di huong tu_5

Upload: tran-thanh-nhan

Post on 08-Apr-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 di huong tu_5

    1/36

    Magnetic anisotropy

  • 8/7/2019 di huong tu_5

    2/36

    Magnetic anisotropy energy: definition

    1 cos =

    2 sin cos =3 sin sin =

    cubic system:

    ( ) ( )aE E z E z = M MCan be defined as: magnetic anisotropy energy per atom (eV/atom)

    magnetic anisotropy energy per unit volume (MJ/m3, erg/cm3)

    uniaxial system:

    MagneticN

    anostructuresP.Gambardella

  • 8/7/2019 di huong tu_5

    3/36

    Two types of magnetic anisotropy

    Spin-Orbit Coupling:

    MAGNETOCRYSTALLINE ANISOTROPY

    i i

    L

    l

    s.o.H

    = =

    S

    s

    Dipolar (magnetostatic) Interaction:

    SHAPE ANISOTROPY

    1 2 1 2

    3 5

    1 ( )( )3

    4dipH

    r r

    =

    m m m r m r

    r

    m1

    m2

    MagneticN

    anostructuresP.Gambardella

    classical electromagnetic (Maxwell) theory quantistic + relativistic treatment ofS and L

    Formation of magnetic domains Preferred orientation of themagnetization in crystalline materials

    Dynamic relaxation of the magnetization

    Stability of the orientation of the magnetization in bulk as well as nanomagnets(remanence, coercivity, superparamagnetic relaxation)

    Size and shape of magnetic domains

  • 8/7/2019 di huong tu_5

    4/36

    - +

    Magnetic dipolar interaction is intrinsically anisotropic

    0 1 2 1 2

    3 5

    ( )( )3

    4dipE

    r r

    =

    m m m r m rr

    m1

    m2

    1 2

    0

    1

    4Coulomb

    q qE

    r=

    isotropic

    anisotropic

    MagneticN

    anostructuresP.Gambardella

  • 8/7/2019 di huong tu_5

    5/36

    Dipolar interaction

    Parallel alignment is favored for C= 54.74

    0 1 2 1 2

    3 5

    ( )( )

    34dipE r r

    =

    m m m r m r

    r

    m1

    m2

    ( ) 20 1 23 m m 1 3cos4dipE

    r

    =

    If only up and down directions are considered:

    Cone of alignment :

    Conclusions:

    in a planar structure, e.g,, a thin film,in-plane direction is favored

    in an elongated nanoparticle:long axis is favored

    MagneticN

    anostructuresP.Gambardella

  • 8/7/2019 di huong tu_5

    6/36

    Dipolar interaction and magnetostatic energy

    0

    B = H + M

    L0

    H antip. Hdemag stray

    d =

    H li

    MagneticN

    anostructuresP.Gambardella

    ( )

    0

    0

    outside: 0,

    1inside: 0,

    stray

    demag

    = =

    =

    BM H

    M H B M

    B

    B

    M

    0 demag

    1 M H2

    demag demag V

    E dV= 0B = H + M

    ( )0B = H + M0

    M H2demag demag VE dV

    =

    SI !! vedi Mencuccini e Silvestrini cap. VI,Fisica II e incubi vari

    Di l i t ti d t t ti

  • 8/7/2019 di huong tu_5

    7/36

    Dipolar interaction and magnetostatic energy

    0 M H2ms demag

    E dV

    =

    H H -M / 3

    M

    demag dip=

    = D

    Magnetostatic self-energy:mutual magnetostatic interaction of

    the elementary dipoles of which amagnet is composed

    D

    D

    D

    =

    D

    Demagnetizing field:

    field created by the magnet itself

    For an ellipsoid of revolution with rotational symmetry and M = Mz:

    z

    20

    2msE D M V

    =

    Sphere:

    isotropic

    1

    3D D = =

    Infinite thin film:

