developments in the line fault location technology for hvdc

29
Developments in the Line Fault Location Technology for HVDC Systems A collaborative research by The University of Manitoba and Manitoba HVDC Research Centre Kasun Nanayakkara Athula Rajapakse

Upload: others

Post on 29-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Developments in the Line Fault Location Technology for HVDC

Developments in the Line Fault Location Technology for HVDC 

Systems

A collaborative research by The University of Manitoba andManitoba HVDC Research Centre

Kasun NanayakkaraAthula Rajapakse

Page 2: Developments in the Line Fault Location Technology for HVDC

OutlineOutlineIntroduction

IntroductionFault generated travelling wave detectionFault location in VSC HVDC systemsFault location in multi‐segment HVDC systemsFault location in star connected multi‐terminal HVDC systemsConclusions

Outline

2

Page 3: Developments in the Line Fault Location Technology for HVDC

IntroductionOutline

IntroductionTravelling wave detection

High Voltage Direct Current (HVDC) technology has established as an economical solution to 

Transmit bulk electrical power over long distancesInterconnect asynchronous systemsTransmit power through cables over long distances 

Quick location of permanent faults on HVDC transmission lines is very important

Involves large amount of powerNeed quick repairs to minimize outage costs

Fault location technologyBased on travelling waves generated by the fault 

Introduction

3

Original Picture retrieved from http://en.wikipedia.org/wiki/File:HVDC_Crossover_North-Dakota.jpg© 2010 by Wtshymanski

Page 4: Developments in the Line Fault Location Technology for HVDC

IntroductionOutline

IntroductionTravelling wave detection

Travelling wave based fault location 

4

L1 L2

tr1

tr2

tf1

tf2

vf1

vf2

vf3

vr1

vr2

vr3

T1 T2

Page 5: Developments in the Line Fault Location Technology for HVDC

IntroductionOutline

IntroductionTravelling wave detection

Single terminal method 

Travelling wave based fault location methods

5

L1 L2

tr1

tr2

tf1

tf2

vf1

vf2

vf3

vr1

vr2

vr3

T1T2

Two terminal method 

The two‐terminal method :• More reliable since only the initial 

surges are used• Needs synchronized measurements

Page 6: Developments in the Line Fault Location Technology for HVDC

IntroductionOutline

IntroductionTravelling wave detection

Fault location: 

Accuracy depends largely on accuracy of the surge arrival time measurement

In overhead lines, waves travel close to speed of light (299 792 458 m/s)1µs error in ∆t could cause up to 300 m error in distance

Potential signals for detecting the arrival of travelling wavesTerminal voltage of DC lineCurrent through the surge capacitorDC line current ?

Fault location in HVDC transmission lines

6

Page 7: Developments in the Line Fault Location Technology for HVDC

IntroductionOutline

IntroductionTravelling wave detection

Manitoba HVDC Research Centre is a commercial HVDC Line Fault Locator manufacture 

Expects a growth in the demand for fault locators Foresees challenges due to emerging changes in the nature of the HVDC transmission systems

Major challenges Long transmission lines (> 1000 km) and cables (> 200 km) VSC based HVDC systemsHVDC systems with multiple transmission segments Multi‐Terminal HVDC (MTHVDC) schemes and DC grids 

Initiated a collaborative research project with MHI and University of Manitoba

Fault location in HVDC transmission lines

7

Page 8: Developments in the Line Fault Location Technology for HVDC

Travelling wave detectionIntroduction

Travelling wave detectionFault location in multi‐segment HVDC systems

Detection signal: Surge capacitor current

Analog detector LED/optical sensorGPS based time stamping

Wave‐front detection in existing LFL

8

Surge arrival time

Page 9: Developments in the Line Fault Location Technology for HVDC

Travelling wave detectionIntroduction

Travelling wave detectionFault location in multi‐segment HVDC systems

Capturing waveformsPossibility of post processing to obtain more accurate surge arrival timesWavelet transform

