deliverable 4.1 ripples - final · imo international maritime organization cop 21 ... iswa...

129
, Horizon 2020 Societal challenge 5: Climate action, environment, resource efficiency and raw materials COP21 RIPPLES COP21: Results and Implications for Pathways and Policies for Low Emissions European Societies GA number: 730427, Funding type: RIA Deliverable number (relative in WP) D4.1 Deliverable name: Key concepts, core challenges and governance functions of international climate governance WP / WP number: WP4: Assessment of the adequacy of COP21 outcomes for effective international climate governance and the EU’s role Delivery due date: Project month 10 (30/09/2017) Actual date of submission: 29/09/2017 Dissemination level: public Lead beneficiary: IES-VUB Responsible scientist/administrator: Sebastian Oberthür Estimated effort (PM): 3 Contributor(s): Lukas Hermwille (WI), Gauri Khandekar (IES-VUB), Wolfgang Obergassel (WI), Tim Rayner (UEA), Tomas Wyns (IES-VUB), Florian Mersmann (WI), Damon Jones (CA), Bianca Kretschmer (CA), Mahlet Melkie (CA) Estimated effort contributor(s) (PM): 16.5 Internal reviewer: Tim Rayner (UEA)

Upload: vanhanh

Post on 04-Apr-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

,Horizon2020Societalchallenge5:Climateaction,

environment,resourceefficiencyandrawmaterials

COP21RIPPLESCOP21:ResultsandImplicationsforPathwaysandPoliciesforLow

EmissionsEuropeanSocieties

GAnumber:730427,Fundingtype:RIA

Deliverablenumber(relativeinWP)

D4.1

Deliverablename: Keyconcepts,corechallengesandgovernancefunctionsofinternationalclimategovernance

WP/WPnumber: WP4:AssessmentoftheadequacyofCOP21outcomesforeffectiveinternationalclimategovernanceandtheEU’srole

Deliveryduedate: Projectmonth10(30/09/2017)

Actualdateofsubmission: 29/09/2017

Disseminationlevel: public

Leadbeneficiary: IES-VUB

Responsiblescientist/administrator: SebastianOberthür

Estimatedeffort(PM): 3

Contributor(s): Lukas Hermwille (WI), Gauri Khandekar (IES-VUB),Wolfgang Obergassel (WI),TimRayner(UEA),TomasWyns(IES-VUB),FlorianMersmann(WI),DamonJones(CA),BiancaKretschmer(CA),MahletMelkie(CA)

Estimatedeffortcontributor(s)(PM): 16.5

Internalreviewer: TimRayner(UEA)

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 2

1. ChangeswithrespecttotheDoANochangesweremade.

2. Disseminationanduptake

ThisdeliverablewillprovidethebasisforthefurtherworkunderWorkPackage4oftheproject. Inparticular,Task4.2willusetheframeworkdevelopedtoidentifygapsandopportunitieswithrespectto international climate governance in a sectoral perspective. The deliverable also provides usefulbackgroundfortheworkunderWorkPackages2and3oftheproject.Outsidetheproject,thedeliverablecouldbeusedandconsultedbythebroadcommunityofexpertsandpolicymakersinterestedintheinternationalgovernanceofclimatechange.Itprovidesabasisforidentifyingthechallenges,barriersandopportunitiesthatinternationalclimategovernancefacesandpresentsbytakingasectoralperspectiveandtherebyenablingamoretargetedapproachtoaddress-ingtheclimatechangechallengeinternationally.

3. ShortSummaryofresults(<250words)

Takingasectoralperspective,thisreport(1)identifiesthekeygovernancechallengesthatexistinter-nationallytowardsthedeeptransformationsrequiredforlow-carbonsocietiesand(2)specifiestheresultingkeygovernancefunctionstobefulfilledbymeansofinternationalcooperation(internationalinstitutions).Tothisend,thereportfirstclarifiesanumberofkeyconcepts, including international(climate)governance, internationalandtransnational institutions, institutionalcomplexesandpoly-centricity,andpresentsoursectoralperspective.Itthenderivesanumberoffunctionsthatinterna-tionalinstitutionscanfulfilfromtherelevanttheoreticalandconceptualliterature.Thisprovidesthebasisforaninvestigationintothekeygovernancechallengesandthepotentialofinternationalgov-ernancein14keysectoralsystems.Oursectoralapproachenablesasectorallydifferentiatedanddetailedanalysisofthevaryingdemandforinternationalinstitutions’performanceofgovernancefunctions.Thedemandfortheperformanceofmostgovernancefunctionsvariessignificantlyinaccordancewiththespecificconditionsandcir-cumstancesprevailingineachsystem.Incontrasttoanoverallaggregateperspectiveoninternationalclimategovernancethattreatsitasoneintegratedproblem,ouranalysisadvancestowardstakingintoaccountthemultifacetednatureofthischallengeinvariousrelevantsectorsandcontexts.Italsoleadsustorealisethatvarioussectoralsystemsneedtobefurtherdisaggregatedtogetagripontheunder-lyingproblemstructuresandrelateddemandsforinternationalgovernance;differentsectoralsystemsanddifferentpartsofsectoralsystemsrequireappropriatelyadaptedresponsesandcreatevaryingdemandsforinternationalgovernance.

4. EvidenceofaccomplishmentTheresultsoftheworkareevidentfromthereportenclosed.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 3

TableofContents

Abbreviations.................................................................................................................................6

FiguresandTables..........................................................................................................................8

1. Introduction.....................................................................................................................9

2. KeyConcepts.................................................................................................................11

2.1 InternationalGovernanceandtheClimateChallenge...........................................................11

2.2 InternationalandTransnationalInstitutions.........................................................................12

2.3 InstitutionalComplexesandPolycentricity...........................................................................13

2.4 ASectoralPerspective...........................................................................................................15

3. FunctionsofInternationalGovernanceInstitutions........................................................16

3.1 GuidanceandSignalFunction................................................................................................16

3.2 SettingRulestoFacilitateCollectiveAction..........................................................................17

3.3 TransparencyandAccountability..........................................................................................17

3.4 CapacityBuilding,TechnologyandFinance(meansofimplementation)..............................19

3.5 KnowledgeandLearning.......................................................................................................19

3.6 Conclusion.............................................................................................................................20

4. SectoralAnalysis............................................................................................................22

4.0 Theselectionofsectors.........................................................................................................22

4.1 Agriculture.............................................................................................................................23

4.1.1 Currentstatusandprospect............................................................................................23

4.1.2 Mainchallengesandbarrierstowarddecarbonisation..................................................25

4.1.3 Thepromiseandpotentialofinternationalcooperation................................................25

4.2 LULUCF...................................................................................................................................27

4.2.1 Currentstatusandprospect............................................................................................27

4.2.2 Mainchallengesandbarrierstowarddecarbonisation...................................................28

4.2.3 Thepromiseandpotentialofinternationalcooperation................................................29

4.3 Waste.....................................................................................................................................31

4.3.1 Currentstatusandprospect............................................................................................31

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 4

4.3.2 Mainchallengesandbarrierstowarddecarbonisation...................................................33

4.3.3 Thepromiseandpotentialofinternationalcooperation................................................34

4.4 CircularEconomy...................................................................................................................35

4.4.1 Currentstatusandprospect............................................................................................35

4.4.2 Mainchallengesandbarrierstowarddecarbonisation...................................................36

4.4.3 Thepromiseandpotentialofinternationalcooperation................................................37

4.5 Power.....................................................................................................................................38

4.5.1 Currentstatusandprospect............................................................................................38

4.5.2 Mainchallengesandbarrierstowarddecarbonisation...................................................41

4.5.3 Thepromiseandpotentialofinternationalcooperation................................................43

4.6 Energy-intensiveindustries...................................................................................................44

4.6.1 Currentstatusandprospect............................................................................................44

4.6.2 ChallengesandBarrierstowardsdeepDecarbonisation................................................48

4.6.3 ThePromiseandPotentialofInternationalCooperation...............................................49

4.7 Extractiveindustries(‘losers’)................................................................................................51

4.7.1 Currentstatusandprospect............................................................................................51

4.7.2 Challengesandbarrierstowarddecarbonisation...........................................................55

4.7.3 Promiseandpotentialofinternationalcooperation......................................................56

4.8 Transport...............................................................................................................................59

4.8.1 Currentstatusandprospect............................................................................................59

4.8.2 Mainchallengesandbarrierstowarddecarbonisation...................................................61

4.8.3 Thepromiseandpotentialofinternationalcooperation................................................63

4.9 Internationaltransport(aviationandmaritime)...................................................................64

4.9.1 Currentstatusandprospect............................................................................................64

4.9.2 Mainchallengesandbarrierstowarddecarbonisation...................................................67

4.9.3 Thepromiseandpotentialofinternationalcooperation................................................68

4.10 UrbanSystems/Settlements..................................................................................................70

4.10.1 Currentstatusandprospect............................................................................................70

4.10.2 Mainchallengesandbarrierstowarddecarbonisation...................................................72

4.10.3 Thepromiseandpotentialofinternationalcooperation................................................73

4.11 Buildings................................................................................................................................74

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 5

4.11.1 Currentstatusandprospect............................................................................................74

4.11.2 Mainchallengesandbarrierstowarddecarbonisation...................................................75

4.11.3 Thepromiseandpotentialofinternationalcooperation................................................77

4.12 Appliances..............................................................................................................................78

4.12.1 Currentstatusandprospect............................................................................................78

4.12.2 Mainchallengesandbarrierstowarddecarbonisation...................................................79

4.12.3 Thepromiseandpotentialofinternationalcooperation................................................80

4.13 Financialsector......................................................................................................................82

4.13.1 Currentstatusandprospect............................................................................................82

4.13.2 Mainchallengesandbarrierstowarddecarbonisation...................................................85

4.13.3 Thepromiseandpotentialofinternationalcooperation................................................87

4.14 FluorinatedGHGs...................................................................................................................89

4.14.1 Currentstatusandprospect............................................................................................89

4.14.2 Mainchallengesandbarrierstowarddecarbonisation...................................................90

4.14.3 Thepromiseandpotentialofinternationalcooperation................................................91

5. Conclusions....................................................................................................................92

References.................................................................................................................................107

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 6

Abbreviations

AC AlternatingCurrent

APEC AsiaPacificEconomicCooperation

ATAG AirTransportActionGroup

BECCS Bio-energycarboncaptureandstorage

CFCs Chlorofluorocarbons

CO2 Carbondioxide

CH4 Methane

CAP CommonAgriculturalPolicy

CAPEX CapitalExpenditure

CCS CarbonCaptureandStorage

COP ConferenceoftheParties

DC DirectCurrent

EU EuropeanUnion

F-gases FluorinatedGHGs

FAO FoodandAgricultureOrganization

FFS FossilFuelSubsidies

FSB FinancialStabilityBoard

G7 GroupofSeven

G20 GroupofTwenty

GDP GrossDomesticProduct

GHG GreenhouseGas

GtCO2eq GigatonnesofCO2equivalent

HCFCs Hydrochlorofluorocarbons

HFCs Hydrofluorocarbons

HFOs Hydrofluoroolefins

IATA InternationalAirTransportAssociation

ICAO InternationalCivilAviationOrganisation

ICLEI LocalGovernmentsforSustainability

ICT InformationandCommunicationTechnology

IEA InternationalEnergyAgency

IMF InternationalMonetaryFund

IMO InternationalMaritimeOrganization

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 7

IPCC IntergovernmentalPanelonClimateChange

IRENA InternationalRenewableEnergyAgency

ISWA InternationalSolidWasteAssociation

LED LightEmittingDiode

LNG LiquefiedNaturalGas

LULUCF Landuse,land-usechangeandforestry

MDBs MultilateralDevelopmentBanks

MENA MiddleEastandNorthAfrica

MEPS MinimumEnergyPerformanceStandards

MRV Measuring,reportingandverification

MSW Municipalsolidwaste

N2O Nitrousoxide

NF3 NitrogenTrifluoride

NZEBs Net-ZeroEnergyBuildings

OECD OrganizationforEconomicCooperationandDevelopment

OPEC OrganizationofPetroleumExportingCountries

PFCs Perfluorocarbons

PV Photovoltaics

R&D ResearchandDevelopment

SF6 SulphurHexafluoride

SO2 Sulphurdioxide

SWM Solidwastemanagement

TVs Televisions

TWh TerawattHours

UNEP UnitedNationsEnvironmentProgramme

UNFCCC UnitedNationsFrameworkConventiononClimateChange

WtE WastetoEnergy

WTO WorldTradeOrganization

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 8

FiguresandTables

Table3.1:OverviewofMainFunctionsofInternationalGovernanceInstitutions..............................20

Figure4.1:AnnualForestAreaNetChangebyClimaticDomain,1990-2015......................................27

Figure4.2:GlobalForestCover............................................................................................................28

Table4.1:GHGEmissionsOverviewofEnergy-IntensiveIndustriesin2010......................................45

Table4.2:DeepDecarbonisationOptions............................................................................................47

Figure4.3:‘Unburnable’FossilFuelstoRemainwithin2°CCarbonBudget........................................52

Figure4.4:Top5CoalProducers(billionshorttonnes).......................................................................52

Figure4.5:WorldEnergyConsumptionbySource,1990–2040.........................................................53

SectoralGovernanceMatrix5.1:BarriersandChallengestoDecarbonisation...................................98

SectoralGovernanceMatrix5.2:SignificanceofGovernanceFunctions...........................................101

SectoralGovernanceMatrix5.3:MainPotentialContributionsofInternationalInstitutions...........102

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 9

1. IntroductionClimatechangeconstitutesalong-term,transformationalchallenge.Phasingoutgreenhousegas(GHG)emissionsandadapting to theevolving impactsof climatechange requirea fundamental transfor-mationofoureconomiesandsocietiesataglobalscale.Thisglobaltransformationentailsasimulta-neousconversionanddeepchangeofvarioussectoralsystems,1includingenergy,industry,transport,housing,andagriculture,thatarekeytothefunctioningofoureconomiesandsocieties.Duetotheinertiaofthesocio-technicalsectoralsystemsinvolved,thenecessarytransformationimpliesalong-termtransition2overaperiodofseveraldecades.Theindividualstepstakeninthisprocesshenceneedtobealignedwiththelong-termtargetandvision.TheParisAgreementestablishessuchalong-termvisionofachievingclimateresilience,holdingglobal temperature increasetobelow2/1.5°CabovepreindustriallevelsandphasingoutGHGemission(Arts.2and4)(e.g.Scoonesetal.2015;Incropera2015;Bulkeley&Newell2015;Levinetal.2012).

Thisreportinvestigatesthecorechallengesandfunctionsoftheinternationalgovernanceofclimatemitigationtothisend.Whileacknowledgingthecrucialimportanceofthechallengeofadaptationtobuildclimateresilience,wefocus–inlinewiththeoverallproject–onthechallengeofphasingoutGHGemissionsinthesecondhalfofthiscentury(hereafteralsoreferredtoas“decarbonisation”).Indoingso,wezoominoninternationalclimategovernance.Whilemuch,ifnotmost,actiontomitigateclimatechangeisandneedstobetakenatnationalandlocal levels,suchactionmayrequire,oratleastbenefitfrom,internationalcooperation–beittoaddressbarrierstoactionrootedininterna-tionalinterdependenceortoenable,facilitateandpromoteactionatotherlevels(e.g.Luterbacher&Sprinz,2001;Stavinsetal.,2014).

Wegobeyondexistinganalysesbydisentanglingtheoverallissueintoseveralconstituentparts.Tra-ditionaltextbookanalysesofinternationalclimategovernancethatpresentclimatechangeasacol-lective-actionproblempronetofree-ridingatthelevelofstates(Barrett,2011;Keohane&Victor,2016;Luterbacher&Sprinz,2001)donotcommonlyreflectthatconditionsindifferentsectorsandsocietalsub-systemsdifferconsiderably.Aswillbe furthersubstantiatedbelow,energy-intensive industriesdifferstarklyfrominternationalfinanceandinvestmentorthebuildingssectorwhenitcomestobar-riers to decarbonisation and related opportunities. Such differences should be taken into accountwhenthinkingabouttheneedforandpotentialofinternationalcooperation.Andsuchamorediffer-entiatedanalysispromisesconsiderableinsightsintohowthe“complex”ofinternationalinstitutionsrelevantforthefightagainstclimatechangecouldandshouldbefurtherdeveloped.

Inundertakingouranalysis,wewishtoacknowledgeupfrontthatthe(internationalandnational)gov-ernanceoftransformativeandlong-termtransitionsisnotastraight-forwardendeavour.Inlinewiththeliteratureontransitionmanagement(e.g.Grinetal.2010),thegovernanceoflong-termtransitionsrequiresregularreview,adjustmentandadaptationinlinewithevolvingconditions.Thus,ratherthansimply“steering”thetransformationprocess,thegovernanceofthetransitionisaboutexperimenting,searchingandlearning(Rotmans,Kemp,&VanAsselt,2001).

Againstthisbackdrop,thisreport–takingasectoralperspective–hasatwofoldfocusandpurpose.First,weaimto identify thekeygovernancechallenges thatexist internationally towards thedeeptransformationsrequiredfor low-carbonsocieties indifferentsectoralsystems.Second,wewishtodistillandspecifyresultingkeygovernancefunctionstobefulfilledinandforthesesectoralsystemsbymeansofinternationalcooperation(internationalinstitutions).

1 Inthefollowing,weusetheterms“sector”and“sectoralsystem”interchangeably;seealsodiscussion

insection2.4.2 Inthefollowing,theterm“transition”isusedinthistransformativesense.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 10

Tothisend,thisreportproceedsalongthefollowingmainsteps.Insection2,wefirstintroduceandclarifyanumberofkeyconcepts,includinginternational(climate)governance,internationalandtrans-nationalinstitutions,institutionalcomplexesandpolycentricity,andpresentoursectoralperspective.Inthesubsequentsection3,wederiveanumberoffunctionsthatinternationalinstitutionscanfulfilfromtherelevanttheoreticalandconceptualliterature.Section4thenintroducesthesectoralsystemswedistinguishandincludeinouranalysis,beforeinvestigatingthekeygovernancechallengesandthepotentialofinternationalgovernanceforeachofthem.Finally,section5synthesisestheresults,in-cludingacomparisonofthekeyfunctionsandpotentialsofinternationalgovernanceofthedifferentsectoralsystems.

Theapplicationofourframingofthegovernancefunctionsofinternationalinstitutionsinthesectoralanalysisenablesamoretargeted,differentiatedanddetailedanalysisofthevaryingdemandfortheperformanceofcertaingovernancefunctionsbyinternationalinstitutionsinspecificsectoralsystems.Whereasdemandforguidanceandsignalseemstobegenerallyhighacrosssectoralsystems,thescoreofother functionsvaries significantly inaccordancewith the specific conditionsandcircumstancesprevailingineachsystem.Ouranalysisthereforeadvancesfromanoverallaggregateperspectiveoninternationalclimategovernancethattreatsitasoneintegratedproblem,towardstakingintoaccountthemultifacetednatureofthischallengeinvariousrelevantsectorsandcontexts.Italsoleadsustorealisethatvarioussectoralsystemsneedtobefurtherdisaggregatedtogetagripontheunderlyingproblemstructuresandrelateddemandsforinternationalgovernance;differentpartsofthesectoralsystemsrequireappropriatelyadaptedresponsesandcreatevaryingdemandsforinternationalgov-ernance.

ThisreportlaysthebasisforWorkPackage4oftheCOP21RIPPLESprojectasawhole,inparticularforTask4.2.Thesectoraldifferentiationwill structureandguide themappingof internationalandtransnationalinstitutionsinTask4.2.Also,thesectoralanalysisofthepromiseofinternationalcoop-erationwillprovidethepointofreferencefortheassessmentofrelated internationalcooperation,includingtheidentificationofscopeforitsfurtherdevelopment.Asisusualinsuchresearch,theuse-fulnessoftheanalyticalframeworkdevelopedherewillhavetobeproveninitsapplicationinlaterpartsoftheproject,especiallyinTask4.2,andsuchapplicationmaywellleadtotheidentificationofscopeforfurtherimprovementoftheframework.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 11

2. KeyConcepts

2.1 InternationalGovernanceandtheClimateChallenge

Governance can be understood as the steering of actions/behaviour through the setting of rules,standards,orotherkindsofguidelines,orthroughtargetedsupport(capacity-building,technicalassis-tanceorfinance)towardsanexplicitly“public”goal(Roger,Hale,&Andonova,2017,pp.5–6).Suchanunderstandingofgovernanceisgenericinthatitisnotlinkedtoanyparticulartypesofactors.Itdoesnotconstituteanoppositeto“government”,asgovernancemayemanatefromgovernmentsaswellasother formsof rule-setting,etc.Wewilluse the term“governance” in thisgeneric sense in thisreport.

Internationalgovernanceconsequentlyentailsthesettingofrulesandstandardsandtheprovisionofsupportattheinternationallevel.Itcanbepursuedbyvariousactors,includingstategovernments,(associationsof)non-stateactors(bothbusiness/firmsandcivilsocietyactors),localauthorities(cities,municipalitiesandregions)andothers.Itisnottheactorsthatmakegovernanceinternational,butthefactthatthesettingofrulesandstandardsortheprovisionofsupporttranscendnationalboundaries.Internationalinstitutionsareprobablythemainplatformsofinternationalgovernance(asfurtherdis-cussedinsection2.2).

Governingtheclimatetransitionposesfar-reachingchallenges.Itwouldgobeyondthescopeofthissectiontoaspiretocharacterisethesechallengestoanexhaustiveextent(seee.g.Bulkeley&Newell,2015; Incropera,2015;Levinetal.,2012;Scoonesetal.,2015). Instead,wehighlighta fewcentralfeaturesoftheoverallchallengeofgoverningtheclimatetransition.Notleast,theclimatetransitionrequiresawidearrayofsectoralsystemstofundamentallyshifttowardslow/zero-emissiontechnolo-giesandpractices(seebelow).Mostmodelsevenrequirenegativeemissions,usuallygeneratedbymeansofnetafforestationandcarboncaptureand storage (CCS) fromtheburningofbiomass forelectricitygeneration(seesections4.2and4.5).Inlinewiththeoverallproject,wefocushereonthechallengeofdecarbonisation(ratherthanthechallengeofmovingtowardnegativeemissions).

This shift itself frequentlyentails findingand introducingnewtechnologiesand innovativewaysofsatisfyingneeds.Moreoftenthannot,theseinnovationsalsoimplybreakingwithexistingparadigmsand replacing long-established andengrained structures, including large-scale and long-term infra-structures(e.g.transport,energy/power,etc.)androutines.Hence,theclimatetransitionrequiresawidespectrumofpoliciestobeadaptedinfar-reachingways(“policyintegration”)to,interalia,de-carbonisethebuildings,transport,industryandpowersectorsandtogreenfinanceandinvestment(Dupont,2016;A.Jordan&Lenschow,2010).

WeinthisWorkPackageaimtoassesstheadequacyofinternationalgovernancearrangementsforaddressingthisgovernancechallenge.Ourfocusoninternationalgovernanceimpliesthatwecannotaspiretobringthecentralsolutiontotheclimatechallenge.Whileinternationalgovernancehasim-portantcontributionstomaketothisend,itremainsonelevelinthemulti-levelgovernancesystem,whichcannotbeexpectedtobringthesolutiononitsown.Rather,weaimtoidentifythecontributioninternationalgovernancecanmakebyelaboratingonthepotentialofinternationalgovernanceinsti-tutionsingeneralandwithrespecttothesectoralsystemsinfocus.Asinternationalgovernanceinter-actswithothergovernance levels,deficienciesof internationalgovernancedonotnecessarilyspelldoomfortheclimatetransition,andeffective/adequateinternationalgovernancedoesnotnecessarilyensurethatthe2/1.5°Cgoalwillbeachieved.Butinternationalgovernancecanattimesbenecessaryorat leastcreatesignificantaddedvalue. Internationalgovernanceoftheclimatetransitioncanbeconsideredadequatetotheextentthatitexploitsthepotentialofthisgovernancelevel.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 12

Thebenchmarkof“adequacy”assuchencompassestwointerlinkedcriteria.Firstofall,internationalgovernanceoftheclimatetransitioncanbeconsideredadequateifitasfullyaspossibleexploitsthepotentialof thisgovernance level tocontribute toclimatemitigation, in linewith literatureon the“problem-solvingeffectiveness”ofinternationalinstitutions(e.g.Young1999;Stokke2012;Milesetal.2002).Thisrequiresamoredetailedanalysisofthepotentialcontributionofinternationalgovern-anceinindividualcasesandforparticularsub-problems,asappropriate.ItisworthnotingthatinthecontextoftheobjectivesoftheParisAgreement,problem-solvingeffectivenessshouldnotonlycoverthemitigationperspective(1.5/2°Cgoal),whichisourfocushere,butalsoadaptation(Art.2.1(b))andfinancialflowsconsistentwithlow-GHGandclimate-resilientdevelopment(Art.2.1(c)).Theachieve-mentofthe2/1.5°Cgoalisnotselectedasanappropriatebenchmark,sincethiswouldbetheresultoftheinteractionandcombinedcontributionsofdifferentlevelsofgovernance(andvariouselementsoperatingattheselevels).