    In-plane orientation favored

    0, 1D D = =

    N.B.: D depends on the direction ofM w/r to the symmetry axes of the ellipsoidMagneticN

    anostructuresP.Gambardella

    M t t ti f ti f ti d i

  • 8/7/2019 di huong tu_5

    8/36

    Magnetostatic energy formation of magnetic domains

    Pay domain wall energy(exchange + MCA)

    MagneticN

    anostructuresP.Gambardella

    E amples of magnetic domain config rations in microstr ct res

  • 8/7/2019 di huong tu_5

    9/36

    Examples of magnetic domain configurations in microstructures

    MagneticN

    anostructuresP.Gambardella

    Field direction

    Type of domains

  • 8/7/2019 di huong tu_5

    10/36

    Type of domains

    Total energy = Magnetostatic Energy + Wall Energy

    C. Kittel, Phys. Rev. 70, 965 (1946)

    MagneticN

    anostructuresP.Gambardella

    Atomically thin magnetic domain walls in Fe nanostripes on W(110)

  • 8/7/2019 di huong tu_5

    11/36

    Atomically thin magnetic domain walls in Fe nanostripes on W(110)

    O. Pietzsch, Phys. Rev. Lett. (2000); M. Bode, Rep. Progr. Phys.(2003)

    1.3 monolayersFe / steppedW(110)

    STM topography Spin-polarized STM

    Real-space observation of dipolar induced antiparallel domain orientation

    Atomically narrow domain walls

    MagneticNanostructuresP.Gambardella

    Atomically thin magnetic domain walls in Fe nanostripes on W(110) *

  • 8/7/2019 di huong tu_5

    12/36

    Atomically thin magnetic domain walls in Fe nanostripes on W(110)

    Pratzer et al., Phys. Rev. Lett. 87, 127201 (2001)

    Magnetizationp

    rofile

    Micromagnetics: 2 /w A K= 11

    4 3

    exchange stiffness

    5 10 anisotropy constant

    2.5

    10 J/m,

    J/m ,

    eV/atom

    bulk

    mcbulkK

    A

    =

    =

    =

    30 nmw =

    2 12/ 2 4 10 J/m,

    where =8.7 meV from of 1 Fe monolayer

    nn

    C

    A JS a

    J T

    = =

    exp 0.6 nmw =

    Wrong! factor 50 larger than measured!

    6 3

    4.2

    20 10

    meV/atom

    J/m ,mcmonolayer

    K

    =

    = Working out Kmc from wexp:

    In a Fe/W(110) monolayer:

    But is magnetics valid close to the atomic scale?

    w

    MagneticNanostructuresP.Gambardella

    *

    Single-domain nanoparticles

  • 8/7/2019 di huong tu_5

    13/36

    Single domain nanoparticles

    Domain Wall Energy:

    20

    2 30

    2

    1 4

    2 3 3

    msE D M V

    r

    =

    =2 30 4 1 2, where =

    6 3ms

    rE M r n

    n d

    =

    d

    r

    Single-domain n-domains

    ( )2 2W rE rd

    =

    ( )0

    ms WE E

    d

    +

    =

    where domain wall en./unit area

    Minimization of total energy:

    =

    mJ m-2

    rsdnm

    Fe 2.6 6

    Co 9.3 34

    SmCo5 78 764

    2

    2

    0

    18 rd

    =

    2

    0

    922

    sd sd r d r

    = =Critical radius:

    MagneticNanostructuresP.Gambardella

    Multi-domain to single-domain transition

  • 8/7/2019 di huong tu_5

    14/36

    Multi domain to single domain transition

    Holographic interference fringes of electronsscattered off Co platelets showing lines of flux.