Rogowski coil as transducer?Zero output at steady state  ‐ideal Bandwidth limitations, noise levels, and output voltage levels are concerns

DAQ hardware requirements? Sampling frequencyBit resolutionVoltage range

New proposal for wave‐front detection

9

Surge arrival time

DAQ

Post processing

Ic Vrog = dIc/dt

GPSclock

Page 10: Developments in the Line Fault Location Technology for HVDC

Travelling wave detectionIntroduction

Travelling wave detectionFault location in multi‐segment HVDC systems

Experimental wave‐front capturing unit

Rogowski coil

10

• Test units were installed at Dorsey and Radisson converter stations

• Data were recorded between 23rd of July 2012 and 4th of September 2012

Page 11: Developments in the Line Fault Location Technology for HVDC

Travelling wave detectionIntroduction

Travelling wave detectionFault location in multi‐segment HVDC systems

Captured waveforms

11

2MHz sampling frequency t = 0.5μs GPS clock accuracy ± 150ns

Event 1‐ 23/07/2012, 22:56:36 : 

Temp flashover possibly caused by smokeNo lightning anywhere near There was a fire about 11 miles away from the estimated location

Fault location: (km from Dorsey)Existing Rog. coil Δt 

(nano Sec)826.25 826.16 646.0057

Page 12: Developments in the Line Fault Location Technology for HVDC

Travelling wave detectionIntroduction

Travelling wave detectionFault location in multi‐segment HVDC systems

Possible fault in pole 3

13

Faults on bipole‐2 can be detected through the measurements on bipole‐1 using induce transients

Pole 3 event Pole 1 event

0 1000 2000 3000 4000 5000 6000 7000-1

0

1

2

3

4

5

6

7

8

9Event 3

Rog

owsk

i coi

l vol

tage

Samples

DorseyRadisson

0 1000 2000 3000 4000 5000 6000 7000-1

0

1

2

3

4

5

6

7

8

9Event 4

Rog

owsk

i coi

l vol

tage

Samples

DorseyRadisson

Page 13: Developments in the Line Fault Location Technology for HVDC

Travelling wave detectionIntroduction

Travelling wave detectionFault location in multi‐segment HVDC systems

Comparison of results

3 26/07/2012 13 29 18 0.000806 0.000807 ‐692.9884999 326.2836498 326.1797734 ‐103.87636294 26/07/2012 14 10 17 0.001187 0.001188 ‐1134.0194 269.1581969 268.9882117 ‐169.98523175 26/07/2012 14 56 11 0.000924 0.000926 ‐1593.0237 308.5359363 308.297148 ‐238.78824536 26/07/2012 15 28 21 0.001181 0.001181 ‐366.9691 270.1025432 270.0475359 ‐55.00728425

Fault location (km) RadissonDifference in fault loc (m)Existing LFL Wavelet LFL

Evt No Date Hr Min Sec

ΔtDifference in 

Δt (nS)Existing LFL

Wavelet LFL

• Calculated values in km from Radisson using time differences and propagation velocity of 299792.458 km/s

14

Rogowski coil measurements of the surge capacitor current can be successfully used for determining surge arrival times

Post‐processing of waveforms using wavelet transform can improve the accuracy under difficult conditions

Page 14: Developments in the Line Fault Location Technology for HVDC

Fault location in VSC HVDC systemsFault location in multi‐segment HVDC systems

Fault location in VSC HVDC systemsFault location in star connected multi‐terminal HVDC systems

• Fault location in VSC HVDC schemes with long cable connections (> 100 km) is challenging• Large DC capacitance at the converter terminal • Absence of large smoothing inductor• Need to understand limitations and develop solutions

Fault location in VSC HVDC systems

15

Page 15: Developments in the Line Fault Location Technology for HVDC

Fault location in VSC HVDC systemsFault location in multi‐segment HVDC systems

Fault location in VSC HVDC systemsFault location in star connected multi‐terminal HVDC systems