Moreover,Article2.1oftheParisAgreementpositsthattheglobalresponsetoclimatechangehastobe strengthened “in the context of sustainable development and efforts to eradicate poverty”. Ittherebyhighlightsthesecondaspectoftheadequacyofinternationalgovernance,namelythatitbeconsidered fair and socially acceptable. This requirement can partially be justified on normativegrounds,basedoncriteriaofgoodgovernance.Itcanalsobederivedfromtheeffectivenessobjectivesincegovernancearrangementsthatarenotconsideredfairandacceptablemaynotbestableandeffective.Moreover,internationalgovernancemayestablishorenshrinerelatednormativeprinciplesasis,forexample,thecasefortheprincipleofequityand“commonbutdifferentiatedresponsibilitiesandrespectivecapabilities(inthelightofdifferentnationalcircumstances)”(Art.3UNFCCCandArt.2ParisAgreement)intheclimateregime(cf.LukasHermwille,Obergassel,Ott,&Beuermann,2017).Thetwointerlinkedadequacycriteriawillespeciallycomeintoplayintheassessmentofexistinggov-ernancestructuresinTask4.2.

2.2 InternationalandTransnationalInstitutions

Internationalinstitutionscanbeunderstoodasnegotiated,dynamic,sectoralnormativesystemscon-sistingofrulesandpractices,includingdecision-makingprocedures,thatprescribebehaviouralroles,constrainactivityandshapeactorexpectations(Young1982;Young1989;Keohane1989;North1991;Simmons&Martin2002).Wefocusonnegotiated,purposefullycreatedinternationalinstitutionsbe-causeweareinterestedinthemasgovernanceinstruments.Wehenceexplicitlydonotincludewhathasbeencalled“spontaneousinstitutions”thatemergefromtheuncoordinatedbehaviourofactorsintheinternationalsystem(Young,1982).Suchnegotiatedinstitutionsusuallyhavetwoprincipalcom-ponents,namely(1)substantiverulesaddressingtheissueatstake(climatechange,worldtrade,etc.)and (2) procedural rules for making and implementing decisions, which may include develop-ment/changeofthesubstantiverules(Gehring,1994;Young,1980).Asmentioned,theycanbecon-sideredmainplatformsofinternationalgovernance.

Therelevantliteratureinparticulardistinguishesthreetypesofnegotiatedinternationalinstitutions.Firstamongtheseareformalinternationalorganisations(suchastheWorldTradeOrganization–WTO,theFoodandAgricultureOrganization–FAO,ortheInternationalMonetaryFund–IMF).Internationalorganisationsareusuallyestablishedbystatesthroughintergovernmentalagreementscontainingthestatutesoftheorganisation.Internationalorganisationspossessthemselvesactorqualities,includingaphysicallocation(“aseat”),astaffofemployeesandusuallylegalpersonality(Young,1986).

Second,internationalregimesservetogovernspecificissueareasusuallyonthebasisofintergovern-mentaltreaties,asfurtherdevelopedthroughsubsequentdecision-making(frequentlybytheConfer-enceoftheParties–COP).Hence,theclimatechangeregimerestsontheUnitedNationsFrameworkConventiononClimateChange(UNFCCC),theKyotoProtocolandtheParisAgreement–whichhave

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 13

beenfleshedoutbydecisionsoftheCOPs.Internationalregimesareusuallyservedbyasecretariat,whichmayitselfbeprovidedbyaninternationalorganisation(butcanalsobeself-standingasisthecaseoftheUNFCCCsecretariat)(Levy,Young,&Zürn,1995).

Third,weincludeinouranalysistwotypesoftransnationalinstitutions/regimesthatfeaturenon-stateactorsastheirmembers:privatetransnationalinstitutionsfeatureonlynon-stateactorsastheirmem-bersandhybridtransnationalinstitutionshavebothnon-stateandstateactors/governmentsastheirmembers.Theemergenceandriseoftransnationalinstitutionsreflecttheemergenceandriseofnon-stateactorsininternationalpoliticsmoregenerally,includingfirms,civilsocietyorganisationsandlocalauthorities (cities,municipalities, regions). In climategovernance, transnational institutions includethegrowingnumberof“internationalcooperativeinitiatives”andtransnationalnetworks(suchasvar-iouscitynetworks,privatecertificationinitiatives,etc.)(Abbott,2012;Bulkeleyetal.,2014;Sanderink,Widerberg,Kristensen,&Pattberg,2017;Widerberg&Stripple,2016).

Inviewoftheproliferationofinternationalfora,coalitionsandnetworks,itseemsimportanttoclarifywhichofthesedoordonotqualifyasinternationalinstitutionsforthepurposesofourresearch.Asmentionedabove,weareinterestedininternationalgovernanceinstitutions.Assuch,theinstitutionsshouldconsistofidentifiablerulesandpractices(aimedataffectingbehaviour),becapableofcollec-tivedecision-makingandfulfilrelevantfunctionssuchasrule-setting,provisionsofmeansofimple-mentationorgenerationofknowledgeinpursuitofapublicgood(seealsosection3ongovernancefunctions).Soft-lawinstitutionssuchastheGroupofSeven(G7)orGroupofTwenty(G20)wouldap-peartobecoveredbysuchanunderstanding,whereaspureassociationsoffirms(suchastheInterna-tionalChamberofCommerce)wouldratherconstitutealobbythananinternationalgovernanceinsti-tution.Whileborderlinecaseswillcertainlyexist,thisunderstandingshouldenableustoavoidcon-fusing international coalitions and lobby groups with international governance institutions. Whilethereisnotnecessarilyaminimumrequirementregardingthefunctionstobefulfilled,itshouldbeusefultokeepinmindthegeneralrequirementofaconsequentialnormativecorethatformspartofthegeneraldefinitionofinstitutionsintroducedabove.

Wewillinthefollowinganalysisusetheterm“internationalinstitutions”torefertoallthreeafore-mentionedcategories,namelyinternationalorganisations,internationalregimes(bothconstitutingin-tergovernmentalinstitutions)andtransnationalinstitutions/regimes.

2.3 InstitutionalComplexesandPolycentricity

Researchoverthepasttwodecadesorsohasincreasinglyhighlightedthatinternationalgovernanceinstitutions do not operate in isolation but form so-called “institutional complexes” (Oberthür &SchramStokke,2011;Orsini,Morin,&Young,2013;Raustiala&Victor,2004).Aninstitutionalcomplexcaningeneralbeunderstoodasanetworkofthreeormoreinternationalinstitutionsthatrelatetoacommonsubjectmatter;exhibitoverlappingmembership;andgeneratesubstantive,normative,oroperativeinteractions(Orsinietal.,2013).Forexample,KeohaneandVictorhaveidentifiedaregimecomplexonclimatechangeincludingahostofprimarilyintergovernmentalfora(suchastheMontrealProtocoladdressingfluorinatedGHGs,variousminilateralforaandothers)(Keohane&Victor,2011).Suchinstitutionalcomplexesmayalsobesubdividedindifferentways,asvarioussubgroupsofinsti-tutionsmayaddressparticularsectorsorspecificgovernance functions(Oberthür&Justyna,2013;Orsinietal.,2013).

Althoughcomposedofformallyunconnected,non-hierarchicalanddifferentiatedgovernanceinstitu-tions,institutionalcomplexesarenotnecessarilycharacterisedbyregimecollisionsandconflicts.Ra-ther,a“patchwork”(Biermann,Pattberg,VanAsselt,&Zelli,2009),of institutionscancomplementeachotherratherthancollideandhenceformaninter-institutionalorder.Suchaninter-institutionalordermaybemoreorlesseffectiveandefficientandcanbecharacterisedbytensionsbetweenthe

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 14

relevantinstitutions.Accordingly,existingresearchsuggeststhattherelationshipbetweendifferentoverlappinginstitutionsmaybebestunderstoodasaninter-institutionalequilibriumthat,overtime,formsanddeepensspecific“divisionsoflabour”(Gehring&Faude,2014;Oberthür&SchramStokke,2011).Theemergenceofsuchinter-institutionaldivisionsoflabourisnotleastdrivenbythedesireofactorswhoaremembersofseveralinstitutionstopreventopenconflictandtobeabletosustaintheseinstitutions.Asaresult,enhancingandgoverninginstitutionalcomplexesdoesusuallynotentailcre-atingorder,butchangingordeepeningit(Oberthür,2016).

Howcouldanexistingorderordivisionoflabourininstitutionalcomplexesbesteeredorgoverned?Thepossibilityofsuchgovernanceisimmanentintheconceptsof“interplaymanagement”(Oberthür,2009)and“orchestration” (Abbott,Genschel,Snidal,&Zangl,2015).Accordingly, it is important torealisethatinstitutionalcomplexesandtheirstructuresresultfromcollectivedecision-makinginthevariouscomponentinstitutionsinthefirstplace.Hence,theycanalsobechangedandshapedthroughthecollectivedecision-makinginthevariousinstitutionsthatformthecomplex.Inaddition,onecouldconsidercollectivegovernanceofinstitutionalcomplexesthroughoverarchinginstitutionsand/orco-ordinationbetweenthecomponentinstitutions,whichhas,however,remainedtheexceptiontodate.Actionintheindividualinstitutionsthatmakeupaninstitutionalcomplexhasremainedthemajorformoftheirgovernance(Oberthür,2016).Insomecases,centralinstitutionsmayspecificallyperformanorchestratingfunctioninthisrespect.

Theconceptof“polycentricity”or“polycentricgovernance”tosomeextentoverlapswiththenotionof institutional complexes,but italsogoesbeyond it.3Bothconceptsarebasedon thenotion thatgovernanceoccursthroughmultipleunits(institutions).Whileresearchoninstitutionalcomplexeshastraditionallyfocusedoninternationalregimesandorganisations,polycentricgovernancecaststhewebevenwiderbyincludingtransnationalarrangements(includingprivate/sub-stateactors)andinstitu-tionalarrangementsbelowthethresholdofformalregimes/organisations(suchaspartnershipsandinternationalcooperative initiatives) (Bulkeleyetal.,2014;A. J. Jordanetal.,2015;Ostrom,2010).Polycentricgovernanceeveninprincipleincorporatesamulti-levelperspectiveandhencetranscendsafocusoncooperationacrossborders.Whileourfocusisoninternationalandtransnationalcoopera-tion,wedoincludethewiderangeofinstitutionalarrangementsintoournotionofinstitutionalcom-plexes,inlinewithresearchonpolycentricgovernance.

Overall,thereisawiderangeofconceptsandtermsinuseinrelevantliteraturetorefertotherealitythat internationalgovernance invirtuallyall issueareasof internationalrelations, includingclimatechange, occurs through various fora and arrangements. Relevant catchwords include “institutionalfragmentation”,“governancearchitectures”andothers. Inthisproject,we interchangeablyemploy“institutionalcomplexes”or“governancelandscapes”asdenotingthisphenomenon.

Inconclusion,wewillanalyseinternationalgovernanceasbeingadvancedthroughvariousinstitutionalarrangements,includinginternationalorganisations,internationalregimesandtransnationalinstitu-tionsandarrangementsthatinteractwitheachotherinspecificways.Itfollowsthatwe(especiallyinTask4.2)havetolookatallinstitutions/institutionalarrangementsthatarerelevantforaspecificchal-lenge/functioninordertoassessachievementsandshortcomings(andtoidentifypossiblevenuesforenhancinggovernance).

3 Italsohasastrongnormativecomponentaspolycentricityisconsideredaspotentiallysuperiorinterms

ofeffectiveness(andlegitimacy),somethingthatwouldneedtobeinvestigatedempirically.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 15

2.4 ASectoralPerspective

Inthisreport,wetakeasectoralperspective.Wetherebyreflectthat,overrecentyears,ithasbecomeincreasinglyacknowledgedthatconditionsfordecarbonisationvaryconsiderablyacrossdifferentsec-torswhichhencerequirespecifictargetedapproachesandpolicies(e.g.Dupont&Oberthür2015),asalsoimmanentintheconceptofclimatestabilizationwedges(Pacala&Socolow,2004).Accordingly,thenumberofinternationalinstitutionsandinitiativesthataddressparticularsectorsandsub-sectors–differentaspectsofthechallengeofclimatechange–hasthusbeenincreasing.Whileclimatechangeadmittedlyconstitutesachallengethatcutsacrossdifferentsectorsandisthusoverarching,thereisthereforegoodreasontoanalysetheconditionsfordecarbonisationandthepossiblecontributionofinternationalgovernancetothisendfromasectoralperspective.

Thisraisesthequestionhow“sectors”shouldbedefined:howshouldwegoaboutdelimitingsectorsfor thepurposesofouranalysis?Variousemissionsectorsas reflected inemission inventoriesanddatabasesmaynotnecessarilybesuitableforourpurposesifthedelimitationdoesnotcorrespondtousefulunitsforgovernanceefforts(e.g.whereindustrialemissionsareseparatedintodirectenergy-relatedemissionsandprocessemissions).Similarly,variouseconomicsectorsdistinguishedinthelit-eraturemaynotnecessarilybesuitable.Becauseofourgovernanceperspective,weaimatidentifyingsystemsofrelatedactors,technologies,infrastructures,institutionsandideasthatfulfilspecificiden-tifiablesocietalfunctionsandmayhenceprovideforsuitableunitsforpoliticalgovernance/steering(Schot&Laur2016,p.18;seealsoBorrás&Edler2014).Becausesuch“sectors”formsocio-technicalorsocialsystems,werefertotheminthefollowingas“sectoralsystems”.

Weunderstandsuchcomplex“sectoralsystems”asopensystems.Assuch,theyarenotstrictlysepa-ratedfromothersectoralsystems,butmayevenoverlapandbecloselyrelatedtothem.Definingthesystemboundaries foranalyticalpurposes is thereforenecessarilyarbitrarytosomeextentandre-quiresresearcherstomakeinformedchoices.Wethereforewishtoacknowledgethatalargenumberofoverlapping“sectoralsystems”couldprincipallybeidentified,alsobecausesystemsfrequentlycanbesubdividedintofurthersub-systems,dependingonthepreferencesandchoicesoftheanalyst.

Underthesecircumstances,itseemsparticularlywarrantedtoprovidefulltransparencyofthechoicesmadeand theguidingcriteria. In identifyingour sectoral systems,wepragmatically started fromanumberofestablished,widelyrecognisedsectordistinctions(asforexamplereflectedinreportingtotheUNFCCC,theEuropeanCommission,Eurostat,theUSEnvironmentalProtectionAgency,andsectordivisionsoftheIPCC).Wethenadaptedandcomplementedtheseinaccordancewithouraforemen-tionedconceptualisationofsectoralsystemsguidedbythefollowingconsiderations:(1)coverageofGHGemissions;(2)apragmaticpreferenceforlargersystems(soastokeepthenumberofsectoralsystemsmanageable);and(3)the inclusionofkeyemergingconceptsandfieldsofaction(seealsobelowsection4).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 16

3. FunctionsofInternationalGovernanceInstitutions

Thereisarichliteratureelaboratingonthefunctionsandeffectsofinternationalinstitutionsandin-ternational governance/cooperation (Bulkeley et al., 2014; De Búrca, Keohane, & Sabel, 2014;Loorbach,2010;Simmons&Martin,2002;Stokke,2012;Young,1999).Wetakeinspirationfromthisliteraturefordistillingfivekeyfunctionsthatinternationalgovernanceinstitutionscanfulfil.Thepur-poseistospecifyhowinternationalinstitutionsmayhelpadvancetheclimatetransition.Identifyingtheircoregovernancefunctionsshouldallowustopinpointthepotentialofinternationalinstitutionsinthisrespect.Whiletheaforementionedliteraturemaycutthefieldinvaryingways(e.g.Young&MarcA.Levy1999),webelievethatourcategoriescoverthemainfunctionsofinternationalinstitu-tionsasdiscussedintheliterature.

Allthegovernancefunctionsderivefromthefactthatdynamicinternationalgovernanceinstitutionsconstitutebothnormativesystemsanddecision-makingprocesses (Gehring,1994).Hence, interna-tionalinstitutionsfirstofallentailrulesandnormsthatcanprescribe,proscribe,permitordirectrele-vantbehaviourofstatesandotheractors.Butbeyondsuchrulesandnorms,aninternationalcommu-nicationanddecision-makingprocessisalsousuallyconstitutiveofinternationalgovernanceinstitu-tions.Suchinstitutionsprovideforaforexchange,deliberationanddecision-makingthatallowactorstointeractandlearn.Theytherebyhelpsynchronisediscoursesacrosslevelsofgovernance,frametheissueathand,shapeparties’interestsandenablethedevelopmentoftheinstitution.Thefunctionsdistinguishedinthefollowingcantovaryingdegreesbetracedbacktotheseconstitutivecharacteris-ticsofinternationalgovernanceinstitutions.

3.1 GuidanceandSignalFunction

Theguidanceandsignalfunctionofinternationalinstitutionsderivesmainlyfromtheprinciplesandobjectivesonwhichtheyarecommonlybased(andhencefromthenormativedimensionofinterna-tionalinstitutions).Whilenotnecessarilyhighlightedininstitutionalandregimetheory,internationalinstitutionsareregularlyestablishedforaspecificpurpose(advancingfreetrade,protectinghumanrights,limitingclimatechange,etc.).Thispurposeiscommonlyvisiblefromprinciplesandobjectivesenshrinedintheunderlyingtreatyorstatutesand/orcanbefurtherdevelopedandspecifiedthroughsubsequentinstitutionaldecision-making.Accordingly,especiallytheobjectivescontainedintheParisAgreementhavebeenfoundtoentailstrongguidanceastheysignaltheresolveofgovernmentsacrossthe world to take far-reaching action on climate change (Bodansky, 2017; Falkner, 2016; LukasHermwilleetal.,2017;Morseletto,Biermann,&Pattberg,2016).

Thepotential,reachandsignificanceofthissignalfunctionofcontemporaryinternationalinstitutionsgoesmuchbeyondtherespectiveinternationalinstitutionperseandtheinternationallevelingeneral.Theprinciplesandobjectivesenshrined inan international institution firstof all reflect agreementamongitsmembersandestablishcollectiveexpectationsandacommitmenttothedevelopmentoftheinstitutionamongthesememberscooperatingattheinternationallevel.Withincreasedtranspar-encyandmeansofcommunicationaswellagrowingparticipationbyvariousnon-stateactorsinpro-cessesof internationalgovernanceover thepastdecades,suchagreementreachedwithin interna-tionalinstitutionscangenerateeffectsfarbeyondtheprocessofinternationalcooperationitself(evenshortofformalimplementingactivities).Itsignalstheresolveofgovernments(orothermembersofinternationalinstitutions)topursueacertaincourseofactionandhenceindicateslikelypolicytrajec-toriestobusiness,investorsandotheractorsoperatingatalllevelsofgovernance.Assuch,thesignalanddirectionprovidedhasthepotentialtohelpsynchroniseandaligndevelopmentsacrosslevelsofgovernanceandacrosstheboundariesofdifferentcountries(Kanie&Biermann,2017).Accordingly,it

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 17

canbearguedthattheParisAgreementgenerallyprovidesanimportant(thoughimperfect)signaltobusinesstoinvestinlow-orzero-carbondevelopment(Falkner,2016).

3.2 SettingRulestoFacilitateCollectiveAction

Oneof thebest-known functionsof internationalgovernance institutions is setting rules toenablecollectiveactionontheissueathand.Theprimarytooltowardsthisendisestablishingobligationsandstandardsofbehaviourtowhichpartiessubscribe.Partiestointernationalinstitutionsthusagreetocertainreciprocalobligations,whichcanbeofmoreprocedural(“obligationsofconduct”)orofmoresubstantivenature(“obligationsofresult”)(seediscussioninOberthürandBodle2016).Theimple-mentationofsuchobligationsbyindividualpartiesisthenexpectedtoleadtobehaviouraleffectsthatcontributetotheresolutionoftheproblemathand(andtoachievingtherelatedobjectives;seepre-vioussection).

Obligationsandstandardsofbehaviourdirectedataddressing the issueathandcan takedifferentforms(dependingonproblemcharacteristicsandthepoliticalchoiceofparties).Theymayprohibitorprescribecertainbehaviour.Theymayalsoharmonise (technical) standards– implyingbehaviouraladaptationsofactors.Prescriptionscoulddirectlyaddressthebehaviourcausingtheproblemorcouldtrytoprovideincentivesforadaptingthisbehaviour(e.g.whendeterminingrulesforthelabellingofproductstofacilitateconsumerchoice).Inshort,internationalobligationsandstandardsofbehavioursmayspanthewholerangeof(environmental)policyinstrumentsandapproachesfrom“commandandcontrol”overmarket instruments to informational instruments (A. Jordan,Benson,Wurzel,&Zito,2012;Sterner&Coria,2013;Wurzel,Zito,&Jordan,2013).

Differentproblemsmaygeneratevaryingdemandsforinternationalrules.Infact,someproblemsmaynotrequiresuchcollectiveactionatall(e.g.reformoflocalpublicadministrations).Addressingotherproblemsmayimplystrongerorweakerlevelsofinternationalinterdependencesothatoneactor’sbehaviourmaybecontingentonanotheractor’sbehaviourtovaryingdegrees.Forexample,onecoun-try’srestrictionsonGHGemissionsofcertainindustriesmayimplydirectcoststhatimmediatelyaffecttheinternationalcompetitivenessofthisindustry.Inothercases,suchcostsmayarisemoreindirectly(e.g.becauseofregulatoryburden).Undersuchcircumstances,internationalinstitutionsallowactorstocodifyobligationstoenableandfacilitatecollectiveaction.

Thedifficultyofachievingagreementonrelatedobligationsnotleastarisesbecauseofthedistribu-tionalconflictsinvolved.Agreementonrulesrequiresagreementonthecontributionofeachindivid-ualpartyandhenceonaburden-sharing.Itnotonlyrequiresanunderstandingthatcollectiveactionisrequiredorbeneficialbutalsowhateachindividualactor’sfaircontributionshouldbe.Asaresult,individualpartieswillnotonlytryhardtogetthebestdealforthem,butissuesofequityandfairnessalsolurk(withconsiderablepotentialfordivergingviewsonwhatthesemaymeaninpractice).

Theirprocessdimensionimpliesthatnegotiateddynamicinternationalinstitutionscanmakethein-frastructureavailableforreachingagreementonrules–andfordevelopingthemfurther.Theyprovideforumsfordiscussionsandaframeworkforthepreparationandmakingofcollectivedecisions.Hence,theyprovidetheopportunitytosynchronisediscoursesanddevelopcommonunderstandingsandtofurtherdeveloprulesandobligationsovertime.

3.3 TransparencyandAccountability

Internationalinstitutionsfrequentlycontributetoenhancingthetransparencyofactionsoftheirpar-ties,collectingandanalysingrelevantdataandidentifyingandaddressingproblemsinimplementation

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 18

(hereinafterreferredtoas“transparencyandaccountability”).They(i.e.theirbureaucracies/secretar-iats)maythemselvescollectandaggregaterelevantdataormayrelyonreportingbyindividualpartiestotheinstitution,withthelatterprovidingarationaleforreview/verificationinordertoensuredataqualityandcomparability (Gupta&vanAsselt,2017).Such“measuring, reportingandverification”(MRV)alsoprovidesforaformofimplementationreviewasabasisforidentifyingpossibleimplemen-tationproblems.Internationalinstitutionscanfurthermoreentailspecificmechanismsforaddressingsuchimplementationproblems.Notleast,modernmultilateralenvironmentalagreementscommonlyincludecomplianceprocedures/mechanismstothisend(Bulmer,2012;Trevesetal.,2009)andinter-nationaltreatiesgenerallyforeseemechanismsforthesettlementofdisputesbetweenparties.

