed plasma excitation.

    Time scale of the relevant processes of the DBD.

    Fundamental Operation of the Dielectric Barrier DischargeFundamental Operation of the Dielectric Barrier Discharge

  • Streamer Propagation in 1 bar AirA.A. Kulikovsky, IEEE Trans. Plasma Sci. 25 439-446 (1997).

    Electron Density

    Outer Contour Linene

    = 1010

    cm-3

    Inner Contour Linene

    = 1014 cm-3

    Fundamental Operation of the DBDFundamental Operation of the DBD

    Temporal Development (ns)

  • E0

    =34 kV/cm

    Starting Phase of a Microdischarge (1 bar: 20% CO2 / 80% H2 )

    1mm

    An electron avalanche propagates towards the anode

    ne

    =108

    cm-3

    Numerical Results of Microdischarge Formation in Dielectric-Barrier Discharges

    1010

    cm-3

    Reverse propagationtowards the cathode

    1010

    cm-3

    ne

    =1012

    cm-3

  • E0

    =34 kV/cm

    Cathode Layer Formation

    1mm

    Just before the peak of the total current

    Numerical Results of Microdischarge Formation in Dielectric-Barrier Discharges

    1010

    cm-3

    Peak current

    1010

    cm-3

    ne

    =1012

    cm-3

    ne

    =109

    cm-3

    1012

    10141013

    1014

    1013

  • ne

    =109cm-3 ne

    =1014 cm-3

    Numerical Results of Microdischarge Formation in Dielectric-Barrier Discharges

    Gap

    Local Field Collapse in Area Defined by Surface Discharge

  • -- - --- - - CGCD

    -- - - CG

    CD

    Principals

    of

    DBD MicrodischargesPrincipalsPrincipals

    ofof

    DBD DBD MicrodischargesMicrodischarges

  • DielectricDielectric--Barrier DischargesBarrier Discharges

    Excited Species

    Chemical Reactions

    OzoneGeneration

    SurfaceTreatment

    PollutionControl

    ExcimerFormation CO2 Lasers

    Hydrogenationof CO2

    Excimer Lamps Plasma Displays

    Electric Field

    Breakdown

    Electrons & Ions Discharge Physics

    Plasma Chemistry

  • Plasma Display TelevisionsPlasma Display Televisions

  • AC Plasma Display ConfigurationAC Plasma Display Configuration

    Phosphor Phosphor CoatingCoating

    Address ElectrodesAddress Electrodes

    Rear Glass PlateRear Glass Plate

    Separator RibsSeparator Ribs

    Transparent Transparent Display ElectrodesDisplay Electrodes

    Front Glass PlateFront Glass Plate

    Dielectric Dielectric BarrierBarrier

    MgOMgO LayerLayer

  • Generation of OzoneGeneration of Ozone

    3 O2 2 O3

    HeatHeatHeatHeat

    Power sourceHigh voltage electrodeGlass, Ceramic or Enamel Dielectric

    Discharge gapGrounded electrode

    OO22 OO33++ OO22

    Dielectric Barrier Discharge

    O O3O2 O2O2

    O e O2

    O O2eO3

    O3O2O2 O2

  • Properties of Ozone (O3 )

    Tri-atomic form of oxygen.

    Most powerful commercial oxidizing agent

    Unstable -

    must be generated and used onsite

    Limited solubility in water, but more so than oxygen

    Leaves a dissolved residual which ultimately converts back to oxygen

  • Discharge Tubes in Ozone GeneratorsDischarge Tubes in Ozone Generators

  • Traditional

    Ozone Generator

    with Glass Tubes

  • Generation of OzoneGeneration of Ozone

  • Ozonia Advanced Technology Ozonia Advanced Technology Ozone GeneratorOzone Generator

  • Generation of OzoneAdvantages of Enamel Dielectrics

    Proven, Patented Design

    Simplicity

    Single Dielctric Component

    Reduced number of Dielectrics

    Safety

    Lower

    operating

    voltage

    (< 4000 V)

    Reliabilty

    Fused Dielectris ensure continuous production

    Lowest Power Consumption Operational Savings!

  • Modern Ozone GeneratorModern Ozone Generator

  • Generation of OzoneGeneration of Ozone

  • Power Supply UnitGeneration of Ozone

  • Easy to useEasy to use

    Low energy usage Low energy usage

    Mass transfer Mass transfer efficiencies to > efficiencies to > 90%90%

    Bubble DiffusionBubble Diffusion

    Ozone Contacting SystemsOzone Contacting SystemsOzone Water TreatmentOzone Water Treatment

  • Ozone Generators

    Ozone Contact Chamber

    VaporizersLOX Tank

    LOX

    10-12% O3

    O3 /O2Oxygen

    Off-Gas Blower

    Ozone Destruct Unit

    Vent to Atmosphere

    Ozone Process Flow DiagramOzone Process Flow Diagram

  • Los Angeles, CA 10,000 1986Fairfax, VA Corbalis 9,000 2003MWD, CA Mills 9,000 2003Fairfax Co., VA Griffith 9,000 2004MWD, CA Jensen 18,750 2005Indianapolis, IN

    Belmont AWT 12,000

    2007Indianapolis, IN

    Southport AWT 12,000

    2007MWD, CA

    Diemer

    13,400

    2008MWD, CA

    Weymouth 13,400

    2009

    Ozonia North America - Potable Water SummaryTotal Number of Installations: 90Total Installed Production: > 265,000 lbs/day

    Revision -B

    Ozonia Installations Ozone Plant Size [lb/day] Start-Up Date

    Key Ozonia Installations (Partial List)

    Municipal Ozone Installations

  • MWD Mills WTP - California

    3 x 3,000 lbs/day of ozone3 x 3,000 lbs/day of ozone

    Ozone Water TreatmentOzone Water Treatment

  • Oxidant:Oxidant:

    Breaks double carbon Breaks double carbon bondsbonds

    Creates OHCreates OH radicals radicals which break higher carbon which break higher carbon bondsbonds

    Increased temp. and pH Increased temp. and pH accelerates Oaccelerates O33 decomposition to OHdecomposition to OH

    Disinfectant:Disinfectant:

    Kills by cell Kills by cell lysinglysing or or causing the cell wall to causing the cell wall to rupture rupture

    Attacks Attacks allall bacteria bacteria virus, cysts and spores virus, cysts and spores in varying degreesin varying degrees

    Ozone Ozone -- How it works:How it works:

    Ozone Water TreatmentOzone Water Treatment

  • Micro-organism / DNA

    Typical Bacterium DNA

    Cellmembrane

    Nuclearmaterial

    Capsule

    Cell wall

    AdenineAdenine

    ThymineThymine

    CytosineCytosine

    GuanineGuanine

  • Microbial Growth at Various Ozone Concentrations

    0.004 0.008 0.012 0.016 0.020

    Growth likely

    Growth possible

    NO GROWTH

    Ozone concentration (mg/l)

  • Typical Water Treatment UsageTypical Water Treatment Usage

    Ultra Pure Water 0.05 - 0.25 sec. min.