Measurements in the presence of dI/dt limiting reactor 

16

di/dt limiting inductors

0.595 0.598 0.601 0.604185

190

195

200

205

Time [S]

Vol

tage

[kV

]

No inductor1 mH inductor

0.595 0.598 0.601 0.604-0.6

-0.3

0

0.3

0.6

Time [S]

Curr

ent [

kA]

No inductor1 mH inductor

Series Current changeTerminal voltage

Page 16: Developments in the Line Fault Location Technology for HVDC

Fault location in VSC HVDC systemsFault location in multi‐segment HVDC systems

Fault location in VSC HVDC systemsFault location in star connected multi‐terminal HVDC systems

Measurements in the presence of dI/dt limiting reactor 

17

di/dt limiting inductors

Rate of change of the surge cap. current Surge cap. current

0.6001 0.6003 0.6005 0.6007 0.6009-0.07

-0.05

-0.03

-0.01

0.01

Time [S]

Curr

ent [

kA]

No inductor1 mH inductor

0.6004 0.6005 0.6006

-1000

4000

9000

Time [s]

Rate

of c

hang

e of

surg

e ca

paci

tor c

urre

nt

No Inductor1 mH10 mh

Page 17: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

• HVDC transmission systems are often used to transport electricity across water bodies

• Fault location in HVDC systems with multi‐segments is generally achieved with the help of repeater stations 

Fault location in multi‐segment HVDC lines

18

Page 18: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

Use only the measurements at the converter terminals.• Eliminates duplicate fault location hardware for each line section

• Substantial economics benefits

Novel fault location algorithm

19

Page 19: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

Case of a fault in segment 1 (F1)

Novel fault location algorithm

T1 T2

F1

L1 L2 L3

(1-F1) (2-F1)

1

T1 T2

F1

L1 L2 L3

(1-F1) (2-F1)

1

T1 surge arrival time= 1 11

1

T2 surge arrival time= 2 11 1

1

2

2

3

Surge arrival time difference = ∆ 12 1 1 1 2 12 ∙ 1

1

1

1

2

2

3

3

Distance to fault from T1 = 1 ∆ 12 11

1

2

2

3

3

1

2

20

Page 20: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

Novel fault location algorithm

1 ∆ 12 11

1

2

2

3

3

1

2

2 ∆ 12 21

1

2

2

3

3

2

2

3 ∆ 12 31

1

2

2

3

3

3

2

21

Page 21: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

Identification of the faulty segment

Calculate fault locations using (1), (2) and (3)

(xF1,xF2 and xF3)

0≤ xF1 ≤ L1 ?

Fault is in segment 1

Fault location is xF1

F

T

0≤xF2 ≤ L2 ?

Fault is in segment 2

Fault location is xF2+L1

F 0≤xF2 ≤ L2 ?

Fault is in segment 3

Fault location is xF3+L2+L1

T T

Time delay calculation(∆t12=t1-t2)

t1 t2

Wave-front arrival times at the terminals

Calculate fault locations using (1), (2) and (3)

(xF1,xF2 and xF3)

0≤ xF1 ≤ L1 ?

Fault is in segment 1

Fault location is xF1

F

T

0≤xF2 ≤ L2 ?

Fault is in segment 2

Fault location is xF2+L1

F 0≤xF2 ≤ L2 ?

Fault is in segment 3

Fault location is xF3+L2+L1

T T

Time delay calculation(∆t12=t1-t2)

t1 t2

Wave-front arrival times at the terminals

22

Page 22: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

Test network was built in PSCAD/EMTDC and the fault location algorithm was implemented in MATLAB.

Wavelet coefficients of the surge capacitor current/voltage was used to determine the surge arrival times. 