Thetransparencyatstakehererelatesspecificallytotheimplementationofagreedrulesbytheparties.Itshouldnotbeconfusedwithbroadernotionsoftransparency.Forexample,labellingrulesandotherinformationalpolicyinstrumentsmaysupporttransparencyofcertainproductcharacteristicsforcon-sumers.Whilethismayqualifyasaspecificpolicyapproachunderthefunctionof“settingrules”,thefunctionof“transparencyandaccountability” inthiscasewouldrelatetowhethermembersoftheinstitutionhadproperlyimplementedthelabellingscheme/informationalinstrument.

Thelevelofdemandforspecificmechanismstoenhance/ensuretransparencyandaccountabilityde-pendsontheproblemathand.Forexample,“coordinationproblems”requirelessoversightandveri-ficationsinceallpartieshaveanincentivetoimplementtheinternationalrulesoncetheyareagreed.Incontrast,“cooperationproblems”involvemixedmotivesofactorsandconsequentlyanincentivetotakea“freeride”.Hence,theyareconsideredtoentailastrongdemandformechanismstoensuretransparency and accountability (Snidal, 1985). Furthermore, some activities are intrinsicallymoretransparentthanotherssothattheneedforspecificmechanismstoensuretransparencyvaries.Forexample,itisfarmoredifficulttoestablishwhetheranoiltankerreleasedoilatseathanwhetherithassegregatedballasttanksthatreducetheincentiveforreleasingoilatsea(Mitchell,1994).Finally,thedemandforspecificmechanismsforaddressingimplementationproblems(andrelatedconflicts)dependsontheincentivestructurerelevantactorsarefacing.Insomeinstances,ensuringtranspar-encymaybesufficienttoensureeffectiveimplementation.Forexample, long-standingnon-compli-ancebySovietwhalingboats inAntarcticwaterswithcatch limitsunder the InternationalWhalingConventionceasedinthe1970swhennewinspectionarrangementsensuredthatsuchnon-compli-ancewouldbedetected(Oberthür,2000).Putpositively,mechanismsensuringtransparencyandac-countabilityalsohavethepotentialthateffectiveimplementationreceivesvisibilityandacknowledge-mentandistherebyencouraged(onthebasisofpublicsupportfortheobjectivespursued).

Overall,highlevelsoftransparencyandaccountabilityaregenerallyconsideredtosupporttrustamongpartiesaswellaseffectiveimplementation.Thisdoesneitherimplythattheywouldbeeasilyachievednorthattherecouldnotbeproblematicimplications.Devisingappropriatemechanismsfrequentlyismarredwithsimilarconflictsasdiscussingtheactualsubstantiveobligations.Moreover,ithasbeenarguedthatbeingheldtoaccountmaylimittheambitiousnessofthetargetsactorsarewillingtoadopt(Bodansky,2012).Onbalance,however,transparencyandaccountabilityarewidelyheldtoenhancetrust,providecertaintytoactorsthatotherswillreciprocateandpromotelearningandcommonun-derstanding(Bodansky,2010;Mitchell,1998).

WhereastransparencyandaccountabilityareknowntoconstitutemajorissuesintheUNnegotiationsonclimatechange(sincetheyrequireagreementonrelatedrules),lessisknownabouttheirrolewithrespecttospecificsectoralsystems.Reporting,reviewandverificationandcompliancehavebeenma-jorissuesinthecontextoftheUNFCCC,theKyotoProtocolandtheParisAgreement.HowtomeasureandaccountforGHGemissionsandsinkshasmajorimplicationsfortheamountofemissionsandtheachievementofrelatedtargets.Appropriatedatacollectionandreportingisfundamentaltoanyat-temptataddressingclimatechangeandgoverningtheclimatetransition.Inthecontextof interna-tionalclimateagreements,theyenabletoaddressandremedythedangeroflackofimplementation

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 19

(“freeriding”)byindividualcountries.Lessisknownabouthowthedemandfortransparencyandac-countability(and,byimplication,theneedtofacilitatecollectiveaction–seeabove)inasectoralper-spectiveputcentralhere.

3.4 CapacityBuilding,TechnologyandFinance(meansofimplementation)

Theprovisionofcapacitybuilding,technology(transfer),andfinancialresourcesisespeciallyrelevantinaNorth-Southcontext.Itisbasedontheinsightthatfrequentlyimplementationisdeficientbecauseofalackofthesemeansofimplementation,especiallyindevelopingcountries(Chayes&Chayes,1993).Amorerecentadditionalrationaleforprovidingsuchmeansconcerns“compensation”for lossanddamagessufferedasaresultofenvironmentallydetrimentalbehaviour.Accordingly,variousmultilat-eralenvironmentalagreementsdoengage in relevantprogrammesandhave financialmechanismsandvariousinternationalfinancialinstitutionsexisttothisend,includingtheWorldBank,severalMul-tilateral Development Banks, the Global Environment Facility, the Green Climate Fund and others(Bodansky,2010;Keohane&Levy,1996).

Therationaleforprovidingsuchmeansofimplementationthroughinternationalinstitutionsisindirect.Onemayquestionwhycapacitybuilding,technologyandfinanceshouldbeprovidedthroughinterna-tionalinstitutions–andother(bilateral)channelsdoindeedexist.However,internationalcooperationbringsatleasttwoimportantadvantages.First,itallowsdonorstocoordinateandtherebyaddressthesecond-ordercollective-actionproblemofwho isgoing toprovidehowmuch to theoveralleffort.Second,itallowstoreapefficiencygainsrootedinthefactthatsimilarissuesneedtobeandcanbeaddressedinvariouscountriesandcontextsdrawingonsimilarexpertiseandlessons(therebyreduc-ing “transaction costs”). Resources can thereby be pooled and duplication of effort minimised(Keohane&Levy,1996).

3.5 KnowledgeandLearning

Finally,internationalgovernanceinstitutionscancreateknowledgeandprovideplatformsforindivid-ualandsociallearning.Knowledgecanrelatetoscientific,economic,technicalandpolicyaspects.Itcanconcerntheunderstandingoftheproblemathandorpossiblesolutionstothisproblem(includingtechnologicaldevelopmentorotherkindsofsolutions).Learningcanemanatefromsuchinformationanditsexchangeattheinternationallevel,forexampleonbestpractices.Thefunctionofknowledgeandlearningincludesawarenessraisingandmaycontributetoachangeofvaluesandculturalpredis-positions(Haas1990;Young&Levy1999;Hasencleveretal.1997).

Internationalinstitutionscanenhanceknowledgeandinformationaswellaslearninginvariousways,primarily in their process dimension. They may collect and aggregate relevant data and otherknowledge(e.g.theWorldEnergyOutlookpublishedannuallybytheInternationalEnergyAgency,IEA).Actorsmayalsoestablishcertaininternationalinstitutionsmainlyforthepurposeofacollectiveap-praisalofavailableknowledge(e.g.theIntergovernmentalPanelonClimateChange, IPCC).Ortheymayestablishparticularprocessesandbodiestothisendintheframeworkofabroaderinstitution(Parson,2003).Asmentionedabove,mechanismstoprovidefortransparencymayalsogeneraterel-evantknowledge.Whiletheseprocessesallowindividualactorstolearn,policylearningmaybepro-motedbyexchangeanddiscussionofrelevantinformationinthecontextofsuchinternationalinstitu-tions.

Theeffectivenessandinfluenceofthisknowledgeandinformationnotleastdependsonitsacceptancebyindividualactors.Thisacceptanceisnotleastsupportedthroughtheprocessofcollectiveappraisalthatallowspartiestostriveforconsensualknowledge(seealsoMitchelletal.2006).Itmayalsobefurtheredbythegeneralauthorityoftheinstitutioninquestion(suchastheIEAonmattersofenergy).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 20

Actorsmayespeciallybeopentolearningwhichpoliciesworkiftheyareinterestedinaddressingtheissuetargetedbythesepolicies.

Theeffectsofknowledgecreationandlearningmaybefeltbothintheinternationalprocessandintheimplementationbyindividualactors.Consensualknowledgehasthepotentialtohelpadvanceinter-nationaldiscussionsoncollectiveaction/settingrulessinceitprovidesacommonbasisandframesandlimitspolicyoptionsconsidered(Gehring,2007). Itmayalsohelpshapeimplementingbehaviourofindividualactorsbyaffectinghowtheyperceivetheirinterests,andpolicylearningmayhelpdevelopactors’policies.

3.6 Conclusion

Wehaveherederivedfivemainfunctionsofinternationalgovernanceinstitutionsfromthegeneralliterature on international (environmental) institutions and cooperation. Accordingly, internationalgovernanceinstitutionscanprovideimportantguidanceandsignalstobothpublicandprivateactors.Theycanalsosetrulestofacilitatecollectiveactionacrossborders.Transparencyandaccountabilityprovisionscanenhancemutualtrustandensureagainst“freeriding”.Internationalinstitutionsalsoallowtoenhanceassistancetocountriesandactorsinneedbypermittingdonorstocoordinateandreducetransactioncosts.Andtheycancontributetoan improvedandcollectivelyappreciatedandacceptedunderstandingoftheproblemanditspossiblesolutionsaswellastolearningabouteffectivepolicies.Table3.1presentsthekeyfeaturesandpotentialaddedvalueoftheperformanceofthesefunctionsbyinternationalinstitutions.

Table3.1: OverviewofMainFunctionsofInternationalGovernanceInstitutions

Functions Keyfeatures Mainaddedvalue

GuidanceandSignal

• Resultsfromoverallagreement,includingtargets/objectives • Alignsactorsacrosscountries

SettingRules • Variousformsofobligationsandstandards

• Harmonises/alignsobligationsforactorstherebyaddressinginter-dependence&competitiveness

TransparencyandAccountability

• Reporting,review/verification,compliance

• Contributestoeffectivereciproc-ityandimplementation(address-ingfreeriding)&mutualtrust

MeansofImplementation

• Capacitybuilding,technologytransferandfinance(North-South)

• Enhancingcapabilitiesbycoordi-natingdonorsandreducingtrans-actioncosts

KnowledgeandLearning

• Generationandcollectiveappre-ciationofinfor-mation/knowledge

• Scienceandpolicylearning

• Improvedandsharedunderstand-ing(authoritativeknowledge)

• Improvedpolicies(learning)

Source:authors’owncompilation.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 21

Whileouranalysisismeanttocoverthemainfunctionsinternationalinstitutionscanperform,notallinstitutionsnecessarilyfulfilallofthesefunctions.Rather,differentinstitutionsmayperformvaryingmixesofthesefunctionsdependingonthespecificissuetheyaddressandthewayinwhichmembersdesignedtheinstitutioninresponse.Forexample,insuranceagainstfree-ridingwillonlyberequiredincasesof“cooperation”problems(asopposedto“coordination”problems).Also,transparencyandaccountabilitymechanismswillmost likelyrequireobligations in the firstplace (eventhoughthesecouldemanatefrombroadlyacceptedsocialnormsratherthantheexplicitprovisionsoftheinstitu-tion).Hence,theneedanddemandfortheprovisionofthesefunctionsdependsonthegovernancechallengesandconditionsfacedwithrespecttotheparticularcooperativeprojectpursued.Thisalsoimplies thatgovernance in international institutionscantakedifferent formsandvary in itsdepth,rangingfrom“shallow”exchangesofnationalexperiencestothesetting/harmonisationofcommonbindingstandards.Thereisnominimumofcorefunctionsanarrangementneedstofulfilinordertoqualifyasaninstitution.However,itmightbeworthremindingthattheoveralldefinitionofinterna-tionalgovernanceinstitutionsimpliesthattheyderivefromnegotiatednormativesystemsthatincludedecision-makingproceduresandshapeactors’behaviourand/orexpectations.

Thefivemainfunctionsofinternationalgovernanceinstitutionsintroducedherewillguideouranalysisofthesectoralsystemsinthenextsection.Asaresult,thenextsectionwillinvestigatetowhatextentthereisdemandandscopeforsuchfunctionsinthesectoralsystemconsideredandtowhatextentthefunctionsthatinternationalgovernanceinstitutionsmayperformmaypromiseaddedbenefitsintermsofadvancingtodecarbonisationinthesectoralsystem.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 22

4. SectoralAnalysis

4.0 Theselectionofsectors

As indicated in section2.4above,oureffort involves identifyingandselectinga limitednumberofsectoralsystemsforfurtheranalysis.Startingfromanumberofestablished,widelyrecognisedsectordistinctions(asforexamplereflectedinreportingtotheUNFCCC,theEuropeanCommission,Eurostat,theUSEnvironmentalProtectionAgency,andsectordivisionsoftheIPCC),wepragmaticallyidentifiedanumberofopensectoralsystemsof interactingand inter-relatedactors, technologies, infrastruc-tures,institutionsandideasthatfulfilspecificidentifiablesocietalfunctions.

Asalargenumberofsectoralsystemscouldpotentiallybedistinguishedonthisbasis,wealsopaidattentiontothefollowingconsiderations.First,weattemptedtocovertheanthropogenicsourcesandsinksofGHGemissionsascomprehensivelyaspossible.Second,weratheroptedforlargersystems(e.g.forenergy–intensiveindustriestogetherratherthanindividualsuchindustriessuchasthesteel,cement,chemicaletc.industries)forpragmaticreasonsoffeasibility(i.e.tokeepthenumberofsec-toralsystemsmanageable).Finally,westrovetocaptureimportantemergingconceptsandperspec-tives(namely“wedges”)withasignificantpotentialforaddressingGHGemissions(e.g.circularecon-omy,urbansettlements/systems).

Onthisbasis,weincludethefollowing14sectoralsystemsinouranalysis:

• Agriculture(animalhusbandryandcultivationofplants);

• Landuse,land-usechangeandforestry(LULUCF-includingdeforestation,afforestation,de-forestation,cropland,grasslandetc.);

• Waste(wastetreatmentanddisposal);

• Thecirculareconomy(especiallyproductdesign,recycling,reuse,etc.–closelyrelatedtothewastesector);

• Powersector;

• Energy-intensiveindustry(withafocusonironandsteel,aluminium,cement,andchemicals);

• Extractiveindustries(‘losers’–especiallymining,fossilfuelproduction,phasedownofcoal,fossilfuels,etc.,subsidies);

• Transport(carmanufacturing;passengerandfreighttransport,includinginfrastructure);

• Internationaltransport(aviationandmaritime);

• Urbansystems/settlements;

• Buildings(especiallyspatialheatingandcooling);

• Productsandappliances;

• Financeandinvestment;

• FluorinatedGHGs(productionandconsumption).

Wewishtoacknowledgethatthisselectionisinescapablytosomeextentarbitraryandlimited.Sec-toralsystemscouldhavebeendefinedindifferentways(includingdistinctionofsubsystemsassystems)andotherareasofactivitymighthavebeenincluded(e.g.wedidnotincludeclimategeoengineering).However,weareconfidentthatwearecapturingsectoralsystemsthatareimportanttoaddressforthemovetowarddecarbonisation,ascalledforbytheParisAgreement.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 23

Foreachofthesectoralsystems,theanalysisinthefollowingproceedsinthreesteps.WefirstprovideimportantbackgroundinformationonthestructureofthesectoralsystemanditsrelevanceforGHGemissionsandemissionreductions,includingexistingoptionsfordecarbonisation.Subsequently,themaintechnological,economic,politicalandsocialchallengesandbarrierstowarddecarbonisationareexplored.Finally,theanalysisattemptstopinpointthepromiseandpotentialofinternationalcooper-ationbyinvestigatingwhichoftheidentifiedfivekeyfunctionsofinternationalgovernancecouldcon-tributetoadvancingtowarddecarbonisationandinwhatway.Inordertoavoidareductionistpiece-mealapproach,linkageswithothersectoralsystemsarealsoidentified.

4.1 Agriculture

4.1.1 Currentstatusandprospect

In2010,theagriculturesectoraccountedforapproximately13percent ofglobalGHGemissionswhichincludesprincipallymethane(CH4)andnitrousoxide(N2O)(Searchinger,2013).Emissionsfromcropandlivestockproductionstoodatover5.3billiontonnesin2011,growing14percentfrom4.7billiontonnesofCO2equivalentin2001(FAO,2014).

Entericfermentation(CH4productionbylivestockduringdigestion),theapplicationofsyntheticferti-lizersandbiologicalprocessesinricepaddiesaccountformorethan60percentofthesector’sGHGemissions.Entericfermentationaccountedfor39percentoftotalsectoralemissionsin2011(plus11percentsince2011).Emissionsgeneratedduringtheapplicationofsyntheticfertilisersaccountedfor13percentofagriculturalemissionsin2011,andarethefastestgrowingemissionssourceinthesector,havingincreasedsome37percentsince2001.GHGsresultingfrombiologicalprocessesinricepaddiesemitCH4whichconstitutestenpercentoftotalagriculturalemissions,whiletheburningofsavannahsaccountsforfivepercentoftotalagriculturalemissions(FAO,2014).In2014agricultureaccountedfor9.5percentofworldtradewithavalueofUSD1,765billion(WTO,2017b).Thetoptenimportersandexportersofagriculturalproductsaccountforaround70percentoftrade(WTO,2017a).TheEuropeanUnion(EU)isboththebiggestexporterandimporterofagriculturalproducts.China,India,Brazil,andtheUSaccountedfor39percentofglobalnon-carbondioxide(CO2)agriculturalemissionsin2015,whereasallEuropeancountriestogethermadeup11-13percentofglobalnon-CO2agriculturalemis-sions(Richards,Gluck,&Wollenberg,2015).

Themaindriversofchangeintheagriculturalsectorareclimatechange,populationgrowth,techno-logicalinnovation,publicpolicies,economicgrowthandthecost/pricesqueeze(IPCC,2007).Popula-tiongrowthandglobalisationhavesignificantlyaffectedagriculturalproductionandconsumptionpat-terns,whiletechnologicalprogresshasboostedagriculturalproductivity(Steduto,Faurès,Hoogeveen,Winpenny,&Burke,2012).Thisgrowth,however,hasbeenattheexpenseofincreasedpressureontheenvironment,anddepletionofnaturalresources(IPCC,2007).Duetoclimatechangeandanin-creasingworldpopulation,droughthasbeenthemostimportantenvironmentalstressaffectingagri-cultureworldwide,particularlyintermsoftheproductivityoffieldcrops(Hu&Xiong,2014).Agricul-tureaccounts for70percentofglobal freshwaterandmore than90percentof consumptiveuse(Stedutoetal.,2012).Breedershavemadegreatprogressinimprovinganddevelopingdrought-toler-antcrops,butthesestillcannotmeetthedemandsoffoodsecurityinthefaceofanincreasingworldpopulation,globalwarming,andwatershortage.Otherexogenouspressuresontheagriculturesectorarethecompetitionbetweenurbanandagriculturallands(Seto,Lin,&Deng,2014)andtheinefficientuseoflandtogenerateenergyviabioenergy(Searchinger&Heimlich2015;ontheroleofbioenergyinpowerandtransport,seesections4.5and4.8).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 24

Variousoptionsforreducingemissionfromthemainsubsectors(entericfermentation,fertilisation,riceproduction)alreadyexist.Forexample,addingaCH4inhibitortothedrymatterfeedcaninprin-ciplesafelyreduceCH4emissionsfromhigh-producingdairycowsby30percent(Hristovetal.,2015).Recentadvancesinfertilisertechnologycouldhelptoreducebetween30percentand60percentofN2Oemissionsdependingontheirrigationofthecrops.Recentresultsalsosuggestthatcombiningno-tillageagriculture (inwhich soilsarenot turnedoverwith farm implements)with theuseof slow-releasefertilisercanresultinareductionof75percentormoreinsoilN2Oemissionsfromirrigatedsystems(Parton,DelGrosso,Marx,&Swan,2011).Also,capturingandburningtheCH4fromlivestockmanure(forenergy)cangreatlyreducerelatedGHGemissionsandevencontributetoelectricitypro-duction.AccordingtotheWorldResourcesInstitute(WRI),perfectwatermanagementcantheoreti-callyreduceemissionsofricepaddiesupto90percentcomparedtofullflooding(Adhya,Linquist,Searchinger,Wassmann,& Yan, 2014). In reality, farmers in the Philippines andmanyotherAsiancountrieshavelimitedtechnicalabilitytodraintheirfieldsduringtherainyseasonsotechnicaloppor-tunitiesremaingenerallyunexplored.

Broaderincentiveswillbenecessarytoenableandencouragefarmerstoimplementavailabletechnol-ogiesandbestpracticesatthenecessaryscale.Atthesametime,technologiesdevelopedsofararenotcapableofcompletelyphasingoutGHGemissions;hence,moreresearchwillbeneededtodevelopnewoptions.

Enhancingthesinkcapacityofsoilwillalsobeimportantassoilscurrentlyoffsetabout15percentofagriculturalGHGemissions(Partonetal.,2011).However,soils,likeotherbiologicalsinks(e.g.vege-tation),arebelievedtohaveaninherentupperlimitforstorage.Thetotalamountthatcanbestorediscropandlocation-specificandtherateofsequestrationdeclinesoverseveralyearsbeforeeventuallyreachingthislimit(FAO,2002).Infuture,itmaybepossibletotoincreasethestabilityofsoilorganicmatterandtherebyretaincarboninthesoilforalongerperiodoftime(Wollenbergetal.,2016).

Also,ashiftofdietarypatternsholdssignificantpotentialforreducingagriculturalGHGemissions.Inparticular, reduceddemandformeatanddairyproductscouldsignificantlyreduceagriculture’scli-matefootprint.Widespreadadoptionofvegetariandietcouldcutfood-relatedemissionsbymorethan50percent(Milmann&Leavenworth,2016;Springmann,Godfray,Rayner,&Scarborough,2016).AshifttothedietrecommendedbytheWorldHealthOrganizationcouldhelpprevent0.31–1.37Giga-tonnesofCO2equivalent(GtCO2eq)or6.2-23.6percentoftheglobalagriculturalGHGemissionsperyearin2030(Wollenbergetal.2016;Smithetal.2014).

Decreasingfoodlossandwasteconstitutesanotheroptionwithsignificantpotential.Currentlossandwasteis30-50percentofglobalfoodproduction.Reducingthislossandwasteby15percentcouldreduceemissionsby0.79-2.00GtCO2eqperyear(Wollenbergetal.,2016).

Wideregionalandcountrydifferencesareevident.Agriculturecontributesasmallerportionoftotalemissionsindevelopedcountries(12percent)thanindevelopingcountries(35percent)(Richardsetal.,2015).In2011,44percentofagriculture-relatedGHGemissionsoccurredinAsia,followedbytheAmericas(25percent),Africa(15percent),Europe(12percent),andOceania(fourpercent)–withanincreasedshareinAsiaandandecreasedsharefromEurope(FAO,2014).Asregardslivestock,beefandchickenplaythemainroleinLatinandNorthAmerica,whereasthedairycattlesectordominatesinWesternEurope(FAO,2017).Theworld’slivestocksectorisgrowingatanunprecedentedratewithastrongpositiverelationshipbetweenthe levelof incomeandtheconsumptionofanimalprotein,withtheconsumptionofmeat,milkandeggsincreasingattheexpenseofstaplefoods(WHO,2008).TheOrganisationforEconomicCooperationandDevelopment(OECD)predictsafurtherincreaseintheproductionofmeatof15.5percentby2025(OECD/FAO,2016).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 25

4.1.2 Mainchallengesandbarrierstowarddecarbonisation

Agriculture is heavily dependent onphysical andhuman factors. The approaches that best reduceemissionsdependonlocalconditionsandthereforevaryfromregiontoregion.Bestpracticesforin-tensivecommercialfarmingsuchaspigfarminginWesternEuropeisnotofinterestforintensivesub-sistencefarmingsuchasricecultivationinSouth-EastAsia.

Theadoptionofavailabletechnologiesandbestmanagementpracticesbyagriculturalproducersis,despitetheirpotentialbenefits, laggingforseveralreasons.Oneofthereasonsishighcosts:Inthelongrun,reducedtillagecanbeexpectedtoreducefuelexpensesandpersonneltimewhilemaintain-ingorincreasingcropyields,buttheupfrontcostofconvertingtillageequipmentmayprohibitfarmersfromadoptingthepractice.Anotherexamplearestabilisedfertiliserswhichcostapproximately30percentmorethanconventionalfertilisers(Partonetal.,2011).Disseminationofnewtechnologiesandbestpracticestolocalfarmersalsoconstitutesaformidablechallenge.Incentivestoadaptpracticesmayespeciallybelaggingwherechangingpracticesdoesnotpromiseimmediatebenefitstofarmers(whilecarryingconsiderabletransactionandopportunitycosts).Adequateincentiveswouldthusneedtobecreatedbyappropriatepolicies.