    T. Matsuda et al., J. Appl. Phys. 53, 5444 (1982)

    55 nm thick

    15 nm thick

    MagneticNanostructuresP.Gambardella

    with thickness with lateral dimensions

    3 monolayers Fe islands on Cu(100)

    Scanning electron microscopywith spin polarization analysis

    C. Stamm, PhD thesis, ETHZ (2000).

    Magnetocrystalline anisotropy in bulk metals

  • 8/7/2019 di huong tu_5

    15/36

    easy axis: (100) easy axis: (111)easy axis: (0001)

    5 3

    1 4.1 10 /45 /

    K J meV atom

    = =

    3 3

    1 5.5 10 /0.3 /

    J meV atom

    = =

    4 3

    1 4.8 10 /2.4 /

    J meV atom

    = =

    Fe bcc Co hcp Ni fcc

    Magnetic field (Oe)

    Magnetization(emu/cm3)

    Magnetic field (Oe)

    Magne

    tization(emu/cm3)

    Magneti

    zation(emu/cm3)

    Magnetic field (Oe)

    Magnetocrystalline anisotropy in bulk metals

    S. Kaya, Sci. Reports Tohoku Univ. 17, 639 (1928)MagneticNanostructuresP.Gambardella

  • 8/7/2019 di huong tu_5

    16/36

    Temperature dependence of magnetic anisotropy energy constants

  • 8/7/2019 di huong tu_5

    17/36

    p p g py gy

    EASY

    EASYPLANE

    MagneticNanostructuresP.Gambardella

    Effective anisotropy constants in magnetic thin films

  • 8/7/2019 di huong tu_5

    18/36

    W. J. M. de Jonge et al., in Ultrathin Magnetic Structures I,J. A. C. Bland and B. Heinrich eds., Springer (1994)

    Au/Co(t)/Au T= 10 K

    Chappert and Bruno, J. Appl. Phys. 64, 5736 (1988)

    ( ) 22eff 2

    Co Volume Surfac Coe0K K M K /t= +

    KV tlayers

    KS

    KS

    MagneticNanostructures

    P.Gambardell

    a

    Competition between dipolar and magnetocrystalline anisotropy

  • 8/7/2019 di huong tu_5

    19/36

    Co wedge

    Pt substrate

    20 m

    Magn

    etization(a.u.)

    thickness (ML)

    out-of-planeMCA predominates

    in-plane, shape anisotropy M2

    Vpredominates

    g y y

    Orientation and shape

    of Co magnetic domains

    Rusponi, Gambardella et al., X-ray photoemission electron microscopy, SIM beamline @ Swiss Light Source

    Reorientation of the magnetization due to dipolar anisotropy above threshold thickness

    MagneticNanostructures

    P.Gambardella

    Dependence of the magnetic anisotropy on the substrate crystallographic orientation

  • 8/7/2019 di huong tu_5

    20/36

    Co/Pt superlattices grown by MBE with

    [001], [110], [111] orientation:

    Epitaxy along these differentorientations can clearly induce defectstructures and local lattice distortions

    that may result in different values of themagnetocrystalline anisotropy.

    MagneticNanostructures

    P.Gambardella

    Orbital moment and magnetocrystalline anisotropy in 3dmetals

  • 8/7/2019 di huong tu_5

    21/36

    crystal field electron orbits fixes L relative to the crystal lattice

    Different L values along different crystal directions

    Direction with thelargest component ofL

    Lowest spin-orbit energyeasy direction

    of magnetization

    see, e.g., P. Bruno, PRB 39, 865 (1989);H. A. Drr et al., Science 277, 213 (1997).

    L

    L

    MagneticNanostructures

    P.Gambardella

    Perturbation theory in quantum mechanics *

  • 8/7/2019 di huong tu_5

    22/36

    0 0 0

    0

    0

    unperturbed Schroedinger equation: H

    small perturbation: (H V)

    gnd gnd gnd E

    E

    =

    + =(0) (1) 2 (2)

    (0) (1) 2 (2)

    + ...,

    + ...