Simulated case study to validate the method

23

Page 23: Developments in the Line Fault Location Technology for HVDC

Fault location in multi‐segment HVDC systems

Travelling wave detectionFault location in multi‐segment HVDC systems

Fault location in  VSC HVDC systems

Sample of simulation results

Actual fault location (km) [measured from the rectifier end] 5 26 49 70 91 167

Calculated

 value

s using 

equatio

ns1,2 and 3

xF1  (Valid Range: 0 to 27) 5.07 25.97 71.26 113.57 135.51 211.22

xF2  (Valid Range: 0 to 44) ‐10.88 ‐0.51 21.95 42.94 53.82 91.38

xF3(Valid Range: 0 to 97) ‐111.14 ‐90.15 ‐44.65 ‐2.14 19.89 95.94

Predicted fault location (km) (xF1)5.07

(xF1)25.97

(27+xF2)48.95

(27+xF2)69.94

(27+44+xF3)90.89

(27+44+xF3)166.94

1 227km 44km 97km

24

Page 24: Developments in the Line Fault Location Technology for HVDC

Fault location in star connected multi‐terminal HVDC systems

Fault location in VSC HVDC systemsFault location in star connected multi‐terminal HVDC systems

Conclusions

MTHVDC systems have more than two converter stations connected to a common HVDC transmission system

Interconnection of off‐shore wind farmsUnderground urban sub‐transmission systemsShipboard power supplies Interconnection of on shore renewable generation systems

Multi‐terminal HVDC systems

(a) The Lillgrund offshore wind farm in Sweden

(b) Waldpolenz Solar Park in Waldpolenz, Germany

Figures (a) retrieved from http://en.wikipedia.org/wiki/Lillgrund_Wind_Farm. Copyright 2007 by Mariusz PaździoraFigures (b) retrieved from http://en.wikipedia.org/wiki/Waldpolenz_Solar_Park. Copyright 2008 by JUWI Group. Both figures under the Creative Commons Attribution-Share Alike 3.0 Unported license.

25

Page 25: Developments in the Line Fault Location Technology for HVDC

Fault location in star connected multi‐terminal HVDC systems

Fault location in VSC HVDC systemsFault location in star connected multi‐terminal HVDC systems

Conclusions

Possible different topologiespoint to pointRing Star Mixed

Fault location in MTHVDC systems

26

Page 26: Developments in the Line Fault Location Technology for HVDC

Fault location in star connected multi‐terminal HVDC systems

Fault location in VSC HVDC systemsFault location in star connected multi‐terminal HVDC systems

Conclusions

Determine faulted line segmentAssume fault is on segment iCalculate N‐1 fault location estimations considering different pairs of converter stations If the estimations are consistent, the fault is on segment iOtherwise go to next segment; repeat the procedure until faulted line segment is found

New fault location algorithm star networks

27

XFi

Use only the measurements at the converter terminals.

Determine exact locationAverage of the N‐1 estimations for the faulted line segment 

Page 27: Developments in the Line Fault Location Technology for HVDC

Conclusions Fault location in star connected multi‐terminal HVDC systemsConclusions

• Through this collaborative research project, we developed solutions for a number of challenging HVDC fault location problems1. New fault generated surge arrival time measurement scheme2. Wavelet based post‐processing for more accurate surge arrival time 

determination3. New algorithm for fault location in multi‐segment HVDC schemes using 

only terminal measurements4. Surge detection in VSC based HVDC schemes5. New algorithm for fault location in star connected multi‐terminal HVDC 

schemes

Conclusions

28

Page 28: Developments in the Line Fault Location Technology for HVDC

Manitoba HVDC Research Centre staffRandy W. WachalJean‐Sebastien StoezelWarren Erickson

Manitoba Hydro Technical Staff at Dorsey and Radisson stationsFinancial support 

Research grant from Manitoba HydroCollaborative R&D grant from NSERCUoM Graduate Fellowship from University of Manitoba Manitoba Graduate Fellowship from the Government of Manitoba 

Acknowledgements

29

Page 29: Developments in the Line Fault Location Technology for HVDC

Thank you