Tomaximisethecontributionofagriculturetoclimatemitigation,furthertechnologicaladvanceswillalsoberequired.Thepotentialofcurrentlyavailabletechnologiestoreduceemissionsislimited.Wol-lenbergetal. (2016) suggestapreliminaryglobal target for reducingemissions fromagricultureofabout1GtCO2eqperyearby2030tolimitwarmingin2100to2°Cabovepre-industrial levels.Thisglobaltargetisbasedonacomparisonofseveralmodelsformeetingthe2°Ctargetinacoherentleast-costapproachacrosssectors.Yetplausibleagriculturaldevelopmentpathwayswithmitigationco-ben-efits deliver only 21–40 per cent of this target (Havlik et al., 2014; Pete Smith et al., 2008, 2013;Wollenbergetal.,2016).Thereisparticulardemandforhigh-impact,quicklyimplementabletechnicaloptions,especiallyfornewbreedsandvarietiesthatcanbeeasilyaccessedanddonotrequirecom-pletelynewmanagementpracticesorinputs(Wollenbergetal.,2016).

Achievingawide-spreadadoptionofclimate-friendlydietsfacesanuphillbattleundercurrentmarketconditions,asdemandformeatisgrowingratherthandeclining.Alackofawarenessbyconsumersandculturalpredispositionsconstitutebarriersasdothelackingreflectionoftheexternaleffectsinthepricesofintensiveagriculturalproducts.Incentivesarealsolackingforreducingfoodwaste.Con-sumerswhoarewillingtooptforclimate-friendlyproductsmayfaceinformationalhurdlesasitisnoteasytoidentifytheclimateimpactsofdifferentlike-products.

4.1.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

Asectoraltargetandgoalsrelatedtocoreemission-causingactivitiesinthesectorcouldprovideim-portantguidancetosectoralactors,includingnationalgovernmentsresponsiblefordesigningvariousrelatedpolicies.Theimpactandfeasibilityofcleartargetsandgoalsislimitedbecause(1)thesectorcannotreduceitsemissionstozeroanytimesoonand(2)whattheowncontributiontoachievingthe2/1.5°Ctargetshouldbeishencenotimmediatelyclear.Apreliminarycontributionofthesectorcouldbetoreduceemissionsfromagricultureby1GtCO2eqperyearby2030(Wollenbergetal.,2016).Amorecomprehensivetargetforthe2°Climitcouldincludesoilcarbonandagriculture-relatedmitiga-tionoptions (Wollenbergetal.,2016).Furtherobjectives for sectoralactivities suchas fertilisation(reducing theuseof traditionalnitrogen fertiliser), emissions from ricepaddiesand from livestockcouldfurtherconcretisetheguidance,ascouldderivingnationaltargetstherefrom.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 26

Settingrules

Rule-makingattheinternationallevelcouldalsosignificantlycontributetofacilitatingemissionreduc-tions.Forexample,labellingschemescouldhelpcreatemarketsforlow-emissionproducts(givenin-ternationaltradeinagriculturalproducts).Internationalagreementcouldalsohelpestablishingacar-bonpriceinagricultureandaligningcountriestowardareductionoftheuseoftraditionalnitrogenfertiliser(includingsupportfortheintroductionofalternativesincountriesofneed),whichotherwisefacescosthurdles.

CapacityBuilding,TechnologyandFinance(meansofimplementation)

Internationalcooperationcanhelpdisseminatenewtechnologiesandbestpractisestolocalfarmers,including through the provision of financial assistance.More ambitious policymechanismswill beneededtocreateincentivesforimprovedinformationsystemsandforfarmerstousenewpracticesatlargescales.Policiessupportingmoreproductiveagriculturalpractices,financeoflow-emissionagri-culturaldevelopment,innovativemeansforvaluingcarbonreductions,anduseofgovernmentorsup-plychain incentivestomeetsustainabilitystandardsforreducedemissionswillall likelybeneeded(Wollenbergetal.,2016).Whilemanyofthesolutionsneedtobeadaptedtonationalandlocalcir-cumstances,internationalcooperationcanplayanimportantroleindevelopinganddiffusingavailabletechnologiesandprovidingtargetedfinanceandinvestment.

TransparencyandAccountability(includingcompliance)

Totheextentthatrulesaresetinternationally(seeabove),therewouldalsobeaneedtocreatetrans-parencyandaccountabilityforimplementationofanylabellingschemes,acarbonpriceorrestrictionsontheuse/productionoffertilizer.

KnowledgeandLearning

Coordinatedinternationalresearchandinvestmenttowardhigh-impact,quicklyimplementabletech-nicallow-emissionoptionsareneeded,especiallyfornewbreedsandvarietiesthatcanbeeasilyac-cessedanddonotrequirecompletelynewmanagementpracticesorinputs(Wollenbergetal.,2016).Astherearealotofdifferentfarmingstyles,thereisaneedofdifferentiatedandadaptedtechnologiestoaddressGHGemissions.Moreresearchcouldhelpincreasetheaffordabilityandadoptionofmiti-gationpracticesandidentifyhowtobestexploitthepotentialforreducingtheconsumptionoflive-stockproducts(Herreroetal.,2016).Internationalstimulicanespeciallyprovideincentivesforlow-emissioninnovationforawide-rangeoffarmingcontexts.

Internationalinstitutionscanalsocontributetoawarenessraisingregardingmoreclimate-friendlydi-etsandreducingfoodwaste.

Linkages

Transport:GHGemissionsassociatedwithfoodaredominatedbytheproductionphase.Transporta-tionasawholerepresents11percentoflife-cycleGHGemissions,andfinaldeliveryfromproducertoretailcontributesfourpercent(Weber&Matthews,2008).Theagriculturesectorislinkedtotransportthroughtheproductionofbiofuelsfromcertaincrops,whichinturnenhancespressureforland-usechange.

Waste:Reducingfoodwastehasaconsiderablepotentialforreducingemissions.Furthermore,whileplasticpackaginghelpspreventfoodlosses,theproductionofsuchplasticpackagingconsumesitselfconsiderableamountsofenergyandfossilfuels(Pilz,Brandt,Fehringer,&Fehringer,2010).

Landusechange,whichcontributesabout11percenttotheglobalGHGemissions(Searchinger,2013)isprimarilydrivenbyagriculture.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 27

Thechemical industry is linked through ‘agrichemicals’which includesabroad rangeofpesticides,herbicides,insecticidesandfungicides,aswellassyntheticfertilisers,hormonesandotherchemicalgrowthagents.

4.2 LULUCF

4.2.1 Currentstatusandprospect

Landuse, land-use change and forestry(LULUCF) coversemissionsand removals ofGHGs resultingfromdirecthuman-inducedLULUCFactivities.Therateofbuild-upofCO2intheatmospherecanbereducedbytakingadvantageofthefactthatatmosphericCO2canaccumulateascarboninvegetationandsoilsinterrestrialecosystems.Anyprocess,activityormechanismwhichremovesaGHGsfromtheatmosphereisreferredtoasa"sink"(UNFCCC,2017).Landusereferstothesumtotalofactivitiesundertaken on a certain land area, including grazing and timber extraction, which release carbontrappedinterrestrialsinks,andconservationefforts,whichleadtoincreasedCO2sequestration.Clear-ingforestsforagriculturaluse,conversionofgrasslandtocroplandandabandoningcroplandorpas-turelandqualifyaslandusechangeactivities.Forestryincludesawiderangeofactivitieslikeplanting,andtendingofgrowingtrees,pestcontrol,firemanagementandwildlifeprotection(Gaan,2008).LandconvertedtocroplandisthedominantsourceofCO2,andlandconvertedtoforestlandisthedominantsink(UKDepartmentofEnergyandClimateChange,2012).

Landusechangecontributedabout11percentofglobalGHGemissionsin2010(Searchinger,2013).Forestryandlandusecontributed12percentofGHGemissionsbetween2000-2009(PSmithetal.,2014).GHGemissionsduetolandusechangeanddeforestationregisteredanearlytenpercentde-creaseoverthe2001-2010period,averagingsome3billiontonnesCO2eqperyearoverthedecade.Thiswas the resultof reduced levelsofdeforestationand increases in theamountofatmosphericcarbonbeingsequesteredinmanycountries(FAO,2014).In2014,landuseaccountedfor2.74GtCO2and3.15GtCO2eq(FAOSTAT,2014).

Figure4.1:AnnualForestAreaNetChangebyClimaticDomain,1990-2015

Source:(FAO2015).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 28

Figure4.2:GlobalForestCover

Source:(FAO,2010).

Landusechangeisstronglydrivenbyagriculture.Subsistencefarming,commercialagriculture,loggingandfuelwoodremovalsareresponsiblefor48percent,32percent,14percent,andfivepercentofdeforestation,respectively(UNFCCC,2007).Thereareseveralcausesofcontemporarydeforestation,includingpopulationgrowth,globalization,increasedlevelsofurbanization,areadevelopment,forestburningandclimatechange(Kummer1992;Mather&Needle2000;Butler2012a;Butler2012b).

Deforestationisanimportantfactor.Thenetlossof129millionhectaressince1990–anareathesizeofSouthAfrica–hasbeenamajorsourceofCO2emissions(FAO,2016).Whileglobalforestcoverhasdecreasedfrom31.6percentin1990to30.6percentin2015,thenetannualrateofdeforestationhasdeclinedfrom0.18percentintheearly1990sto0.08percentbetween2010-2015.Asaresult,totalcarbonemissionsfromforestsdecreasedby25percentbetween2001and2015(FAO,2015).Ratesofdeforestationvaryfromregiontoregionaroundtheworld(Figures1and2).Todayabout30percentofEarth'slandsurfaceiscoveredbyforests(WWF,2017)andin2015twothirdsoftheworldforestswereinthefollowingtencountries:Russia(20percent),Brazil(12percent),Canada(ninepercent),UnitedStatesofAmerica(US)(eightpercent),China(fivepercent),Congo(fourpercent),Aus-tralia(threepercent),Indonesia(twopercent),Peru(twopercent)andIndia(twopercent)(FAO,2015).Deforestationoccursaroundtheworld,thoughtropicalrainforestsareparticularlytargeted.TheUSNationalAeronauticsandSpaceAdministration(NASA)predictsthatifcurrentdeforestationlevelsproceed,theworld'srainforestsmaybecompletelygoneinaslittleas100years.Countrieswithsignificantdeforestation includeBrazil, Indonesia, Thailand, theDemocraticRepublicofCongoandotherpartsofAfrica(Bradford,2015).AlthoughBrazilhasreduceditsdeforestationratebymorethan60percentsince1970,inabsolutenumbersitstaysnumberoneindeforestationwith8000sqkmin2016(Butler,2017).Nonetheless,theworld’splantedforestcover(whichaccountsforsevenpercentoftheworld’soverallforestarea),hasincreasedby110millionhectaressince1990(FAO,2015).

4.2.2 Mainchallengesandbarrierstowarddecarbonisation

Thedegradationofforestecosystemshasbeentracedtoeconomicincentivesthatmakeforestcon-versionappearmoreprofitablethanforestconservation(Pearce,2001).Manyimportantforestfunc-tionshavenomarkets,andhence,noeconomicvaluethatisreadilyapparenttotheforests'ownersorthecommunitiesthatrelyonforestsfortheirwell-being(Pearce,2001).Fromtheperspectiveofthedevelopingworld,thebenefitsofforestsascarbonsinksorbiodiversityreservesgoprimarilytoricher

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 29

developednationsandthereis insufficientcompensationfortheseservices.Moreover,therighttodevelopment/growthparadigmisoftenputforth,i.e.thatthepoorshouldn'thavetobearthecostofpreservationwhentherichcreatedtheproblem(Bulte,Joenie,&Jansen,2000).Anotheranalysissug-gests thatdemographic shifts,economicdevelopment,and technological change in lessdevelopedcountrieswillresultincontinuedgrowthintherateofdeforestationinthemedium-term(Ehrhardt-Martinez,2003).

Thereisnoagreementonthedefinitionofaforest.Differentorganisationsusedifferentdefinitions.Definingaforestsimplyintermsoftreecover–ratherthancomplexecosystemsandthelivelihoodsofpeoplesinteractingwiththem–suchastheUNFCCCallowsto,hasbeenusedasacoverfortheexpansionofindustrial-scaleplantations.WhilethereisasafeguardagainsttheconversionofnaturalforestbytheUNFCCC,partiesarefreetoincludeplantationsofcommercialtreespecies,agriculturaltreecrops,orevennon-treespeciessuchaspalmsandbamboo(Cardona&Avendano,2010).Inordertohaveatransparentmonitoringofthesector,asingledefinitionisneeded.

SomeregionalpoliciesinplacearesimplyshiftingtheGHGemissionsacrosstheglobe.UndertheCom-monAgriculturalPolicy(CAP)oftheEU,theagriculturalproduction isdistorted infavouroftheEUeconomywhichhashadadirectimpactonabroaderscaleonLULUCFoutsideoftheEU.Intheabsenceoftariffsforanimalfeed,theEUcheaplyimportsanimalfeedfromLatinAmerica,includingsoybeansthatareamongthemaincausesofdeforestationintheAmazonandtheCerradoregion(Khatun,2012).

AnothermajorconcernisthepotentialforleakageofLULUCFprojects.LeakagereferstotheindirectimpactthataLULUCFprojectoractivityhasonthecarbonstorageorGHGemissionsinanotherareaoutside theproject. For instance, efforts to reducedeforestation inoneareamaybeoffsetby in-creaseddeforestationelsewhere.Toolstoaddressleakageincludediscounting,project-eligibilitycri-teria,andtheuseof“aggregatebaselines”.Baselines,thedevelopmentofnational,regionalorsector‘standards’havebeenoneproposedwaytoaddress leakage.Butthistool is likewisehamperedbypoorbackgroundinformationformanydevelopingcountriesaswellaspoliticalopposition(Schwarze,Niles,&Olander,2002).

OverallLULUCFgeneratesalotofuncertaintieswhicharisebothfromnaturalvariabilityinvegetationandsoilsandincompleteknowledgeabouttheextentofactivitiesandtheunderlyingprocessesaffect-ingsinksandsources.Typically,uncertaintiesintheestimatesassociatedwiththesoilcarbonpoolaremuchgreaterthanthoserelatedtoabovethegroundstandingbiomassintrees(UKDepartmentofEnergyandClimateChange,2012).Environmental riskanduncertaintyanalysismustbe integratedintothemanagementplanofeachLULUCFproject(Madlener,Robledo,Muys,&Freja,2006).

Inmanycountries,implementingpolicyinvolveshightransactioncosts,mostlybecauseofpoorcoor-dination and overlapping functions amongministries, and lack of transparent financialmonitoring(Murdivarso,Brockhaus,Sunderlin,&Verchot,2012).Thereisalsoaneedtohaveclearlandtenureandland-userightsregulationsandacertainlevelofenforcement,aswellasclarityaboutcarbonown-ershiptopreventcorruption. Implementationchallenges, including institutionalbarriersandinertiarelatedtogovernanceissues,makethecostsandnetemissionreductionpotentialofnear-termmiti-gationuncertain(IPCC,2014c).

4.2.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

AglobalobjectivefortheLULUCFsectorcouldprovideimportantguidancetocountriesandrelevantsectoralactors.Suchatargetcouldbetohaltandreversedeforestationand,moregenerally,toturn

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 30

theLULUCFsectorfromanetsourcetoanetsinkofGHGs,e.g.by2030.Animportantchallengecon-sistsinmakingsuchaglobalobjectiveconcreteforspecificcontextstakingintoaccountbiophysical,geographical,andsocio-economicvariabilityanddifferences.

SettingRulestoFacilitateCollectiveAction

TheprimaryneedforinternationalactionintheLULUCFsectorisaboutprovidingeconomicincentivestopreserveforests,re-andafforestation.Thiscanespeciallybeachievedbyschemesof“results-basedpayments” (paymentsper tonneofmitigationachieved),whichcanbearrangedfor internationallythroughconcreteagreementsbetweenforestcountriesasrecipientsanddonorcountriesorinterna-tionalorganisationsprovidingthenecessaryresources.Theinclusionofsocialandenvironmentalsafe-guardsisimportanttopreventandcontainsocialandenvironmentalexternalities.Thevalueofforestsgoesmuchbeyondtheirroleintheglobalcarboncycleandprioritisingclimatechangemitigationrunstheriskoflimitingthelivelihoodsespeciallyofpoorerandweakersegmentsofthepopulationrelyingonforestsandofsacrificingotherimportantenvironmentalandsustainabilityobjectives(suchasbio-logicaldiversity).Lackofaninternationalagreementthatsupportsawideimplementationofmitiga-tionmeasurescanbecomeamajorbarrierforrealisingthemitigationpotentialfromthesectorglob-ally(IPCC,2014c).

TransparencyandAccountability(includingcompliance)

Theeffectivenessoftheaforementionedresults-basedpaymentsentailsimportantrequirementsre-garding transparency and accountability. Reference levels need to be defined as baselines againstwhichthesuccessofeffortstopreserveandenhanceforestscovercanbemeasured.Also,monitoringof actual results is required in order to verify achievements, includingmonitoring beyond projectboundariestocontrolforpossibleleakage.Providersofresults-basedpaymentstypicallyseekreliableverification(UNFCCC,2007).Remotelysenseddatasupportedbygroundobservationsarekeytoef-fectivemonitoring(DeFriesetal.,2007).

Meansofimplementation

Asmentioned,financialincentivesadaptedtoregional/nationalandlocalcircumstanceswillbeneededtoachievesignificantreductionsinemissionsthroughreduceddeforestationandforestmanagement.

Giventhelackofinstitutionalcapacityamongstanumberofdevelopingcountriestoensurethesus-tainabilityofLULUCFactivities,capacitybuildingmechanismsareneeded.Theseneedtoaddressinparticularthe legal frameworksthatregulate landtenureandownershipofenvironmentalservicesthatareessentialfordesigningandimplementingLULUCFprojects,aswellastherequiredcoordina-tionbetweentheresponsibleinstitutionsatthenationalandsub-nationallevel.

KnowledgeandLearning

ImportantknowledgegapswithrespecttotheLULUCFsectorcanbeaddressedbyinternationallyco-ordinatedefforts,includingregardingtheaccountingmethodologiesforforestsandsoils(seealsoonTransparencyandAccountabilityabove),appropriateregulatoryframeworksatnationalandsubna-tionallevels,howtoaddressandcontrolcarbonleakage,socialandenvironmentalexternalities,etc.Ageographicalinformationsystemintegratinginventory,monitoring,mapping,etc.ofallenvironmen-taldataconcerningaprojectareawouldalsobeuseful(Madleneretal.,2006).

Linkages

Agriculture,andmorespecificallythefoodindustry,causesindirectGHGemissionsbybeingthepri-marycauseofglobaldeforestation(FriendsoftheEarth,2007).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 31

Thereisalsoalinkwiththetransportsectorthroughbioenergywhichisenergyderivedfrombiofuels.Biofuelsare fuelsproduceddirectlyor indirectly fromorganicmaterial–biomass– includingplantmaterialsandanimalwaste.Risingdemandforbiofuelsproducedfrompalmoil,soyandotherplayamajorpartinthelossofforests(TheWorldCounts,2014).

Thepowersectorisimplicatedsinceforestsareone(potentiallygrowing)sourceofbiomassforelec-tricityproduction. In the future,burningbiomass inpower stations couldbeonewayofachievingnegativeemissioniftheresultingCarboniscapturedastoredunderground(bio-energycarboncaptureandstorage–BECCS).

Boththeindustryandbuildingssectorarebigconsumersofwood.Loggingisresponsiblefor14percentoftheemissionsintheLULUCFsector(UNFCCC,2007).

4.3 Waste

4.3.1 Currentstatusandprospect

Theglobalwastesector(wasteandwastewater)contributedthreepercentofglobalGHGemissionsorabout1.5GtCO2eqin2010/12(IPCC,2014d;WRI,2012).MajorGHGemissionsfromthewastesec-torareCH4fromlandfills,CH4andN2Ofromwastewater,andsmallamountsofCO2(fromtheincin-erationoffossilcarbon)(IPCC,2014d).Minorlevelsofemissionsarereleasedthroughwastetreatmentanddisposal(UNEP2010).CH4isthesecondmostabundantGHGafterCO2,accountingfor14percentofglobalemissionswithan impact25 timesgreater thanCO2whena timehorizonof100years isconsidered.GlobalanthropogenicCH4emissionsfor2010stoodat6,875millionmetrictonnesofCO2equivalentofwhichCH4emissionsfromlandfillswas11percentwhilethatfromwastewaterwasninepercent(GlobalMethaneInitiative,n.d.).

ThewastesectorisaUSD1.5trillionperannummarketandisexpectedtogrowtoUSD2trillionby2020(Stiehler,2017).AccordingtoHoornwegandBhada-Tata(2012),1.3billiontonnesofsolidwastearegeneratedeachyearbycitiesaroundtheworld,afigureexpectedtogrowto2.2billiontonnesby2025.Globally,wastevolumeshaverisenfrom0.68billiontonnesin2002(Hoornweg&Bhada-Tata,2012).Keydriversincludepopulationgrowth,industrializationandurbanizationparticularlyinemerg-ingmarkets,GrossDomesticProduct(GDP)growth,andshorterproductshelflifeofelectronicdevices.

Therearefourkeycategoriesofwaste:municipalsolidwaste(MSW)(whichincludesresidentialwaste,industrialwaste,commercialandinstitutionalwaste,constructionanddemolitionwaste,andmunici-palserviceswaste),processwaste,medicalwaste,andagriculturalwaste(WorldEnergyCouncil,2016).MSWrepresentsthelargesttypeofwasteandispredominantlyanurbanphenomenonwithwastepercapitarisingaseconomiesdevelop.Industrial,commercial,andinstitutional(ICI)wastesusuallyrep-resentmorethanhalfofMSW(Hoornweg&Bhada-Tata,2012).

Thetypeandquantityofwastediffersamongstcountries(andwithincountries)accordingtolevelsofeconomicdevelopment,degreeofindustrialization,publichabits,andlocalclimate.In2010,highin-comecountriesgeneratedhalfofglobalMSW(IPCC,2014d).However,wastegenerationratesaresettomorethandoubleoverthenexttwentyyearsinlowerincomecountries.In2004,ChinaovertooktheUSastheworld’slargestwastegenerator.Organicwastetendstobehigherinlow-incomecoun-tries’MSW,whilepaper,glass,andmetalsarehigherinhigh-incomecountries’MSW(Hoornweg&Bhada-Tata,2012).

Solidwastemanagement(SWM)isanessentialutilityservice.Thewastemanagementsectorhasfol-lowedahierarchyof“reduce,reuse,recycle,andrecovery”whichcanbeadaptedtofinancial,envi-

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 32

ronmental,socialandmanagementconsiderationswhilealsoencouragingminimizationofGHGemis-sions(Hoornweg&Bhada-Tata,2012).However,muchofglobalefforthasfocusedonrecoveryinsteadofthefirstthree.

TheIPCC(IPCC,2007)advisesthatGHGemissionsfromwastecanbemitigatedbyeffectivelyaddress-ingintegratedwastemanagementgiventhatmosttechnologiesforwastemanagementarematureandhavebeensuccessfullyimplementedfordecadesinmanycountries.Thereareeightmainkindsofwastedisposalmethods/technologicaloptions:landfills,incineration/combustion,recoveryandrecy-cling,plasmagasification4,composting,WastetoEnergy(WtE)5,andwasteminimisation6(ConserveEnergyFuture,n.d.).Othermethodsincludeanaerobicdigestion7andpyrolysis8.Onthehighendofthespectrumaretechnologieslikepyrolysisandgasification,whicharealreadyappliedinanumberofOECDcountries,especiallyintheEU(IPCC,2007).

Smallwastewatertreatmentsystemsincludepitlatrines,compostingtoiletsandseptictanks(inexpen-siveandmostwidelyusedaroundtheworld).Activatedsludgetreatment isthemostconventionalmethodforlarge-scaletreatmentofsewage.(IPCC,2007).