    E E E E

    = + +

    = + +

    (1) (0) (0)

    (0) (0)

    (1) (0)

    (0) (0)exc gnd

    = gnd gnd

    exc gnd

    exc

    exc gnd

    E V

    V

    E E

    =

    2(0) (0)

    (2)

    (0) (0)exc gnd

    exc gnd

    exc gnd

    VE

    E E

    =

    V = L S(0) (0)

    gnd

    (0) (0)

    (0) (0)

    (0) (0)exc gnd

    = 0

    = 0

    gnd gnd

    exc gnd

    gnd exc

    exc gnd E E

    =

    L L

    L SL L L

    MagneticNanostructures

    P.Gambardella

    Spin-orbit interaction, orbital moment anisotropy, and MCA *

  • 8/7/2019 di huong tu_5

    23/36

    MODEL:Bruno, PRB 1989 Only unoccupied states matter

    B4 4a z x L LL L m m

    = =

    MagneticNanostructures

    P.Gambardella

    Onset of magnetic anisotropy in single atoms: Co1/Pt(111)

  • 8/7/2019 di huong tu_5

    24/36

    Free magnetic atom:

    - isotropy of space

    K= 0

    Small magnetic particles:

    - broken symmetry- increased complexity

    K= ?

    P. Gambardella et al., Science 300, 1130 (2003)

    Factors that determinethe magnetic anisotropy:

    Angular dependence

    - atomic symmetry

    Magnitude

    - 3dbandwidth- orbital moment- spin-orbit coupling

    Kdepends on theatomic coordination:

    KCo1/Pt= 200 KCo bulk

    MagneticNanostructures

    P.Gambardella

    Magnetic moments and magnetic anisotropy: from the atom to the bulk

  • 8/7/2019 di huong tu_5

    25/36

    MagneticNanostructures

    P.Gambardella

    Finite-sized particles: the rise and fall of magnetic anisotropy

  • 8/7/2019 di huong tu_5

    26/36

    Co particles on Pt(111) with average size n

    magneticanisotropy energy

    orbital magneticmoment

    n = 3Tdep = 10 K

    n = 1Tdep = 10 K

    n = 8Tdep = 83 K

    20 40 40

    out-of-plane

    in-plane

    P. Gambardella et al., Science 300, 1130 (2003)MagneticNanostructures

    P.Gambardella

    Ferromagnetism Superparamagnetism - Paramagnetism

  • 8/7/2019 di huong tu_5

    27/36

    FerromagnetismT< TC

    SuperparamagnetismT< TCT> TB

    Paramagnetism

    T> TC

    T< TB

    MagneticNanostructures

    P.Gambardella

    Superparamagnetism

  • 8/7/2019 di huong tu_5

    28/36

    Ferrite particles

    MagneticNanostructures

    P.Gambardella

    ( )1

    x coth(x)x

    L =

    0

    B

    M M ,kL T

    =

    Mag

    netization

    B/T [Tesla/K]

    J. Crangle, The Magnetic Properties of Solids,Edward Arnold (1977)

    i

    M(B,T) qualitatively similar to paramagnetismbut the fluctuating moment is the total moment of each particle

    = where is the sum of the atomic moments in a particle

    Superparamagnetism

  • 8/7/2019 di huong tu_5

    29/36

    depends on B, K, TM sum of atomic mag. MomentsVparticle volume

    H

    Mz

    H

    Mz

    texp >

    0Kexp VkT

    =

    texp <

    8 11

    0 10 10 s = where

    E KV > kT

    E

    MagneticNanostructures

    P.Gambardella

    2

    H K cosV = M B

    Hamiltonian:

    easyaxis

    Magnetization relaxation timeNel-Brown model:

    Superparamagnetism: blocking temperature TB

  • 8/7/2019 di huong tu_5

    30/36

    H

    Mz

    H

    Mz

    T > TB < texp

    0

    Kexp

    V

    kT =

    T < TB

    > texp

    where

    MagneticNanostructures

    P.Gambardella

    easyaxis

    Temperature required to observe a stablemagnetization on the timescale of the experiment

    easyaxis

    1

    0

    KlnB

    VT

    k

    =

    expt >>

    an ill-defined quantity

    e.g., stability criterion for magnetic recording requires:texp ~ 10 years at T= 300 K

    Shape-dependent magnetic reversal of Fe nanoparticles on a Mo surface

  • 8/7/2019 di huong tu_5

    31/36

    Bode et al., Phys. Rev. Lett.92, 067201 (2004).