However,wastetolandfillscontinuestobethemostcommonmethodofMSWmanagementindevel-opedcountrieswhileindevelopingcountriesMSWisgenerallydisposedoffinopendumps.IntheUS,52.9percentofMSWgeneratedisdisposedoffin1,908landfills(EPA2015)whichannuallyemitover426millionmetrictonnesofCO2equivalenttotheGHGemissionsfrom124coal-firedpowerplantsovera20-yearimpact(Bailey,2017).Nonethelesstherehasalsobeenprogress.IntheEU,thelandfilldirective(CouncilDirective1999/31/EC),strictlyenforcedbymemberstateshashelpedreducewastetolandfillsfrom220kg/capitain2006to122kg/capitain2015(Eurostat,2016).Landfillsarealsoprev-alentincertaindevelopingcountries.In2013,almost70percentofChina’shouseholdMSWwasstillendingupinlandfills(Zhang,Huang,Xu,&Gong,2015).Intheruralareasoflow-incomecountries,itis commontohavenocontrolleddisposal.However,wastecollection isachallengeand fluctuatesfrom98percentinOECDcountries,toaslowas20percentinlowincomecountries(Hoornweg&Bhada-Tata,2012).Itiscloselylinkedtoincomelevels.Inlowincomecountries,wastecollectionser-vicescantakeupalmost80-90percentofamunicipality’sSWMbudgetwhilethesamecouldrepre-sentaroundtenpercentofamunicipality’sbudgetinahigh-incomecountrywherecollectionismoremechanized,efficient,andfrequent(Hoornweg&Bhada-Tata,2012).

OnepartofthesolutioncanbeWtE(Florin&Madden,2017).WtEtechnologiesareaviableoptionfordisposalofMSWandenergygenerationwiththepossibilityforeveryregiontoadequatelyassessitsspecificcontexttoimplementthemostreasonablesolution(IPCC,2007).TheglobalWtEmarketisfastgrowing.EuropeisthelargestandmostsophisticatedWtEtechnologiesmarket(47.6percentoftotalmarketrevenuein2013)butChinaisfastcatchingup(WorldEnergyCouncil,2016).ItisestimatedthatforeverytonofwastethatgoesthroughaWtEfacility,atonofGHGemissionsisavoided.PaulHawken

4 Useofplasmatorchesoperatingat+10,000°Ftocreateagasificationzoneof3,000°Ftoconvertsolid

orliquidwastesintoasyngas,typicallyusedforhazardousmaterialsandgeneratesrenewableenergy.5 Conversionofnon-recyclablewaste items intouseableheat,electricity,or fuel throughvariouspro-

cesses,whichcanhelpcarbonoffsettingbyreducingtheneedforfossilfuels.6 Reducingthecreationofwastematerials7 Usedformainlyorganicmaterial likeindustrialeffluent,wastewaterandsewagesludgetreatmentto

reduceorganicmatterintheabsenceofoxygen8 Thermochemicaldecompositionoforganicmaterialathightemperaturesintheabsenceofoxygenor

anyhalogen,usedmainlybythechemical industrytofor instanceturnplasticwastetoliquidfuelorrecoverfuelfromtires

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 33

(2017) estimates that if 62.6 gigawatts of WtE plants are installed globally between 2020-2050,avoidedemissionswouldequal1.1GtCO2e.

4.3.2 Mainchallengesandbarrierstowarddecarbonisation

Wastemanagement systems in lowandmiddle-incomecountrieswhere themajorityof thewastegrowthisexpectedtocomefromby2030,continuetobeunder-developedandlargelyinefficient.

• Wasteiseithertransferredtolandfillsor,asmentionedabove,disposedoffinopendumps.Chinaisfacinga“wastesiege”withtwo-thirdsofChina’s668citiessurroundedbygarbage(Zhangetal.,2015).

• SWMcostsremainhigh,especiallyinmostlow-incomecountries(Hoornweg&Bhada-Tata,2012)whileSWMservicesservelessthanhalfofthepopulationandcoveronlybetween40–70percentofallurbansolidwastes(Scarlat,Motola,Dallemand,Monforti-Ferrario,&Mofor,2015).Problemsalsotypicallystartatthegrassrootslevelwithastartabsenceofdustbinsandcommunitygarbagecanseveninmajorcitiesinthedevelopingworld.

• Costsarelikelytoincrease.Globally,SWMcostswillrisetoaboutUSD375.5billionin2025fromannualUSD205.4billioncurrentlyandwillbe5timesmoresevereinlowincomecoun-triesand4timesmoresevere in lower-middle incomecountries (Hoornweg&Bhada-Tata,2012).

• Wastecollectionandrecyclingindevelopingcountriesremainslargelyunorganisedandofteninvolvesalargenumberofinformalsectorwastepickers–uptoonepercentofurbanpopu-lationor at least 15millionpeople (WIEGO, 2013). Inmany cities in developing countries,wastepickersattimesperformbetween20-100percentofallwastecollection(UNEP,2010).

Inmostdevelopingcountries,regulationsmaynotbestringentandinthecasetheyare,implementa-tionmayremainpoor.ThelackofeffectivelegislationforSWMpartiallyresultsinunclearroles/func-tionsofrelevantnationalagenciesandlackofcoordinationamongthem(Ogawa,2010).Moreover,SWM legislation in developing countries is usually fragmented, and is spread across clauses onrules/regulationsinseverallaws(e.g.,PublicHealthAct,LocalGovernmentAct,EnvironmentalProtec-tionAct,etc.).Enforcementalsoensuesviadifferentagencieswhichoftenresults induplicationofresponsibilitiesandgaps/missingelementsineffectiveSWMsystems(Ogawa,2010).

Thereisalsoacriticallackofexpertiseamongstthehumanresourcesdealingwithwastemanagementplanningandoperationindevelopingcountries.ManySWMpersonnel,particularlyatthelocallevel,havelittletechnicalbackgroundortraininginengineeringormanagement(Ogawa,2010).

Awarenessremainslowindevelopingcountries(Ferronatoetal.,2017).Behaviouralchangethroughawarenesscampaignsisoneofthreemeasuresthatcanencouragecommunityinvolvementinclean-linessandwastemanagementalongwithinformationdiffusionandtaxincentives.Incivicspacesinsomecountries, touchingwastemayproduceasocial stigmaor reflectuponone’ssocialnormsoridentities(Najib,2007).Anumberofdevelopingcountrygovernmentshaveindeedinitiatedcleanli-nessandawarenesscampaigns.Indiaforinstancehasinitiatedoneoftheworld’sbiggestcleanlinessawarenesscampaigncalledSwachhBharat(CleanIndia).

Oneofthebiggestbarrierstoeffectivewastemanagementisthecostofhightechnologyincompari-sonwithlandfilling(WorldEnergyCouncil,2016)(whichremainsthemostfinancially-effectivewayofwastedisposal).WhileWtEmaybeaneffectivesolutiontobothreducingGHGemissionsfromlandfillsand in carbonoffsetting,qualityhigh-performanceWtE remains costly formuchof thedevelopingworld.IncinerationisthemostprominentWtEtechnologyinpractisegloballyandislikelytocontinue(WorldEnergyCouncil,2016).SophisticatedWtEcaninvolvealargecapitalinvestmentandincurshigh

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 34

operatingcosts(Zhengetal.,2014).Importedincinerationequipmentisveryexpensive.Forinstance,thetotalcostoftheShanghaiPudongWasteIncinerationPowerPlantbasedonAlstomequipmentandtechnologycostnearlyUSD110million,andtheShanghaiJiangqiaoWasteIncinerationPowerPlantbasedonSeegerequipmentcostUSD144million.Moreover,WtEcanalsounderminerecyclingandcanresultinGHGemissionsandthereleaseoftoxicgases(Florin&Madden,2017).

Quantifyingmitigationcostsandpotentialsforthewastesectorremainsachallengeduetonationalandregionaldatauncertaintiesaswellasthevarietyofmaturetechnologieswhosediffusionislimitedbylocalcosts,policies,regulations,availablelandarea,publicperceptionsandothersocialdevelop-mentfactors(IPCC,2007).

4.3.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

Avisionforfulldecarbonisationofthewastesectorandgoalstoendkeyemission-causingactivitiesinthesector(uncontrolleddumpingandburning,andlandfills)(e.g.bythesecondhalfofthecentury)couldprovideimportantoverallguidancetonationalgovernmentsresponsiblefordesigningrelevantpoliciesandotheractors(UNEP,2015).Thiscouldbeaccompaniedbytargetsdifferentiatedbyregion.Aglobalpledgetophaseoutwaste-to-landfillswouldmakethemostdramaticimpactgiventhatCH4fromlandfillsisthemainsourceofemissionsinthesector.

SettingRulestoFacilitateCollectiveAction

Internationalrulesholdaratherlimitedpotential.Whileimplementingappropriatewastepolicieshassignificantcosts,thelocalbenefitsthataccruearealsosignificant.Properwastemanagementsystemshencecreateratherlimitedcompetitivenessconcerns.Havingsaidthat,internationalregulationcould–incombinationwithprovidingappropriatemeansofimplementation–inprinciplehelpaligngov-ernmentstowardthedevelopmentofefficientnationallevelframeworksforSWM,especiallyinlessdevelopedregions.

TransparencyandAccountability

Appropriateprovisionswouldberequiredtomonitorandverifytheimplementationofanyinterna-tionalregulation.Inaddition,regularmonitoringofpoliciesandemissionswouldallowtotakestockofprogress.

CapacityBuilding,TechnologyandFinance(meansofimplementation)

Theprovisionofmeansofimplementation(incombinationwithorindependentlyofinternationalreg-ulation)couldhelpaddresssomeofthekeybarrierstodecarbonisationofthewastesector.Capacitybuildingprogrammescouldprovidetechnicalexpertise, skillsbuilding,bettermanagementabilitiesthatremainpooracrossanumberofcountries/regions,inparticularmid-to-lowincomecountries,andraiseawareness.Oneparticularaspectconcernstheintegrationoftheinformalsectorwastepickers–approximately15millionpeople–intowastecollectionandrecyclingservices.Mobilisinginternationalfinanceandinvestmenttowardseffectivewastemanagementandrecyclingacrosstheentirelifecycleofwastewillalsobenecessarytomitigatecoststhatlow-midincomecountriesface.Accordingly,theUnitedNationsEnvironmentProgramme(UNEP)andtheInternationalSolidWasteAssociation(ISWA)advocateincreasing“theleveloffundingonwastemanagementbyafactorof10,fromthe0.3percentachievedsince2000toanaverageofthreepercentoftotalinternationalaidfundingintheperiodfrom2015to2030”(UNEP,2015).Internationalcooperationcanalsoplayanimportantroleindevel-opinganddiffusingavailablewastemanagementtechnologies,includingaffordableWtEtechnologies.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 35

KnowledgeandLearning

Policy and technical knowledge platforms can also help promote awareness, education, andknowledgeofavailablemeansandpromisingpoliciesforbetterwastemanagement.Aninternationaldatabaseofnationalandregionaldata,aprogressmeasurementsystem,existingfinancialopportuni-ties,relevanttechnologiesandinnovations,efficienttreatmentmethodscanalsobeusefulinparticu-larforlow-midincomecountries.InternationalResearchandDevelopment(R&D)fundingmayhelpfurtherdevelopadaptedWtEtechnologies.

Linkages

Power:Greater,morewidespreaduseofWtEwouldhelpfurtherdecarbonisethepowersectorgiventheconversionofnon-recyclablewasteitemsintouseableheat,electricity,orfuel,whichhelpcarbonoffsettingbyreducingtheneedforfossilfuels.ConcertedeffortsataglobalscaletoencouragebetterSWMcoupledwithWtEcouldbecomeadriverforrenewableenergyinthepowersector.

IndustryandAppliances:More“reduce,reuse,recycle,andrecovery”ofwasteataglobalscalewouldalsopositivelyimpactdecarbonisationinthe(energyintensiveandmanufacturing)industryandappli-ancessectors.Greateruseoforganicwasteintheagriculturesectorwouldalsoreducethedemandforchemicals-basedfertilisers.

Agriculture:Lessfoodwastethroughbettermanagementandawarenesswouldhelpreducethepro-ductionpressureintheagriculturesector(alsoasregardsfirstgenerationbiofuels),therebyreducingemissions.

CircularEconomy:Ashifttoacirculareconomywhichunderscoresrecycling,reuse,lessdemandforandefficientuseofprimaryresources,includingthroughtheuseofhigherqualitymaterials,products,systems,wouldreduceemissionsinthewastesector.

4.4 CircularEconomy

4.4.1 Currentstatusandprospect

Theconceptofacircularorclosedloopseconomyadvocatesatransitionfromthecurrent“take,make,dispose linear economic model” to one which is restorative and regenerative in design (EllenMacArthurFoundation,2015).It“preservesandenhancesnaturalcapital,optimisesresourceyields,andminimisessystemrisksbymanagingfinitestocksandrenewableflows,workingeffectivelyateveryscale”(EllenMacArthurFoundation,2015).Theeconomicbenefitsoftransitiontothecircularecon-omycouldamounttoUSDonetrillioninmaterialsavings(EllenMacArthurFoundation,2014).EcofysandCircleEconomyestimatethatcirculareconomystrategiescanhelpmitigatearound11-13billiontonnes of CO2e by 2030, given that production of basicmaterials generatemore than half of theworld’sGHGemissionsandonlysevenpercentofthematerialsusedbytheglobaleconomyarecur-rentlyreused(Ecofys&CircleEconomy,2016).

Whiletheconceptisthusbroad,weherefocusonrecycling,reuse,lessdemandforandefficientuseofprimary resources, including through theuseofhigherqualitymaterials, products, systemsandbusinessmodelsascoreelementsofthecirculareconomy(EllenMacArthurFoundation,2013).

Thecirculareconomymodelunderpinstheshifttobusinessmodelsthatcombinecompetitiveness,environmentalbenefitsandproduct-servicesystems;andseekstorebuildcapitaltherebyenhancingtheflowofgoodsandservices.Itmakesanexcellentbusinesscasebyfosteringinnovation,competi-tiveness,economicgains,energysavings,environmentalbenefits,enhancedsecurityofrawmaterials

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 36

supply,socialintegration,jobs,investment,andmore.Italsostrengthenseffortstowardsreduceden-ergyconsumptionanddecarbonisationbyadvocatingrecycle,reuse,sharingandeliminationofwaste(EuropeanCommission,2017b).

Keydriversoftheshifttowardscircularitywillbeurbanisationandpopulationgrowth,thefinitenatureofresources,risingproductioncosts,climatechangeandfavourablealignmentofenablers(likecon-sumerpreferenceshifttosharingandtechnologicaladvances)(EllenMacArthurFoundation,2014).

Circulareconomystrategies (recycle, reuse, lessdemand forprimary resources,efficientuseof re-sources,eliminationofwaste,newbusinessmodels)canhelpmitigateemissions.Eachyear,60billiontonnesofrawmaterialsareextracted(W.Haas,Krausmann,Wiedenhofer,&Heinz,2015).About30billion tonnes represent fossil fuels or food.Constructionmaterials account for the second largestshareoftheextractedrawmaterialswherein ‘virgin’materialsareexclusivelyprioritisedandreuseoptionsarelimited(Ecofys&CircleEconomy,2016).Thelastgrouprepresentsmostoftheotheritemsofdailyuse(automobiles,appliances,chemicals,andsoon).Alargeproportionoftheseproductshaveahighpotentialforrecovery,reuseandrecycle,lifetimeextensionandsharing.Thebiggestimpactofcircular economy thus can be felt in the energy intensive industrial sector, agriculture, buildings,transport,powerandwaste.

Intheenergyintensiveindustrialsector,recyclingcanbeaparticularlypotentstrategy.Bothsteelandaluminiumare100percentrecyclablewithoutlossofqualityandwithapotentiallyendlesslifecycle.RecyclingaluminiumandsteelrequiresaroundfivepercentandathirdoftheenergyusedandemitfivepercentandaquarteroftheGHGemissionswhencomparedtoprimaryproduction(Cullen,2010;Kechichian,Pantelias,Reeves,Henley,& Liu, 2016). Similarly, currently, only14per centofplasticpackaging is recycledgloballyalthough it ispossible to recycleup to70per cent (EllenMacArthurFoundation,2016).

Inthewastesector,e-waste isoneof thefastest-growingtypegloballyat41.8milliontonnes (Mt)worldwidein2014,a25percentjumpfrom2010figures.Movingfromalineartoacirculareconomyhelpsmanagee-wastewhich in2014representedaroundUSD52billionofpotentiallyreusablere-sourcesofwhichlittlewascollectedforrecovery,ordisposedofinaneco-friendlymanner(seealsosection4.3).

Intheagriculturesector,circularstrategieslikemoreefficientuseofresourcesandrecyclingcanhelpreduceemissions,decreasethepressureonproduction,freeupland,waterandresources,andfosterbiodiversity(Ecofys2016;seealsosection4.1).Inthetransportsector,enhanceduseofelectricvehi-clesandsharingservicescandramatically loweremissionsandhelpgreenthesystem.Automobileswhichdominatethetransportationandmobilityindustry(thereare1.2billionmotorvehiclesontheroad)normallyremainidlefornearly95percentoftheirlifetime(Ecofys2016;seealsosection4.8).Circularstrategiescandrasticallyhelpreduceemissionsinthebuildings,wasteandpowersectortoo(seerespectivesections).

4.4.2 Mainchallengesandbarrierstowarddecarbonisation

Someofthekeycriticismsofthecirculareconomicmodelrelatetothefactthattheconceptistoobroad, it isdifficult toassess impact, the shift tonewbusinessmodels isa largelyunderestimatedchallenge,theemphasislaidonsocialaspectsisinadequate,andthattheenvironmentalimpactmaybeoverestimated(inparticularlongershelflifeofproductsmayrequirelongerenergytocreate,solarpanelsandwindfarmsaredifficulttorecycle,andthatrecyclingalsohasanend)(Behrens,Rizos,&Tuokko,2017).

Thetimeframetoshifttoacirculareconomyataglobalscaleremainsunquantifiedandassumedlylarge.Mainstreamingtheconceptof"circulareconomy"alsopresentsnumerouschallengesincluding

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 37

financing,keyeconomicenablers(likepricingsystemsthatsupportefficientresourcereuse,incentivesforproducersandrecyclerstocooperateacrossspecificvaluechains;andmarketsforsecondaryrawmaterials) (Bourguignon, 2016), skills, remoulding consumer behaviour and business models, andmulti-levelgovernance.Transformingthelineareconomy,intoacircularonewillentailaradicaltrans-formationofentireexistingproductionandconsumptionpatterns(Behrensetal.,2017).

Politicalbarriersexist. Intoday’sglobalisedworld, it isquitecommontohavepartsofoneproductmadeindiversegeographiclocationsincludingdifferentcountries.Closingthelooponproductsandvaluechainscharacterisedbygeographicdispersion is challenging.Moreover,moving tocircularitywouldimpactexportingcountriesthatengageinprimarymanufacturing,likeChina,whichmayturnintoapoliticalandcompetitivenessbarrier(EllenMacArthurFoundation,2014).

Technicalbarriersincludematerialcomplexity(transformationofmaterialsalongthevaluechainren-deringitmoredifficult“toidentifyandseparatematerials,maintainqualityandensurepurity”),mis-alignedincentives,sub-scalemarkets,limitedreversecapabilitiesandinfrastructureandlackofena-blers(EllenMacArthurFoundation,2014).Customersdonotalwayshavetherightincentivestoadoptalternativesmodelswhichmaybelonger-lastingatlowerusagecoststherebymoreeconomical.

Economicbarriersareequallychallenging.Establishingmorecircularbusinessmodelsareinhibitedbyfactorssuchascompetitiveness,higherinvestmentsrequiredtochangeaproductdesignandmovefromasales-basedtoausage-basedmodelwithouttransferofownership,theneedtocreateaninte-gratedreversesupplychain,andachievingscale(EllenMacArthurFoundation,2014).Reversecyclesorsupplychainsarethelinkbetweenpointsofrecycle,(re-manufacturing)andusageandaredifficulttoconquer.Theabsenceofmarketsofscaleinreversecycles,makesitchallengingorevenimpossibleforcompaniestosecurequality-controlledandreliablesecondarymaterialsandcomponentstocom-plementor replaceprimarystock (EllenMacArthurFoundation,2014).Reversecycle infrastructureandlogisticscapabilitiesremainpoor.Moreoverwastemanagementmechanisms(landfillsandincin-erators)remainlocalised,sortingandefficientlyhandlingdifferenttypesofmaterialsremainspoor,limitingopportunitiesfurther(EllenMacArthurFoundation,2014).RegulatorymeasureslikeExtendedProducerResponsibility(wheretheproducershavetheresponsibilityofmanagingequipmentafteritsendof life),certificationprogrammes, labelsandproductpassportscanbeausefultoolbutdonotexistacrosstheboard.Moreover,transitionwillbeacostlyaffairespeciallyforpooranddevelopingcountries.MoreR&Dwillalsobenecessarytoinformthetransitionanditsrequisites.

4.4.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

Foraglobalcirculareconomy,goalsrelatedtorecycling,reuse,lessdemandforandefficientuseofprimaryresourcesincoreemission-causingsectorscanhelpachieveprogresstowardsthecirculareco-nomicmodelandharnesspotentialbenefitsgivendeepinterdependencegeneratedbyglobalisationandthegeographicandsectoraldispersionofvaluechains.Aroadmapunderscoringdifferentcirculareconomystrategies (acrossvaluechains)ataglobal levelwillberequiredtosupport theshift toacirculareconomy(Bourguignon,2016)andcanclearsomeofthevaguenessoftheconceptandthetimeframerequiredtoshifttoacirculareconomy.Inessence,hence,circulareconomythinkingshouldbeintegratedinsectoralstrategiesandvisions(ratherthanaseparatecirculareconomyobjective).

SettingRulestoFacilitateCollectiveAction

RegulatorymeasureslikeEPR,passports(withinformationregardingthecomponentsandmaterialsaproductincludingdisassemblyorrecyclingattheendoftheproduct’slife),labellingandclearmaterialspricing(todisplaytherealcostsofmaterialsincludingexternalitiesinordertodriveefficientuseof

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 38

resources)(WEF,2016)canbedevelopedattheinternational levelgiventheglobalisednatureofanumberofvaluechainswhichcanhelpinformconsumersaboutthesustainabilityofproductswhilehelpingencourageinnovativeformsofconsumption(e.g.sharingorconsumingservices)andpromot-ing'green'publicprocurement(Bourguignon,2016).Certificationprogrammescanhelpconfirmthe“viabilityorsafetyofcircularproducts;optimizeandcontroltheuseofincineratorstoavoidnegativeeffectonmaterialsrecycling;andrevisitcurrenttradebarriersandregulatorygreyzonestofacilitatetransboundarymaterialsflows”(WEF,2016).Initiativeswouldmostlikelyhavetoproceedsectorbysectorand/orvaluechainbyvaluechain.

TransparencyandAccountability

Relatedtransparencyandaccountabilitymeasureswouldbeneededforimplementationofanyregu-latorymechanismsagreedat the international level,andcould includereporting toolswhichallowstocktaking,confidencebuildingandmutualencouragement.

MeansofImplementation

Giventhescaleofchangeinvolvedinthetransitiontoaglobalcirculareconomy,significantinterna-tionalcooperationwillberequiredtodeveloptechnicalskillswhichremaincurrentlyabsentamongtheworkforceat large (Bergema,de Jong,Kraak,Usanov,&vanderGaast,2016).Quantifying theeconomicimpactandbenefitswillalsobeessential.

Theshiftwillrequiresignificantinternationalfinancingoptionsforconcreteprojects,R&D,assetin-vestments,subsidypaymentstopromotenewbusinessmodels,andpublicinvestmentininfrastruc-ture,inparticularindevelopingcountries(Bourguignon,2016)whichcanalsoalleviatecompetitive-nessconcerns.Bergemaetal.(Bergemaetal.,2016)estimatethatcountrieswiththehighestresourcerentsandfewothersectorstofallbackon(likemanyoftheAfricanrawmaterialexporters)willbemostexposedtoashifttothecirculareconomyindevelopedregions.Theywillrequireassistance.

KnowledgeandLearning

Given that the transition to a circular economy involves tremendous transformation across valuechainsandindustriesinascoreofareas, itwillbeessentialtoinitiatepolicyandtechnicaldialogueplatforms bringing together various stakeholders, in particular government and business leaders,acrosstheglobe.Involvementofbusinessleaderswillbeessentialinordertospecifyprecisecriteriaforconnectingdifferentsectors.Supportingcross-industrycollaborationwillbecritical(WEF,2016).Sharingofknowledge,bestpractises,knowhowandexpertisewith lessdevelopedcountries isalsoessentialinparticularwithmostoftherawmaterialexportingdevelopingcountriesgiventhatcircu-larityinoneregion,sayEurope,willhaveasignificantimpactondevelopingcountries(Bergemaetal.,2016).

4.5 Power

4.5.1 Currentstatusandprospect

TheCO2emissionsfromtheenergysectorcontributesome61percentofglobalGHGemissions.Withinthatsector,electricitygenerationisthesinglelargestsubsectoraccountingforsome38.2percentofCO2emissionsfromfuelcombustion(IEA,2016a).9Withrespecttotheglobaltransformationchallenge,

9 DifferentiatingCO2emissionsfromheatandelectricitygenerationischallenging,sincedataisnotre-

portedseparatelyintheIEA’sCO2emissionsfromfuelcombustiondataset.WehavecalculatedCO2

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 39

globalpowersupplyisakeysectorfortworeasons:(1)withmaturingrenewableenergytechnologies,solutionsforzero-carbonelectricityarealreadytechnicallyavailableand(2)formanyothersectorselectrification of processes is the most promising mitigation strategy. This holds for example fortransportandemissionintensivebasicmaterialssuchassteelandcement(Ahman,Lechtenbohmer,Nilsson,&Schneider,2016).

Despite theavailabilityof low-carbonalternatives,globalCO2emissions fromelectricitygenerationhavebeenrisingatanaveragerateofaroundthreepercentannuallybetween2000and2014.Onlyafter2011hasthistrendstartedtoleveloffsomewhat.Whilegrowthinelectricitydemand(andhenceelectric output) remained largely stable, the emission intensity of global electricity has started toslightlydecreaseafter2011(IEA,2016a).Sincethelatestdataisavailableonlyfor2014,itisatthispointdifficulttoassesswhetherthistrendisrobust,althoughrecentdevelopmentswithrespecttocoalconsumptioninChinaandIndia(seemorebelow)indicatethatinfactitmayberobust.

Historically,electricityhasbeensuppliedbyfiveenergysources:coal(hardcoalandlignite),naturalgas,oil,(large)hydropower,andnuclearpower.Onlyrecentlyhaveotherrenewableenergysources(wind,solar,geothermal,tidal,andbioenergy)startedtoassumeamoresignificantshareoftheglobalpowermix.Whilethestockglobalpowergenerationcapacityisstillheavilydominatedbyfossilfuel,nuclearandlargehydropowerplants,thelion’sshareofinvestmentshasshiftedtowardsrenewableenergies in recent years, both in terms of dollars spent as well as in terms of capacities added(Frankfurt School/UNEP/Bloomberg, 2016). The followingparagraphs synthesise keydevelopmentswithrespecttoalloftheabove-mentionedtechnologies.

Coalusedtobethebackboneofthemajorityoftheworld’spowersystems.Andcoalstillisbothabun-dantaswellasrelativelycheap.Formanydevelopingcountriestherefore,investingincoalcapacitieswasconsideredaviablewayof fuellingtheirrapideconomicgrowth.Consequently,coalcapacitieswereexpandeddramatically.Ifexistingcapacitiesandonlyafractionofgenerationcapacitiescurrentlyin theplanningareutilizedto their full technical life-time, theremainingglobalcarbonbudgetwillalreadybeconsumedentirely(OttmarEdenhofer,2015).However,therearesomesignsthatthecoalboommaycometoanend. In theUS,coalconsumptionandproductionhasplummeted in recentyears,partlyduetoregulationundertheObamaadministrationandpartlybystiffcompetitionfromshalegasand renewableenergies (seebelow). In thewakeof thisdownturn,PeabodyEnergy, thelargestprivatecoalminingenterprisehadtofilebankruptcyinitsdomesticUSmarket(Reuters,2016).ThemostdramaticturnawayfromcoalwaswitnessedintheUnitedKingdom(UK).On21April2017theUKsawthefirstworkingdaywithoutcoalpowersincetheonsetoftheindustrialrevolution(Brown,2017).AlsoChinaandIndiadrasticallycuttheirrespectivecoalprojectpipelinesandChinaevenhaltedongoingconstructionsonnewcoalpowerplants(Shearer,Ghio,Myllyvirta,Yu,&Nace,2017).

EversincetheIPCC’sSpecialReportonCCSin2005,therehasbeenprofoundhopethatCCSwouldmakeasubstantialcontributiontoreducingCO2emissionsfromthepowersector(IPCC,2005).TherewasparticularhopethatCCSwouldhelptobringabout“cleancoal”.10CCSisacombinationofmostly

emissionsofelectricitygenerationbymultiplyingthereportedCO2emissionfactorsperelectricityout-put[tonnesCO2/kWhelectricitygenerated]withreportedglobalelectricityoutput[TWh].For2014thiscalculationyieldsatotalof12360MtCO2,i.e.some9.3percentlessthanthe13,625Mtreportedjointlyforelectricityandheat.

10 TheissueofCCSisnotrestrictedtoemissionsfromfuelcombustionbutmayalsocoverindustrialemis-sions(seesection4.6).Furthermore,manyscenariomodellingexercisescometotheconclusionthatnegativeemissionswillbenecessarytoattainthewellbelow2/1.5°Ctarget.Thesenegativeemissionscouldbeachievedbycombiningthecombustionofbio-energywithCCS(BECCS).However,wedonotconsiderBECCSasanintegralpartofthepowersector’stransformationchallengeandthereforedonotcoverthisimportantissuehere.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 40

proventechnologies.However, todatetherearenocommercialscaleprojects inthepowersectorthatproofthattheconceptisworkingnotonlytechnicaltheorybutalsoinsocio-economicreality.Tochangethis, the IEAhassetagoaltoestablish100CCSdemonstrationprojectsacrosstheglobe in2009.However, in2013the IEAhadtochangethisgoaltoonly30projects in2020.AndgiventhecurrentpipelineofCCSprojects itmaybeevendifficulttomeetthismuchhumblertarget.Overall,thereareonlythreedemonstrationprojectsoperationalinthepowersectorandonlyoneofthemhascomeonlineafter2010(Gaede&Meadowcroft,2016).

Amongfossilfuels,naturalgashasthelowestspecificemissionfactoratcombustion.However,gasextractionandinparticularhydraulicfracturing(fracking)canleadtoinadvertentdiffuseCH4emissionsthatnecessitateasignificantincreaseoftheemissionfactor.Therecentboominnaturalgasproduc-tionwasdrivenprimarilybythistechnology.Annualproductionrosefrom21.23millionterajoules(TJ)in2010to29.43millionTJin2015intheUSalone(IEA,2016d).CheapnaturalgaswasoneofthemainreasonsforthedeclineofcoalconsumptioninsomeregionssuchastheUS.Withrespecttoglobaltradeofnaturalgas,anothertrendwasobservedintherecentdecade:increasinginvestmentsinliq-uefiednaturalgas(LNG)technologyandinfrastructure.LNGterminalsandsupertankersunshacklednaturalgasfrompipelineinfrastructureandmadenaturalgasaglobalizedcommodity(IEA,2016e).

Theglobalshareofnuclearpowerhasbeenindeclineoverthelastdecade(EIA,2017).While60reac-torsarecurrentlybeingbuilt,mostlyindevelopingcountriesandemergingeconomies,numerousre-actorsarerapidlyapproachingtheendoftheirtechnological lifetime(IAEA,2017).Whatismore,anumberofcountrieshavereversedtheirnuclearenergypolicyaftertheFukushimacatastropheandcommittedtophaseout(e.g.Germany)orreducetherelianceon(e.g.France)nuclearenergy.Acom-monthreadamongallnuclearreactorscurrentlyunderconstruction,atleastinindustrializedcountries,isheavycostoverruns.ThisholdsforexampleforconstructionsinFinland,theUS,andFrance(Gilbert,Sovacool,Johnstone,&Stirling,2017).IntheUK,theplannednuclearstationinBritain,HinckleyPointC,couldonlyattractinvestorsafterthegovernmenthadguaranteedaheftyfeed-intariff.Therateisalreadynowmuchhigherthanwhatisusuallypaidforwindpowerandwillnotdecreaseovertimebutautomaticallyincreasewithinflation(UKDepartmentofEnergyandClimateChange,2013).Allthingsconsidered,the“nuclearrenaissance”thatwasproclaimedrepeatedlyinthepastisfarfrommaterial-izing.

Renewableenergyrepresentsthemostdynamicpartoftheglobalpowersector.Technologycostsforsolarandwindpowerhavebeenfallingsharply.Forexample,globalaverageutility-scalelevelisedcostofelectricityofsolarphotovoltaics(PV)fellbyaround58percentbetween2010and2015andthecostareprojectedtocontinuetofall(IRENA,2016).Whenlevelisedcostsofelectricityareconsidered,renewableenergiesarealreadycompetitiveinmanymarkets.Inparticularlywell-suitedlocations,re-newableenergiesareprovidingsomeofthecheapestelectricityeverproduced.ExamplesincludesolarPVinUnitedArabEmiratesthatwasrecentlycontractedat2.4ct/kWh(USD)andwindpowerinMo-roccoat~3ct/kWh(USD)(Dipaola,2016;Parkinson,2016).Inthewakeofthisdevelopment,therehasbeenastronguptakeininvestmentsinrenewableenergy,particularlyinemergingeconomies.IndiaandChinaarenotonlyamongtheleadingmarkets,buthaveconsideredtherenewableenergyindustryapriorityforindustrialpolicyandhencehavebecomeleadingsuppliersforrenewableenergytechnol-ogies(REN21,2016).

Cleaninguppowersupplyis,however,onlyonestrategy.Cleanrenewableenergysupplysimplycannotoratleastnoteconomicallyrampedupfastenoughtomaintaincurrentconsumptionlevels.Thisisparticularlytrueifitisassumedthatdevelopingcountrieswillcatchuptolevelscomparabletocurrentconsumption in industrialized countries. 2°C-compatible IPCC scenario therefore generally projectsteepincreasesinenergyefficiencyontheconsumptionside(IPCC,2014a).Whileenergyefficiencyimprovementsareanessentialelementofthetransformationoftheglobalpowersector,theyhave

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 41

toberealizedintheconsumingsectors.Forthesakeofclarity,energyefficiencymeasuresarethere-forediscussedinvariousothersectors.

Beyondthesetechnicalchallenges,thereareanumberofotherdevelopmentswithrelevancetothepowersectorthatareworthmentioninghere.Oneissueisthecentralrolethatelectricpowerplaysinhumandevelopment.Basicaccesstoelectricitycanbeconsideredanecessaryconditionfortheerad-icationofpoverty(IPCC,2012).Stillmorethan1.2billionpeople,predominantlyinruralareasinAfricaandAsiastilldonothaveaccesstoelectricalenergy(IEA,2015b).ProvidingelectricitytothesepeopleisthereforeconsideredapriorityandwasthereforeincludedasaseparateSustainableDevelopmentGoalandisreflectedinthemajorityofNDCssubmittedundertheParisAgreement.

Anotherissueofimportancetothepowersectoristheglobalfossilfueldivestmentcampaignthathasbeenrelativelysuccessful inconvincing(institutional) investorstoremovesharesincompaniesthatgeneratealargepartoftheirrevenueinthefossilenergyindustryfromtheir investmentportfolios(seesection4.13foramoredetailedtreatmentofthedivestmentcampaign)Additionaltothesegen-eraltrends,thesectoraltransformationchallengesareverydiverseindifferentcountries.Keycharac-teristicsthatdeterminethesedifferencesarethefollowing:

• renewableenergypotentials;

• existenceofdomesticfossilfuelreserves;

• structureandownershipofthepowermarket;

• stateofthepowersystem(gridinfrastructure,currentpowermix).

4.5.2 Mainchallengesandbarrierstowarddecarbonisation

Thephysicalpre-conditionsforrenewableenergydeploymentdiffergreatlyacrosscountries.Corre-spondingly,differ the transformationchallengesandbarriers.Countrieswithahighshareofhydropowerforexamplehavetheadvantageinthathydropowercantypicallydispatchedflexiblytoaccom-modatevariablepowersupplyfromintermittentrenewableenergysourceslikewindandsolarpower.Forcountrieswithoutsuchendowmentsothertechnicalsolutionswillneedtobedeveloped.

Withrespecttotechnologicalaspectstheneedforstoragecapacities isoneofkeychallenges.TwodifferenttypesofstoragewillbenecessarytoensurethestabilityofpowersystemswithhighsharesofintermittentRE,particularlywindandsolarpower:(1)short-termstoragethatcansubstitutelargerotatingmassesinthermalplantswhousedtohelpbufferingvariabilityinfrequencyandvoltageinamatterofsplitsecondsuptoacoupleofminutes(ancillaryservices).Intheshorterterm,theneedforstoragecanbereducedbymakingelectricitydemandmoreresponsive(Palensky&Dietrich,2011).Currently,powerdemandislargelyinelasticanddoeshardlyrespondtoshort-termpricehikes.Ena-bledbysmartgrids(andsmartappliances)demandcouldbemanagedinordertoshiftsomeofitfrompeak loadhours tohourswith lowerdemandand/ormoreabundantrenewableenergysupply. (2)long-termstoragewillberequiredtobalanceoutseasonalvariabilityintheavailabilityofRE.Energystorage is stilldominatedgloballybypumpedhydropower. Still,both research spendingaswell asinvestmentsinbatterystoragehavebeenskyrocketinginrecentyears.Asamatterofconsequence,batterycostshaveplummetedatratessimilartothoseseeninthecostreductionsofSolarPV(IEA,2016c).

Anotherkeytechnicalchallengetobeaddressedistheupdateandre-buildofexistinggridinfrastruc-tures. Incountries thathistorically reliedon fossil fuelledpowergeneration,powerplants typicallywherebuiltatlocationsthatareclosetothecentresofelectricitydemand(i.e.majorindustrialcen-tres).Contrastingly, renewableenergygenerationunitswillbe locatedwhereverthepotentialsarehighest.This isoften in rather ruralareaswithout largeamountsofdemand.While inprototypical

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 42

fossilfuelledpowersystemstheroleofdistributionnetworkswasmainlyoneofinterconnectingin-dustrialhubsandthushedgingagainsttheriskofblackouts,thetaskinaprototypicalRE-basedpowersystemisoneofconnectingcentresofsupplytothecentresofdemand.Thismayrequirefundamen-tallydifferentgridlayoutsandenormousinvestmentsoverthecomingdecades(IEA,2016c).

Thisleadsustoeconomicbarriers.Intheeconomicrealm,twobroadchallengesarestandinginthewayofaglobaltransformationofthepowersector:aninvestmentchallengeaswellasamarket-designanddispatchchallenge.TheinvestmentchallengedirectlyrelatestoArt.2.1coftheParisAgreement,“[m]akingfinanceflowsconsistentwithapathwaytowardslowGHGemissionsandclimate-resilientdevelopment.”Currentinvestmentsinrenewableenergyin2015amountedtonearlyUSD286billion(REN21,2016).Yet,inordertohaveachanceoflimitingglobalwarmingwellbelow2°Cannualinvest-mentsintheballparkofonetrillionwillberequired(Ceres,2014).Atthesametime,investmentsinfossilfuelinfrastructureneedtobephaseddownandout.

Theissueofhighcostsforrenewableenergytechnologieshasbecomemuchlessimportantrecently.TechnologycostshaveplummetedinparticularforsolarPVandwindandthislikelytocontinue(IRENA,2016).Thisisnottosay,thatcostshavebecomeanon-issue.Despitelowcostforthehardware,re-newableenergycanbecomeexcessivelyexpensiveifanunfavourablegeneralinvestmentclimate(highprimelendingrates)drivesupcapitalcostsandifalackoflocalexpertiseandskilledworkersdrivesupthesoftcostsofinstallingandmaintainingrenewableenergysystems.Also,costdistributionmaybeanissue,includingregardingequityandfairness.

Thesecondchallengeisoneofmarketdesign.Sincetheearly1980snumerouscountrieshavestartedtoliberalize(andprivatize)theirrespectivepowermarkets.Typically,thesemarketsareorganizedwithpowerspotmarketsattheircore.Pricesatthespotmarketarebasedprimarilyonmarginalgenerationcosts.MostformsofRE,however,donotfeaturemarginalgenerationcosts.Windandsolarenergyisgeneratedwhenthewindblowsorthesunshines,irrespectiveofthewholesalepriceforelectricity.Inmarketswithparticularlyhighsharesofelectricitywithzeromarginalcosts,themarketdesignap-proachesitslimits.Pricesaregenerallylowandcanevenbecomenegative.Inconsequence,thespotmarketlosestoessentialfunctions.Firstly,thespotmarketcannotensurethatinvestments–irrespec-tiveofwhetherinrenewableenergyorfossilfuelcapacities–cannotberecoupedovertheprojectlifetimewithoutotherrevenuesstreams.Secondly,thespotmarket loses itsabilitytoorganizethedispatchofpowerplants,i.e.signallingwhichplantshouldbegeneratingpowertosatisfytheexactcurrentlevelofdemandandwhichplantshouldnotberunning.Creatingacompetitivemarketsystemthatensuresthatlong-terminvestmentscanberecoupedandthatefficientlyorganizesdispatchforsystemswithveryhighsharesofintermittentrenewableenergyisstillnotonthehorizon.

Thechallengesandbarriersdifferamongcountriesalso in theway thepowersector is structured.Whileinsomecountries,thesectorisdominatedbyprivatelyownedutilities,inmanycountriesutili-tiesarestate-owned.Insomecountries,institutionallinkagesbetweengovernmentandutilitiesispar-ticularlycloseandamounttowhatUnruhhascalleda“techno-industrialcomplex”fromwhichstrongsystemicchangeresistancemustbeexpected(Unruh,2000).Increasingdeploymentofrenewableen-ergycancontributetoadiversificationoftheownershipstructureinthepowersector.Forexample,inGermanyinvestmentsinrenewableenergywerelargelydrivenbymunicipalutilities,smallenergycooperativesandevenindividuals(Schmid,Knopf,&Pechan,2016).

Lastbutnotleast,humancapitalandsocialbarriersneedtobehighlighted.Implementingglobalen-ergytransformationtowardsrenewableenergyrequiresaskilledworkforce.Inmanydevelopingcoun-triestechnicalcapabilitiesandskilledworkersarestillabottleneckforthescaled-uprenewableenergydeployment(Hirsch,2015).Socialbarriersincludeissuessuchasenergypoverty.Changesinthepro-visionofelectricitymayresultinshiftingcostsandpayments.Inthecourseofthetransformationofglobalpowersectors,particularattentionneedstobepaidtoavoidingpotentialeffectsthatpolicies

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 43

mayhaveonmarginalizedcommunitiessoastoavoidincreasedincidenceofenergypoverty(Cherian,2015).

4.5.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

Thesignallingfunctionofinternationalgovernanceisofparticularrelevanceforthepowersector.In-vestments inthesectorareextremely long-lived.Ontheonehand,thismeansthat investments infossilfuelinfrastructuretodaymayliterallycementacarbon-intensivepathwayforthenextdecades.Ontheotherhand,thislong-termperspectiverequiresinvestorstomakeinvestmentdecisionstoalargeextentonthebasisoflong-termexpectationsofthesectorandtheeconomyingeneralasop-posedtothemarketconditionsoftheday.Whencountriescrediblyagreeonlong-termvisionsandgoalsforthesector,thismayaltertheinvestors’expectationsabouttheviabilityoftheirprojectedinvestmentsandhencetheirinvestmentdecisionsoftoday.Themorespecificthevisionis,themoreimpactitislikelytohaveontheinvestmentdecisions.

OneparticularexamplerelatestoinvestmentsinCCS.Oneofthekeybarriersisthatpotentialinvestorsfacesplitincentives.InvestinginCCSmayhelpto“future-proof”thesector,yetthismaycomeatsig-nificant short-term financial risks (Gaede&Meadowcroft, 2016).Also, the countries thathave thestrongestinterestindevelopingCCSarethosethathavevestedinterestsand/orlargefossilfuelre-serves.Yet,thisinterestiscontingentonambitiousclimatepolicy.Inthepast,manyofthosecountrieshaveratherfocusedondelayingaggressiveclimateaction(deConinck&Bäckstrand,2011).Astronginternationalsignalcouldhelpshiftthepoliticaleconomysothat interestandconsequently invest-mentindevelopingCCSincreases.

SettingRulestoFacilitateCollectiveAction

Therearevariouswaysinwhichthepowersectortransformationinonecountryinterrelateswiththesectortransformationinothercountries.Themostdirectinterdependencerelatestoglobaltradeandcompetition.Powersystemsareconnectedthroughmarketsforfossilfuels,aswellasglobalizedtech-nologymarketsforalltypesofenergytechnologies,includingrenewableenergytechnologiesandbat-terystorage.Sinceelectricityisanessentialinputtoalmostallindustries,theremaybeindirectcom-petitionamongcountries:ifinthecourseofasectortransformationacountryexperiences(temporary)electricitypriceincreases,energyintensiveindustriesmaymigratetoanothercountrywithlowerelec-tricityprices.Apowersectortransformationcanthusbecomeanissueofindustrialcompetitivenessforthecountry.Moreover,internationaldirectinterdependenciesmayexistintheformofmultina-tionalcorporations.However,inthepowersectorthismaybelessofanissuethanforexampleintheextractiveindustriessector.Whilesomemultinationalutilitiesexist,themajorityofthepowersectorsaredominatedbynationally operatingutilities. Last but not least, regional spill-overs exist,wherepowersystemsarephysicallyinterconnected.

Rule-settingtofacilitatecollectiveactionisasecondkeyfunctionforinternationalgovernance,partic-ularlytoaddressconcernsofindustrialcompetitiveness.Coordinatedtargetsettingcouldaddresssuchconcernsatleastpartially.Moreover,possibleapproachesforinternationalcooperationincludejointresearchprogrammes,patentpoolingandremovingtradebarriers.

Wherepowergridsareregionallyinterconnected,regionalgovernanceapproachesmaybeconducive.Interalia,coordinatedinvestmentsinthegridinfrastructurecouldminimizetheneedforstorageca-pacitiesasvariabilityinrenewableenergysupplytosomeextentbalancesitselfoutoverlargegeo-graphicdistances.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 44

TransparencyandAccountability

Transparentreportingandmonitoringcansupportandhelpreinforcerules,targetsand/orstandardscollectivelyagreedasoutlinedabove.

MeansofImplementation

Anotherleveragepointforinternationalgovernanceismobilizingthemeansofimplementationofthesectortransformation.Inparticular,internationalcooperationcouldhelpaddresstheinvestmentchal-lengesdescribedabove.Typically,renewableenergyinvestmentsincurthelion’sshareoftheirlifetimecostintheformofupfrontinvestmentcostswhilefeaturingloworevenclosetozerooperatingcostslateron.Forcountriesinwhichdifficultinvestmentconditionsprevail,thisbecomesacriticalbarrierforrenewableenergyinvestment.Duetohighprimelendingratesandcurrencyrelatedrisks,capitalcostcanrenderrenewableenergytechnologies,whichwouldotherwiseoutcompetethealternatives,uneconomical.Thisargumentalsoholdsforanyhighlycapitalintensivecomponentoftheenergysys-temincludingstorageandgridinfrastructure.Atthesametime,thereisnolackofinvestorslookingforopportunitiestoinvest.Ifwayswerefoundtoenhancetheattractivenessofinvestmentsinsus-tainablepowersystems,thiscouldstronglyexpeditethetransformationofpowersectorsacrosstheglobe.Internationalgovernancemayespeciallycontributethrougharrangementsforsharingthein-creasedfinancialrisksforinvestmentsindevelopingcountries.

Meansofimplementationintermsofinternationaltransferofrenewableenergyandenergystoragetechnologiesaswell as capacitybuildingboth (administrativeand technological) aswell arehighlyconduciveforasuccessfultransformationofpowersystems.