    STM topography Spin-polarized STM

    elongated

    compact

    Magnetic domains nucleate more easily in elongated particles (see, e.g., H.B. Braun, JAP 1999)

    MagneticNanostructures

    P.Gambardella

    Magnetisation reversal processes

  • 8/7/2019 di huong tu_5

    32/36

    MagneticNanostructures

    P.Gambardella

    Hc = HA = 2K/M

    Perfect materials, very small particles:Coherent rotation

    Hc

  • 8/7/2019 di huong tu_5

    33/36

    MagneticNanostructures

    P.Gambardella

    -1

    0

    1

    -1.5 -1 -0.5 0 0.5 1 1.5

    M

    h

    010

    3045

    70

    900

    0.2

    0.4

    0.6

    0.8

    1

    0

    30

    60

    90

    120

    210

    240

    270

    300

    330

    hsw

    B

    M

    E. Bonet-Orozco et al. PRL (2000)

    Coherent rotation: Stoner-Wohlfart model

    Length of vector =

    amplitude of Hc

    The Stoner-Wohlfart Model for single-domain particles

    B h i f h i i f i l d i i l h i fi ld i li d h i l

  • 8/7/2019 di huong tu_5

    34/36

    MagneticNanostructures

    P.Gambardel

    la

    a

    b HIs

    Easy axis

    U D =1

    20

    Is2 (N a cos

    2 + N b sin2 )V =

    1

    40

    Is2 (N b N a )Vcos2 + const .

    U H = HIsVcos

    U

    =1

    20

    (N b N a )Is2cos 2 + H Is sin = 0

    1

    2sin 2 ( ) + h sin = 0

    h =0H

    Nb

    Na( )Is

    = + , < 0

    - Behaviour of the magnetization of a single domain particle when a magnetic field is applied: hysteresis loops.

    - hypotheses: ellipsoidal single-domain particle with only shape anisotropy and negligible magnetocrystalline anisotropy. The

    magnitude of the particle magnetization Is remains constant for all values of the applied field (coherent rotation).

    The demagnetization energy is given by

    The magnetization I will point along a direction that makes U=UD+UH a minimum:

    It is convenient to rewrite this equation as where

    We wish to solve this equation for as a function of h and

    Suppose a magnetic field H is applied. At equilibrium the magnetization Is will lie in the plane defined by the direction of

    the field and the polar axis (a) of the ellipsoid. The Zeeman energy term is

    It is difficult to obtain direct solutions and only the general nature of the results will be given here.

    The Stoner-Wohlfart Model for single-domain particles

  • 8/7/2019 di huong tu_5

    35/36

    MagneticNanostructures

    P.Gambardella

    To plot hysteresis curves it is convenient to use reduced

    units: the value of the reduced magnetization along the field

    IH/Is = cos is plotted against h.

    Assume = /2, i.e., H applied parallel to the hard axis,then the component IH is proportional to the field until h=1

    (see figure). The rotation of the magnetization is fully

    reversible. (Fig. 1)

    Assume =0, H parallel to the easy axis but opposite Is;the anisotropy will maintain the initial orientation of Is untilabove the critical field h=1 a small perturbation will induce

    an irreversible 180 jump of Is. There is a discontinuity in IHand hysteresis occurs. Energy is dissipated as heat. (Fig. 2)

    Assume 0

  • 8/7/2019 di huong tu_5

    36/36

    MagneticNanostructures

    P.Gambardella

    - Assembly of particles with easy axes oriented at random:

    the coercive force of the individual particles ranges from h=0 to h=1 and it is reasonable to expect a mean coercive force for

    the system close to 0.5. The remanence (I at H=0) is Ir==0.5.

    .

    N.B. Incoherent rotationsIn reality, the magnitude of the magnetization |Is| doesn't need to stay constant as a magnetic field is applied to the sample,

    as assumed in the S.-W- model. It turns out that reversible magnetization changes occur coherently while irreversible ones

    occur incoherently. The nucleation field for an incoherent reversal is lower than the corrsponding critical field of the Stoner-

    Wolfarth theory. As a result a lower cohercive force is predicted.