KnowledgeandLearning

Learningandknowledgediffusioncanalsomakeasignificantpositivecontributiontoexpeditingglobalpowersectortransformations.Forexample,asuccessfulsectortransformation inonecountrymaydemonstratethefeasibilityoftransformation.Ideally,moresuccesswoulddemonstratethattherearenumerousconfigurationsthatwork,encouragingothercountriestopursuethetransformationoftheirsectorsandatthesametimeprovidingorientation.This includesforexamplegovernancelearning:whichpoliciesworkandwhichpoliticalprocessesarepromisinginordertoforgealliancesandaligninterests.Italsopertainstolearningofmanagementandorganizationalpracticesincludingforexam-ple effectivemarketdesigns forhighRE-sharepowermarkets. Furthermore, if successful transfor-mationstakeplaceinlargeenoughmarkets,thiscanleadtode-factostandardsettingoftechnologicalparameters.

Thesekindsofspill-overscouldbesupportedinteraliabycreating(international)forainwhichexper-imentationandgoodpracticesharingwithrespecttopoliciesandpoliticalprocessescanbefacilitated,e.g.withrespecttomarketdesignsandlong-termplanningprocedures.

4.6 Energy-intensiveindustries

4.6.1 Currentstatusandprospect

Theglobalenergy-intensiveindustrysectorcontributes21percentoftotalglobalGHGemissions(IPCC,2014a).Globalindustrialemissionshavegrownfrom5.4GtCO2eqin1970to8.8GtCO2eqin2010oraround63percent(Kechichianetal.,2016).Emissionsfromtheenergy-intensiveindustrysectorcom-prisemainlyofdirectenergy-relatedemissions,indirectemissionsfromelectricityandheatproduction,processemissionsandatinypercentagefromwaste/wastewater(IPCC,2014a).OtherGHGemissionsfromindustryaremainlyN2Oemittedduringtheproductionofammoniumandadipicacidandsulphur

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 45

hexafluoride(SF6) fromaluminiumproduction.Thesectoraccountedforaround29percentofthefinalglobalenergyconsumption in2012(IEA,2014b),morethan70percentofwhichcomesfromfossilfuels(Kechichianetal.,2016).Fossilfuelsaccountfor74percent,85percentand85percentoftheironandsteel,cementandchemicalindustries’energyconsumptionrespectively(Kechichianetal.,2016).Aluminiumistheonlyenergy-intensiveindustrialsubsectorthatreliesmostlyonelectricityasitsenergysupply(Kechichianetal.,2016).

Table4.1: GHGEmissionsOverviewofEnergy-IntensiveIndustriesin2010

Sub-Sector TotalEmissions(inMtCO2) %ofIndustryEmissions

IronandSteel 2410 24.05percent

Cement

(aspartofnon-metallicminerals)

1910 19.06percent

Chemicals 1880 18.76percent

Aluminium

(aspartofnon-ferrousmetals)

690 6.89percent

Source:Kechichianetal.2016(totalemissions)andEcofys2013(shareofindustryemissions)

Thissectionfocusesonfourkeyenergy-intensiveindustrysubsectors:ironandsteel,cement,chemi-calsandaluminiumwhichconstitute68.76percentofindustrialemissions(Kechichianetal.,2016);Table4.1).Thesefoursubsectorshavegrownsharplyinthepastdecadesdrivenprimarilybyglobali-sationanddramaticgrowthindevelopingcountriesandcountrieswitheconomiesintransition.Oneofthemostimportantrawmaterialsusedtoday,globalcrudesteelproductionstandsat1,628.5mil-lionmetrictonnes(Mt)(2015)(WorldSteelAssociation,2017),upfromjust200mtin1950.Cement,thesecondmostconsumedmaterialontheplanet,hasseenadramaticgrowth–from133mtin1950(U.S.GeologicalSurvey,2015)tonearly4.1billionmetrictonnesin2015(Olivier,Janssens-Maenhout,Muntean,&Peters,2016).Thechemicals industry, the largestamongstthe industrialsubsectors inmonetaryvalue,hasalsoexpandedsignificantly,fromUSD171billionsin1970(Perlitz,2008)toUSD4.1trillionin2013(Consultancy.uk,2015).Aluminiumisakeyenablingmetalandistheworld’sthirdlargestconsumedmetalaftersteelandcopperandproductionofnewaluminiumresultsinonepercentoftotalglobalannualGHGemissions(Tyabji&Nelson,2012).

Overthepasthalfcentury, industryemissionshaverisensharplyamongstthe lowtouppermiddleincomecountriesascomparedtoagradualdeclineamongsthighincomecountries.Someofthekeyexogenoustrendsdrivingdevelopmentsinthesesubsectorshavebeenthepursuitofgrowthinthedevelopingworldstronglysupportedbypublicpolicyincentivesandglobalisation,lowerproductioncosts,population risealongsidegrowingper capita income.Productiongrowthofenergy intensivematerials(inparticularsteelandcement)inemergingeconomies,closelylinkedtolargeinfrastructureconstructionandurbanisation.

Fewcountriesdominatetheseindustrialsubsectors–China,theEU,theUS,JapanandIndia.Chinaiscurrentlyoverwhelminglythelargestproducerandconsumerinallthefoursubsectorsandoneofthetopfiveimportersandexporters.Asiaisthemostimportantregionaccountingfornearly65percentofsteeluse(WorldSteelAssociation,2016),morethan75percentofglobalcementconsumption,and61percentoftotalglobalchemicalsales.ProductionanddemandishighlyconcentratedinAsia,alt-hough it isgrowing inotherdeveloping regions like theMiddleEast, LatinAmericaandAfrica.For

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 46

instance,themostrapidgrowthinthecementsectorisseeninSudan,Peru,Nigeria,Turkey,Colombia,andBrazil(Kechichianetal.,2016).These“fastestrisers”between2003and2013havecompensatedrecentcontractioninmaturemarkets,suchastheEUandtheUSIndustrialisednationsalthoughinno-vative,faceacomparativedisadvantageinthesesubsectorsgivenlowerinput(e.g.energycosts,la-bourorrawmaterial)andlargerdomesticdemandintheglobalsouth.

NexttoageographicconcentrationinAsia,theseindustriesarealsodominatedbyafewprivatesectorcompanies.TheWorldSteelAssociationlists94globalsteelcompanieswhoproducedalmost60percentofthetotalglobalcrudesteelproductionof1,628.5mtin2015(WorldSteelAssociation,2017).FiftyofthesecompaniesarebasedinChinawhilefourteenothersarebasedin India(5),Japan(4),SouthKorea(3),Taiwan(1)andAustralia(1)(WorldSteelAssociation,2016).Similarly,just10compa-niesproducealmosthalftheworld’saluminium.Morethanhalfofthetop50chemicalscompaniesareheadquarteredinjusteighteencountries.TwelveareintheUS,eightinJapanandsixinGermany.BASF,headquarteredinGermanyistheworld’slargestchemicalcompanysinceadecade,withUSD63.7billionsalesin2015,downfromUSD78.7billionin2014(Tullo,2016).Thecementsubsectorismorespeckledincomparison.AccordingtotheGlobalCementDirectory2016,therewere2273activeintegratedcementplantsaroundtheworldin2015(Saunders,2015).

Trade in the ironandsteelandchemicals subsectors ishighlyglobalised:nearlya thirdofall steelproducedistraded(USDepartmentofCommerce,2016).Inthealuminiumsector,mostaluminiumproductsaretradedwithregionsorcountries.Forinstances,Chinawhichproducesnearlyhalfofglobalaluminiumisself-sufficientwhilenosinglecountryaccountsformorethan13percentoftheimportorexportmarket(Ludwig&VanHouwelingen,n.d.).However,thetradeintensityofproductsusingaluminium(e.g.cars,laptops,…)isofamuchhighertradeintensity.Finally,thecementsubsectorispredominantlyregional.Cementproductionissignificantlylocal:virtuallyeverycountryproducesce-mentandonlythreepercentofglobalproductionistradedinternationally(TheEconomist,2013).

Deepdecarbonisationpotentialanddrivers

Themodelusedby the IEA’s (2017)EnergyTechnologyPerspectives (IEA,2017a)shows thata2°CscenariorequiresglobaldirectCO2emissionsfromindustrytobereducedby44percentby2050andhalvedby2060comparedwithitsbaselinescenario.However,toreachnet-zeroCO2emissionsatthesystemlevel,by2060,whichisrequiredforabeyond+2°Cscenario,industrywouldneedtofurtherreduceitscarbonemissionsby69percentby2050and80percentby2060comparedwiththebase-linescenario(IEA,2017a).

Technologysolutionsfordecarbonisationandmodernisationacrossindustrialsectorscanbecatego-risedbroadlyinthreeareas(Kechichianetal.,2016);energyefficiencyimprovements(inprocesses),low-carbonsubstitutes(formaterialsandfuels)andinnovativeandalternativeprocesses.

Formostexistingindustrialprocessestherestillisanoverallpotentialtoimproveenergyandprocessefficiency(e.g.byclosingoldinefficientplantsandinvestinginbestavailabletechnologiesandbestpracticesolutionsalreadyexistthatfocuslargelyonrelativelyeasyretrofitswhichhavequickpaybacks(Kechichianetal.,2016).However,energyandprocessefficiencywillmeetthelawofdiminishingre-turns(i.e.moreeffortrequiredtoachievelowergains),theclosertheseprocessesgettothermody-namicorchemicaloptimisation.

Low-carbonsubstitutesformaterialsandfuelinputsarebeingexploredonaglobalscale(e.g.useofmunicipalwasteandbiomassincementproduction).Thefuturepotentialofthisoptioncanbesignif-icant insomesectors (e.g.biomassbasedfeedstockoruseofwastegases fromother industries inchemicalsproduction),butwilldependonthe(limited)availabilityofthesesubstitutes.(CEFIC,2013,p.112).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 47

Table4.2:DeepDecarbonisationOptions

Sector Deepdecarbonisationoptions

Steel

• Improvingenergyefficiencybeyondbestavailabletechnologies• NewSmeltingReductionTechnologies• DirectReductionofironoreusingnaturalgasorhydrogen• Usingelectricityforironorereduction• Useofbiomassinsteelproduction• Higherlevelsofsteelrecycling(whilemaintainingquality)• Useofwastegasesfromcokes/iron/steelproductionasfeedstockforchemicalspro-

duction• Carboncaptureandstorage

Cement

• Higherenergyefficiencyofprocessesandfuelswitching(tolowcarbonfuels)• Reducingclinkercontentinconcrete• Innovativechangestothecompositionofconcrete• Enhancedconcreteandcementrecycling• Extendlifetimeofconcrete(e.g.throughself-healingconcrete)• Carboncaptureatprocesslevelorduringconcreteformation• CO2utilisation

Chemicals

• Majorimprovementsinresource/energyefficiencyofprocesses• Higheruseof(renewable)electricitye.g.forproductionofH2• Higheruseofbiomass(waste),wasteandrecycledmaterialsincludingutilisationof

wastegasesfrome.g.steelindustryandindustrialsymbiosis• Developmentofadvanced(plastics)recyclingprocesses

Aluminium

• Useofnon-oxidisinganodes inprimaryaluminiumproduction incombinationwithhighlyefficientprocesses.

• Improvementofrecyclingtechnologiestomaintaindifferentaluminiumtypequalities• Establishmentofcircularvaluechainsandleasingofmetals.

Source:BasedonEuropeanCommission2017a.

Theuseofinnovativeandalternativeprocesseswillbeessentialfordeepdecarbonisationofindustrialsectors.This includeshigher levelsofelectrificationofenergyintensiveprocesses(usingrenewableenergysources)andtheuseofcarboncapture,utilisationand/orstorage.Table4.2belowgivesabriefoverviewofsomemajornew(orimproved)processesthatwouldenabledeeperemissionreductionsinindustrialsectors.

Nexttothe(process)technologysolutions,deepemissionreductionsinindustrialsectorswillalsore-quireavaluechainapproachthatcoversthesupplyandvaluechainsacrossdifferentsectors.Steel,cement,chemicalsandaluminiumproducersmostlymakeintermediateproductsandhencehavelim-itedimpactontheuseofintermediategoodsinthefinalconsumerorotherproducts(e.g.cars,air-planes,buildings,…).Therefore,reducingthebasicmaterials’intensityintheseendproductsthroughsmarterdesign,efficientconsumptionandenablingacircularresourcemodelwillneedtobepartoftheover-allmitigationeffortsrelatedtotheemissionsofthebasicmaterialssectors.Abehaviouralswitchtoacirculareconomycanmakeitsmarkonthewidermarketandthecarbonfootprintoftheindustrialsectorbyreducingdemand,recyclingandunderscoringgreaterefficiency.Theconceptofacirculareconomywhichis“acontinuouspositivedevelopmentcyclethatpreservesandenhancesnat-uralcapital,optimisesresourceyields,andminimisessystemrisksbymanagingfinitestocksandre-newableflows”(EllenMacArthurFoundation,2015)canpotentiallyhaveadirectimpactonemissions

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 48

reduction11.Whiletheconceptofacirculareconomyispervadingtheregionallevelandatbestthenationalechelon (mostly limited tocertain sectors), it remains largelyabsentat theglobal level.Atransitiontowardsmorecircularity(recycling,wastetoenergy,andsoon)wouldcertainlyaiddecar-bonisationefforts.However,circularityremainspoorerinthedevelopingcountriesthaninthedevel-opedones(seealsoSection4.4onthecirculareconomy).

4.6.2 ChallengesandBarrierstowardsdeepDecarbonisation

Activatinglow-carboninterventionsinindustrialsectorsdependsonthepresenceofacombinationofvariables(Kechichianetal.,2016).Theseincludetheabilitytoprovidequickpaybacksfromlow-carboninvestmentsandaminimaloperationaldisruption;thecapitalexpenditure(CAPEX)oftheinterventiontogetherwithaccesstofinance(andthecostofcapital);thecostofcurrentinputsinprocessescom-paredtothelow-carbonsubstitutes;astrongandgloballyimplementedcarbonpolicyandtheextenttowhichcompetitorsaroundtheworldareimplementingGHGmitigationmeasures.

Themainbarriersorchallengesfordeepdecarbonisationareacombinationoftechnologicalinertia,thehighcapitalexpenditureandriskassociatedwithnew(process)technologies,thereluctancetoimposeambitiousGHGregulationsorCO2costsduetofearoflossofinternationalcompetitivenessorimpedingdevelopmentandthecomplexityofglobalvalueandsupplychains(Bennett&Heidug,2014).

TechnologicalinertiaandR&Dmismatch

Thebasicmaterialsindustriessuchastheonescoveredinthissectionalmostallsawtheirmajordis-ruptiveprocessinnovationshappenby1970-1980(Freeman&Soete,1997).Largeproductioninstal-lationsmostlysee incremental,butstill important, improvements inenergyandmitigationofGHGemissions.Sincethesesectorsuse large(andcostly)process installationsthe investmentcyclesarelong.Thispreventsanacceleratedtake-upofnewbreakthroughtechnologies,especiallyifthesere-place incumbent installations. Furthermore, the basic materials industries (with the exception ofchemicals)haveanover-all lowR&Dintensity (expressedasR&Dexpenditureoverrevenues)com-paredtootherindustrialsectors12.OnecanevenseeanR&DmismatchwithsmallernewentrantsinthesesectorsshowingmoreinterestinR&Dbuthavinglowermeanstodosocomparedtolargerin-cumbentcompanies.Thesesmallercompaniesalsolacksufficientmarketaccess(intoe.g.consolidatedcement,steelandchemicalsmarkets)tofurthertheirinnovativeproductsandprocesses.

HighCapexandtechnologyriskofnewbreakthroughprocesstechnologies

BeyondtherelativelowR&DspendingandthepossibleR&Dmismatchthereexistsalsoanimportantbarrieratthelatter,demonstrationtocommercialisation,stageofR&Dintolowcarbontechnologies(e.g.technologyreadinesslevel6-9).Theselargescalepilotanddemonstrationplants,thefinalstepstowardscommercialisation,requireahighlevelofcapitalexpenditure.Atthesametime,thestillex-perimentalnatureoftheseinstallationscomeswithanimportanttechnologyrisk.

11 Both steelandaluminiumare100per cent recyclablewithout lossofqualityandwithapotentially

endlesslifecycle.Recyclingaluminiumrequiresaroundfivepercentoftheenergyusedtoproducepri-maryaluminiumandemitsaslittleasfivepercentoftheGHGemissionswhencomparedtoprimaryaluminiumproduction(Kechichianetal.,2016).Steelmakingfromscrapusesone-thirdoftheprimaryenergyandemitsaquarteroftheemissionsascomparedtosteelmakingfromironore(Cullen,2010).However only a third of all aluminium produced today comes from old, traded and new scrap(InternationalAluminium Institute,2009). Similarly,650million tonnesof steelare recycledgloballyeveryyearoronlylessthanone-thirdofglobalproduction.

12 SeetheJRC’sEUandglobalR&Dscorecards2016http://iri.jrc.ec.europa.eu/scoreboard16.html

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 49

Theinnovativetechnologies,whilepromising,arethereforegenerallynotyetdeployable,financiallylessattractive,requirelongerpaybacksandmaynecessitatelongeroperationalshutdownperiodstointegrate changes in production process/existing assets. Some promising technology options maythereforeneverbecomemainstreamsolutions.

Competitivenessanddevelopmentconcerns

Acrossmostcountriesintheworldthereisresistancebytheseindustrialsectorstoexternalitiesbeingpriced(fully)inorbeingfacedwithastringentregulatoryenvironmentrelatedtoGHGmitigation.Inindustrialisednations,incumbentproducersfearthatahigh(er)priceonCO2emissionsand/orafullexposuretoaCO2pricewould,intheabsenceofsimilarmeasuresinmostothercountriesaroundtheworld,deterfurtherinvestments,leadingtosocalledinvestmentleakage.Commonlyacceptedregu-lationsandstandardscouldcreateagloballevelplayingfieldwhichcouldfostercompetitivenessintherightdirection(Kechichianetal.,2016).

Indevelopingcountries (thatseehigh levelsofgrowth inbasicmaterialsproduction),ontheotherhand,introducingpriceonCO2emissionsisoftenseenasstuntingdevelopmentandtheconstructionof necessary infrastructure for an increasing andmore affluent population.Notwithstanding theseconcerns,agrowingnumberofindustrialisedanddevelopingcountriesareadoptingaformofcarbonpricing.Whileitishardtoquantifyorevenprovetheabove-mentionedconcerns,theyareclearlypartofthepoliticaldiscourseandhenceshapebothdomesticandinternationalpositioningandpolicies.

GlobalcomplexvaluechainsvisàvisthenationalbottomupapproachoftheParisAgreement

Finally,asstatedbefore,deepdecarbonisationinindustrialsectorswillrequireaddressingthewholevalueandsupplychainsrelatedtothese industries.Overthepastdecadesthesevaluechainshavegrowntobecomemorecomplexbutalsomoreglobalinscale.Thisissueisconnectedtotheproblemofaccountingforembeddedemissions(i.e.theGHGemissionsembeddedinimportedgoods).Inprac-tice,thismeansthatabasicmaterialscompanyisnot(always)abletotrackandcontroltheenduseofitsproducts.Thismakesclosingvaluechains(circularity)difficultand/orexpensive.Itthereforepre-ventsthewide-scaleintroductionofnewbusinessmodelssuchasthetransitionfromasales-basedmodeltooneinwhichbasismaterialsareleasedandreturnedtotheoriginalproducerforre-orup-cycling.FuturegovernanceforthesehighlyglobalisedsectorsoperatingacrossbordersdoesnotfullymatchtheapproachundertheParisagreementwhichaskseachcountrytodevelopnationallydeter-minedcommitmentsandlong-termdecarbonisationplans.

Someoftheabove-mentionedbarrierscanbenegativelyreinforcing.Forinstance,thelowR&Dinten-sityof(many)energyintensiveindustriesincombinationwiththelargeCAPEXneedforbreakthroughtechnologies.Thehightechnologyandfinancialrisksrelatedtothesetechnologiescan,incaseoffail-ure,hamperthecompetitivenessoncompaniesandhencemakethemmoreriskaverse.

4.6.3 ThePromiseandPotentialofInternationalCooperation

GuidanceandSignalFunction

Aclearinternational‘decarbonisation’objectivewithfirmtimelinesanddifferentiated(national,re-gionalandglobal)mitigationpathwayscouldprovideimportantguidancetodecision-makersinindus-trialsectors.Thiscouldbeachievedthroughtheconstructionofglobalroadmap(s)fordecarbonisationofenergy intensive industries,e.g.builtup fromnational, regionalandexistingsectoral roadmaps.Theseroadmapsshouldpresentanintegratedviewofhowtheindustriescantransformtheirsupply,productionandvaluechainswhilemaintainingcompetitiveness(Ahmanetal.,2016)andnotinfringingeconomicdevelopment.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 50

Given the disparities highlighted between regions, each economic regionmay need a low carbonroadmapincludingtrajectoriesfortheindustrialsectorswhichneedtobeembeddedwithintheotherpartsof theeconomythat formthedownstreamdemand fortheproductsof theenergy intensivesectors.Resourceefficiencylinkedtoa(global)circulareconomywillneedtobeapartofthedevelop-mentofsuchroadmaps.Coordinatingthese(sectoral)globalandregionalroadmapswithnationalde-carbonisationplans(developedundertheParisAgreement)willbearequirement.

SettingRulestoFacilitateCollectiveAction

Giventheglobalisednatureofenergy-intensiveindustries,thereisaclearrationaleforinternationalregulation(toaddresscompetitivenessandcarbonleakageconcerns).Collectiveactiontoenablethedecarbonisationofindustrialsectorscanberealisedthrough(acombinationof)different(regulatory)instruments.Regulationcouldtaketheformofcarbonpricing(beita(coordinated)CO2taxoraglobalemissionstradingsystem,e.g.throughlinkingregionaltradingsystems)or(coordinated)internationalregulationsand/orstandards.Thesecanbetargetingtheproductionprocesses(e.g.CO2emissionlim-itsper tonneofproductproduced)or theconsumptionside (limitonembeddedemissions in finalproduct;seeNeuhoffetal.2014).Shortofinternationalagreement,nationalandregionalfrontrunnerscanpavethewaytobroaderapproaches.Regulatingembeddedemissionsinfinalproductscouldhelpcreatealevelplayingfieldbetweenglobalindustrialproducersbecause‘endofthevaluechain’pricingwouldnotdiscriminatebetweenlocalandforeignproduction.

TransparencyandAccountability

Foranyinternationalregulatoryapproach,itisimportanttohavecommonMRVstandardsforindus-trialemissions,preferablyevenincludingthewholesupplyandvaluechain,asabasisforcomparingandverifyingefforts.TransparencyofGHGimpactinsemi-andfinishedproductsacrosscomplexandglobalvaluechainswouldrequirecommon/globalGHGaccountingstandards.

MeansofImplementation

Globalcooperationoninnovativetechnologydeployment(includingthefinancingthereof)isurgent.AccordingtotheIEA,goingbeyond2°CwillrequireOECDcountriestotransferinnovativetechnologiesforindustrytonon-OECDcountrieswherenewcapacityinstallationsincreasethepotentialtowidelydeployinnovativeindustrialprocesstechnologies.Thishastohappenverysoontoavoidcarbonlock-in/strandedassets(IEA,2017a).Processesandplatformsenhancingbilateralandmultilateraldiffusionof technologyandresearchcooperation–suchas theMission Innovation13initiative–could fostersuchcooperation.

Suchinternationalcooperationwouldalsoneedtoaddressthehighcapitalcostandriskassociatedwithlargeindustrialbreakthroughtechnologies.OneoptionwouldbeR&Dcooperationthatcombinestheknowhowandfinancepresentindifferentcountriesandatdifferentstagesinthetechnologyread-inesslevel.Suchanapproachcouldmakeuseofthedifferentstagesofindustrialisationaroundtheworldtomakeuseofavailableresourcesefficiently.Whilepotentialforbuildingnewlargelow-carbondemonstrationplantsparticularlyexistsinemergingeconomies,moreadvancedeconomiescouldpi-oneercirculareconomyrelatedtechnologies.Suchinternationalinnovationprogramcouldbeimple-mented through a global industrial innovation fund in combinationwith coordinated internationaltechnologyprojects(alongthelinesoftheITERnuclearfusionproject).Leveragingprivatecapitaltoenabletheseinvestmentswillrequiretheactiveparticipationoflargenationalorregionalinvestmentbanks.

13 http://mission-innovation.net

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 51

KnowledgeandLearning

To theextent theaforementioned technologycooperation involves thedevelopmentof innovativetechnology,itwillalsosupportthecreationoftechnicalknowledge.Beyondthat,decarbonisingindus-trialsectors(atagloballevel)willalsorequireasignificantinvestmentincirculareconomypoliciesandtherealisationofdomesticenablingconditionsforindustrialinnovation(e.g.innovationandindustrialpolicies).Globalcoordinationanddisseminationofknowledgeand learning in relationto industrialdecarbonisationisthereforerelevant,inparticulargiventhecomplexityofsupplyandvaluechainsofindustrialsectors.Forinstance,sharingbestpracticesoncirculareconomy,industrialandinnovationpoliciesthroughaglobalknowledge&learningdepository/platformcanacceleratetheimplementa-tionofenablingconditionsinawidergroupofcountries.

Linkages

Power:Substitutingfossilfuelsintheproductionprocesswithelectricitywouldincreasethedemandforelectricity,whichifnotdecarbonizedwouldresultinhigheremissionsinthissector.

AgricultureandLULUCF:Someofthepossiblesubstitution/innovationoptionsinvolvehigherdemandforbiomass.

4.7 Extractiveindustries(‘losers’)

4.7.1 Currentstatusandprospect

Remainingwithina2°Ccarbonbudgetrequiresmostglobalfossilfuelreservestoremainunexploited.McGladeandEtkins(McGlade&Etkins,2015)findthatathirdofoil,halfofgasandover80percentofcoalreservesshouldremainuntouchedfrom2010to2050(seefig.1).Achievingthis,however,isadauntingchallenge.In2012,theIEAwarnedthatoncurrenttrends,enoughnewfossilfuel-basedin-frastructure–mines,powerplants,pipelines,refineriesetc.–wouldcomeonlineby2017tolock-intheremainderofemissionsallowable(IEA,2012).Fossilfuelextractionandtradearewidelyperceivedascentraltoenergysecurityandeconomicdevelopment,especiallyindevelopingcountrieswithlargeunmetenergyneeds(Manley,Cust,&Cecchinato,2017;Whitley&vanderBurg,2015).Bothproduc-tionandconsumptionoffossilfuelscontinuetobewidelysubsidised.Multinationalcompaniesinthesector(s)aresignificantwealthgeneratorsandunderpinthereturnstomanypensionfundsindevel-opedcounties.Giventhiscontext,climatepolicy,atdomesticand international levels,has focusedalmostexclusivelyoncurtailingdemandforfossilfuelenergy,neglectingsupply-atleastuntilrecently.Butitisincreasinglyrecognisedthateffectiveclimatepolicyrequiresactiononboth(SEI,2015).

Governmentsownover50percentofglobalproductionoffossilfuelsthroughfullormajority-stakeownershipofproducingcompanies(Whitley&vanderBurg,2015).Nationaloilcompaniescontrol80-90per centofprovenglobaloil reserves (up from less than tenper cent in the1970s),withmostengaginginternationaloilcompaniesinavarietyofcontractualarrangements.Becauseofthisshiftingownership,internationaloilcompanieshavefocusedonhard-to-access(e.g.deepwater)andhard-to-recover (e.g. oil sands, shale oil) reserves that costmore than the current price of oil to develop(Holmes,2017).

Coalproductionhasgrownsince2000,particularlyinChina(seefigure2).However,China’sNationalBureauofStatisticssuggeststheworld’sbiggestproduceranduserreduceditsconsumptionin2016

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 52

(forthethirdyearrunning)by4.7percent(ref).Chinaisalsoreducinghugesubsidiestocoalpower,althoughthefigureisstilldoublewhatisreceivedbyrenewables.14

Figure4.3:‘Unburnable’FossilFuelstoRemainwithin2°CCarbonBudget

Figure4.4:Top5CoalProducers(billionshorttonnes)

Source:USEnergyInformationAdministration.https://www.eia.gov/todayinenergy/de-tail.php?id=3350

14 ThevalueofChinesegovernmentsubsidiestocoal-firedgenerationwasestimatedasatleastCNY252

billion(USD37.7billion)in2014andCNY120billion(USD18billion)in2015(Denjeanetal.,2016).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 53

Consumptionofcoal,however,lookssettolevelout(figure4.5).

Figure4.5:WorldEnergyConsumptionbySource,1990–2040.

Source:USEnergyInformationAdministrationhttps://www.eia.gov/todayinenergy/de-tail.php?id=26212

Aparticularfocus inthissection istheroleofsubsidiestofossil-fuelextractive industries,andpro-spects fortheirreduction.This isbecauseextraction(andcurrentconsumption levels)dependtoasignificantextentonsubsidy.Continuingcurrentlevelsofsubsidytoproductiongloballyhasbeenes-timatedtoleadtotheemissionofover37GtCO2from2017to2050thatwouldotherwisenotoccur-roughlyequivalenttoburningallprovenUSandNorwegianoilreserves(Gerasimchuketal.2017).G20publicfinanceforexplorationofnewreservesaveragesUSD13.5billionannually(Doukas,DeAngelis,&Ghio,2017).Consumptionsubsidiesalsounderminemitigationefforts,potentiallymakingothersec-torsoftheeconomy(e.g.transport)moredependentonfossilfuels(Manleyetal.,2017).Otherdam-agingeffectsofproductionandconsumptionsubsidiesincludeunderminingtheattractivenessoflow-carboninvestments,discouragingprivateresearchanddevelopment(R&D)onnewlow-carbonenergytechnologies,andobstructingtechnologytransfer(Whitley&vanderBurg,2015).Subsidiestendtolock-inpatternsofactivity,preventingdynamicresponsestochangingcircumstances(Whitley&vanderBurg,2015).Althoughoriginallyintendedtobeshort-term,theyoftenbecomeembeddedinplan-ningandexpectations,prices(includingofcapital),resourceallocationetc.,creatingnewvestedinter-ests.

Thoughestimatesvary-becauseprecisedefinitionsarenotagreed-theIEAestimatesthatfossilfuelsubsidies (FFS)amountedtoUSD493billion in2014(upfromUSD300billion in2009)andexceedrenewableenergysubsidiesbymorethanfourtoone(IEA,2015c).Estimatingtheirextentiscompli-catedbysubstantialdatagapsbecauseoflimitedtransparencyatthenationallevel,andafullaccount-ingofglobalenergysubsidies (forall types)hasneverbeencompleted.Asa result, it is likely thatexistingfiguresareunder-estimates(Whitley&vanderBurg,2015).Productionissupportedbyawiderangeofsubsidiesthatinclude,interalia:directpayments;preferentialaccessrightstoenergydepos-its;creditandinsurancesupport;capsonliabilities;tariffsorexportrestrictions;governmentowner-shipofpowergeneration(Koplow&Charles,2010).Consumptionsubsidiesmay improveaccessto

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 54

affordableenergy,buttendtobenefithigherincomegroupsmore(Asmelash,2017;Whitley&vanderBurg,2015).

Signsofdestabilisation

Intheoilandgassector,demandisfallinginmanyregionsasenergyefficiencymeasurestakeeffect.Infuture,substitutionwithotherfuels,thedevelopmentoflowercostlow-carbontechnologiesaswellasincreasedefficiencywillfurtherreducedemand,andalsolimitpricerisesinthelongerterm(Holmes,2017).Decliningoilpricesfrom2014haveencouragedMiddleEastandNorthAfrican(MENA)coun-triestoundertakeeconomicdiversificationefforts;all regionaloilexportersnowhavestrategies inplace(Tagliapietra,2017).Reformshavebeenundertakeninalmost30countriesin2013and2014,inseveralcasesspurredbyfallingoilprices.Manyhaveseentherecentdropinoilpricesasa‘once-in-a-generationopportunity’toslashsubsidiesandintroduceacarbonprice.However,otherswarnthatfallingcommoditypricesleadtoaparallelriseindemandsforproductionsubsidies,asdemonstratedbycallsfromUKNorthSeaoilproducersfortaxbreaks(Whitley&vanderBurg,2015).

TheG7/G20andAPEC,amongothermulti-lateral institutions,havestronglyurgeddecarbonisation.TheG20(G20,2009)committedtophasingout‘inefficientFFS,’andencouragednationalstrategiestodosowhileprotectingthemostvulnerable.TheG7subsequentlypledgedtoendallfossilfuelusebytheendofthecentury(G7,2015).

Shareholderactivismandlegalchallengesrepresentafurther,increasingthreatto‘businessasusual’.A2017shareholderresolutionrequiresannualassessmentsoftheimpactthatthe2°Cgoalwillhave(byreducingfutureoilandgasdemand)onExxon’sbusiness(Darby,2016).Twooftheworld’slargestassetmanagers,BlackRockandVanguard,votedinfavour.However,institutionalinvestorsareunlikelytodivestenmasse.Instead,annualassessmentsaremorelikelyafirststeptowardsenergycompaniesdiversifyingintocleantechnologyorreturningmoneytoshareholders(Darby,2016).

Whatneedstochange?

Preciserecommendationsfor‘roadmaps’towardsdecarbonisationofextractiveindustriesdependonthescenarioenvisagedforwidermitigationefforts(forexample,howwidespreadwillCCStechnologybecome,howwillgrowthine-mobilitydisrupttheoilmarket)andeconomic/societalpathways.15Asnotedintheintroduction,McGlade&Etkins(McGlade&Etkins,2015)offeronepossiblebreakdown,sectorallyandbyregion,ofwhatneedstobeleft‘intheground’.Thismakesclearthatthebiggest‘contribution’,intermsofassetsleftunrecovered,willneedtobefromcoal,givenitshighercarboncontent.

Foroil,thereisadegreeofconsensusthatexplorationdoesnotneedtostopentirelyinthelowest-incomecountries(Manleyetal.,2017;Tagliapietra,2017).Costsofdevelopmentandextractionvarysignificantlyacrossdifferentgeology,soitmaybeworthwhileforcertaincountriestoallowexplorationforreservesthatmaybelessexpensivetoextract-evenafteracarbontaxisfactoredin(Manleyetal.,2017;Tagliapietra,2017).IntheIEA’s‘450scenario’(consistentwitha50percentchanceof2°C),demandfallssharplyafter2020.Lowerproductioncoststhatallowexportcompetitivenesstobemain-tainedmeanthatMiddleEasternexports,however,areassumedtocontinueat2020levelsuntil2040(IEA,2016e).Butlowerpricesoverthistimescalewillseeoilrentsdeclinesignificantly.Thus,oilex-portingMENAcountries’entireeconomic,socialandpoliticalmodelsmustchange(atatimeofsignif-icantdemographicchange),totransformthemfrom‘rentierstates’intomoreeconomicallydiverse‘productionstates’(Tagliapietra,2017).

15 Ondisruptiontooilmarketscausedbychangesinthetransportsector,seeArbib&Seba2017.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 55

4.7.2 Challengesandbarrierstowarddecarbonisation

Decisionsaboutfossilfuelproductionandconsumptionarecloselylinkedtonationalsovereigntyandperceivedinterests,andenergypolicyquestionsmorebroadlyremainlargelytheprerogativeofna-tionaldecision-makers (VanAsselt&Kulovesi,2017).Thisapplieseventorelativelywell-integratedregions,suchastheEU.

Thelikelihoodofstrandedassetsraisespublicpolicyconcernsaboutfinancialinstabilityandagrowingpensiondeficit,particularlyindevelopedcountriessuchastheUK(Holmes&Orozco,2017).Unlikethelargecoal-basedenergycompanies,theiroilandgascounterparts–bothinternationalandnational–canberegardedastoobigtobeallowedtofail.16Countriesaremorevulnerablethanprivatecom-panies.Diversificationbyinternationaloilcompaniescouldpotentiallyaddressdevelopedcountrygov-ernments’concernsaroundlossofoilrevenueandtheneedtoshoreupofcompaniesintheshorttermthroughtaxcredits.Ontheotherhand,pensionfundsandinsurerswouldneedtodevelopothersourcesofreliablereturnsasdividendspaidbytheoilcompaniesdwindle(Holmes&Orozco2017.Thesituationforcountriesismorechallenging:notonlyisitmoredifficulttoshiftcapitalandcapabilities,theyarealsotied,geographicallyandconstitutionally,toownershipofreserveswhichcannotbesoldoutrightbutonlylicensedtocompaniesfordevelopment.Bycontrast,companiescould,iftheywanted,rundowntheirexistingreservesinlessthan15years(Manleyetal.,2017).

A furtherobviouschallengerelates toequityconsiderationsandthe importanceofsecuringa ‘justtransition’ (L.Hermwille,2017).But ‘while there isgrowing interest… insupply-sideclimatepolicyoptions,theattendantequityquestionshavereceivedrelativelylittleattention’(Kartha,2016,p.1).Trillionsofdollarsin‘foregonerents’maybeatstake,constitutingasubstantialshareofGDPinmanycases(Kartha,2016).Controloverfossilresourcesisunevenlydistributedamongcountries,andoftenalsoamongregionsandindividualeconomicentitieswithinthem.Sotooarethebenefitsofexploitingthem. That some stand to losemuchmore than others from any future constraints on extraction(McGlade&Etkins,2015)constitutesahugechallengetomulti-lateralefforts.17

AsHermwille(L.Hermwille,2017)notes,phasingoutofcoal,oil,andgas‘wouldhavetobeplannedandexecutedinaproactive,long-termwayandsystematicneweconomicperspectiveswouldhavetobedevelopedfortheaffectedregions’.Buttodate,alackofincentivesencouragingeconomicdiversi-ficationisevident(Tagliapietra,2017).ForMENAoilexporters,thisproblemisexacerbatedbyprivateinvestors’unwillingnesstoinvestinnon-oil,potentiallyimport-substitutingsectors,forfearthatwhenoilpricesrise,sowillvalueofthecurrencyofforeignexchanges,makingexportslesscompetitive.

OnthespecificissueofFFS,thoughwidelyrecognisedasdesirablefromefficiencyandclimateprotec-tionperspectives,theirremovalalsoraisesseriousequityissues.Benefitsofsubsidyreform–particu-larly in theshort term–willbeunevenlydistributedandstronglydependentontheapproachandcomplementary(compensatory)measuresadopted(Whitley&vanderBurg,2015).Complementarymeasuresshouldaimtoimprovethecompetitivenessorviabilityofthosewhostayinthesector(s),supportthosewhowanttoleavetheindustryortodiversifyintootheractivities,andtakeintoconsid-erationthepotentialoftheprivatesectortocreatenewopportunities(Caldecott,Sartor,&Spencer,

16 ForexampleRWE’smarketcapisaroundUSD8.4billionscomparedtoExxonMobil’sUSD314.5billions

(Holmes,2017).17 Edenhoferetal.(O.Edenhofer,Flachsland,Jakob,&Lessmann,2013)estimatethevalueoftheGHG

emission endowments that are created by establishing a cap-and-trade system (‘climate rents’) ataroundUSUSD1trillionperyear.Theyarguethat‘amajorandsofarperhapsunderappreciatedchal-lengeofclimatepolicynegotiationsistodealwithwhatmaybelargestdistributionalnegotiationstheglobalcommunityhaseverengagedin’.AsKartha(Kartha,2016)notes,thisappliesevenmoretofossilfuelextractionrents.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 56

2017;Whitley&vanderBurg,2015).FFSareparticularlyhigh intheMENAregion,wheretheyareestimatedat13per centofGDPand35per centof government revenues (Caldecott et al., 2017;Whitley&vanderBurg,2015).

ThemainchallengestomultilateralactionwillbetodefinewhatconstitutesFFSs,achievetransparencyabouttheirapplication,bridgethedeveloped-developingcountrygap,andtosetoutenforceableob-ligationswithimplementationtimelines(Asmelash,2017).Thecross-cuttingnatureoftheissuemeansthattheglobalefforttophaseoutFFSslacksanobvious,singleinstitutionalhomeattheinternationallevel(Asmelash,2017).Arguably,asingleinternationalorganizationisneededtocoordinateotherwisefragmentedefforts,provideaforumfornegotiationstowardsaninternationalagreement,andoverseeitsimplementation.

Researchershaveidentifiedseveralreasonsforthepersistenceofsubsidies(Whitley&vanderBurg,2015),togethercreatingadangerous inertia.Aprincipalreasonfor lackofprogressregardingbothproducerandconsumersubsidiesislackofinformation.A2015inventoryofFFSuncoveredabout800typesofsubsidy,mainlyinnationalbudgets,buteventhatdidnotcoverallfactorscausingartificiallylowerprices(OECD,2015b).Mostarenotclearlyidentifiedinstandardgovernmentbudgetdocuments(Whitley&vanderBurg,2015). Inorderforgovernmentstobefullyaccountablefortheircommit-ments,thereisanurgentneedformoretransparentandcomparableinformation.Theimportantroleof special interestsalsoneedsmention.Because thebenefits of subsidies areoften concentrated,whilethecostsarespreadacrossthegeneralpopulation(i.e.consumersandtaxpayers),politicallead-ersfaceasymmetricincentives.Thelackofcountervailingalobbystrengthensvestedinterests’chanceofblockingsubsidyreforms(Asmelash,2017).Theeconomicandpoliticalpowerofthefossilfuelsec-torhasenabledthemtostrongly influencedomestic(and indeedinternational)climateandenergypolicies,andtobesuccessfulshapersofpublicopinion(Kartha,2016).Afurtherimplicitreasonliesintheweaknessof institutions:governmentssometimessubsidisefossil fuelsbecausethey lackothereffectivemeansand institutionalcapacity to implementmore targetedpolicies (Whitley&vanderBurg,2015).

4.7.3 Promiseandpotentialofinternationalcooperation

Herewetrytodescribetheroleandimportanceofeachinternationalgovernancefunction,firstforextractiveindustriesingeneral,thenspecificallyconcerningFFSreform.

GuidanceandSignalFunction

Inprinciple,there isaclearneedtosignaltheresolveofgovernmentsandothers, indicating‘likelypolicytrajectoriestobusiness,investorsandotheractorsoperatingatalllevels’(seesection3above).Consensualanddeliberatetransitionawayfromextractionoffossilfuelsrequiresacommonunder-standingof itsnecessityandurgency.Stronginternationalsignalscanhelptoachievethiscommonunderstanding,basedonthelearningandknowledgedescribedunderthepreviousheading.Thesec-tionaboveonbarriersnoteshowpensionfundsandinsurerswouldneedtodevelopothersourcesofreliablereturnsasdividendspaidbytheoilcompaniesdwindle.Strongsignalsfromglobalinstitutionswouldfacilitatethis.

Settingrulestofacilitatecollectiveaction

Ideallytargetswouldbesetandimplementedthroughaglobalinstrument,recognisedasequitable.AsstatedinSection3,‘agreementoncollectiveactionrequiresagreementonthecontributionofeachindividualpartyandhenceonaburden-sharing’.Todate,internationalclimatenegotiationshavefo-cussedondeterminingwhocanemithowmuchfromfossilfuels.Theoretically,theycouldgoontoaskwhocanextracthowmuchintermsoffossilfuels,establishingaformof‘burdensharingagreement’.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 57

The Kyoto 2 concept (Tickell, 2008) suggests a global system, implemented through the UNFCCC,wherebythebulkofGHGproductionrightsareallocatedbyregularglobalauctionopentoallbidders.ProducersoffossilfuelsandindustrialGHGswouldneedtoholdsufficientrightstomatchtheirpro-duction.AuctioningofpermitscouldcrediblyraiseasumofaboutEUR1trillionperyearforamulti-purposeClimateChangeFund,withanemphasisonaddressingtheneedsofthepoorandmostad-verselyimpacted.Theconceptwouldbeaboldre-orientationofcurrentinternationalefforts,andthusagreatchallengetonegotiate.

TransparencyandAccountability

Globalregulationwouldrequiremonitoringandverificationofimplementation.ItmakesmostsensetodiscussthispredominantlyintermsofFFS(seededicateddiscussionbelow).

CapacityBuilding,TechnologyandFinance(meansofimplementation)

IthasbeensuggestedthattheproblemoflackofinvestmentinboostingtheprivatesectorsofMENAcountries,whichperpetuatestheirstatusas‘rentier’ratherthan‘production’statescouldberemediedbystrategicinvestmentbysovereignwealthfunds(Tagliapietra,2017).Thiswouldrequire‘stronggov-ernanceandforward-lookingvisionsonthepartofgovernments’(Tagliapietra,2017),andwouldben-efitfrominternational-levelcoordination.

Seealsospecificdiscussionofsubsidyreform,below.

KnowledgeandLearning

Tohelpovercomethecurrentstalemateoverthesupply-sideofclimatepolicy,Kartha(2016)suggestsimprovingknowledgeandunderstandingaroundparticularquestions(thecurrentabsenceofwhichpreventsstrongrecommendationsonimprovedinternationalcooperationinthissectionasawhole).Suchimprovedknowledgecouldbegintoshiftengrainedperceptionsofthe‘nationalinterest’infossil-fuelproduction-reliantcountries.Relevantquestionsinclude,interalia:

• Howfardoesfossilfuelextractionreallycontributetodevelopment,givendocumented‘neg-atives’ including environmental and human rights impacts, concentration of wealth andpower,Dutchdisease18andgeopoliticalinstability? Suchanassessmentcouldinformeffortstodecidehowextractioncouldbedistributedsoastomaximizedevelopmentbenefits.

• Whatarethedistributional impactsofpoliciesconstrainingextraction?Whenaredomesticstepssufficient,andwhenmightinternationalsupportbeappropriatetohelpalleviateregres-siveimpacts?

• What‘justtransition’lessonscanbelearnedfromothersectors?Whatobligationsmaysomenationsbeartosupportjusttransitionsinothernations,analogoustosupportformitigationandadaptation?

• Whichcountries’resourcesshouldstayintheground,andwhichshouldbeexploited?

• Howtodecideontheabove:basedoneconomicefficiency,ethicalprinciples,acombination,mediated by tradeable “extraction rights”? Is there a role for command-and-control ap-proaches,e.g.a‘coalnon-proliferationtreaty’?19

18 Asituationwheregrowthinnationalincomefromnaturalresourceextractiondamagesothersectors

ofacountry'seconomy,byraisingthevalueofthecurrency.19 See e.g. https://thinkprogress.org/a-simple-proposal-a-coal-power-non-proliferation-treaty-

a7132622a7dd

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 58

Internationalcooperationonfossilfuelsubsidy(FFS)reform

InthemorespecificfieldofFFSreform,thefollowinggovernancefunctionscanbehighlightedasre-quiringattentionifthekindofbarrierswehaveidentifiedaretobeaddressedseriously,andasareaswherefeasiblepolicyactionsexist.

KnowledgeandLearning,andTransparencyandAccountability

Asnotedabove,oneofthemainchallengesistodefinewhatactuallyconstitutesFFSs,topre-emptdenialsthattheyexist.20Then,internationalinstitutionswillbeinapositiontohelpaddressthem.AsWhitleyandvanderBurg(Whitley&vanderBurg,2015)observe,whiledomesticreformscanproceedwithoutinternationallycomparabledata,thisinformationcanfacilitatevaluablelessonlearningandevaluationofprogress,creatingpeerpressureandenablingcross-countrycomparisonsoftheeffec-tivenessofdifferentinterventionsonFFS.Theysetoutarangeofpossibleinitiatives,frommandatorytovoluntary.MandatoryreportingonFFS(followingthemodelforagriculture)isconceivable.Amongthemore voluntary proposals is to include reportingon FFS inUNFCCCNational Communications.Countrycommitments to transparencycanalsobewidenedandstrengthenedwhengovernment’salreadycommitted to reform insistonsubsidy reform inbilateralormultilateral tradeagreements(Whitley&vanderBurg,2015).

GuidanceandSignalFunction

Languageonlanguageonphasingdown“high-carboninvestmentsandFFS”couldbeincludedinthenegotiatedoutputsoftheUNFCCCinordertowidenandstrengthencountrycommitments(Whitley&vanderBurg,2015).

Settingrulestofacilitatecollectiveaction

Somesuggestthatstrongerregulatorystepsbeyondthevoluntarismreflectedinrecentinter-govern-mentalinitiativeswillbenecessary:

‘Pastprecedentsuggeststhatsuchcommitmentsmaynottranslateintoactualsubsidyreforms,and,evenwhentheydo,thereformstendtobevulnerabletooilpriceshocks,publicprotest,andchangesofpoliticalregime.Withoutanymechanismthattiestheirhands,reluctantgovern-ments often find it easier to renege on their voluntary commitments …’ (Asmelash, 2017;Tagliapietra,2017).

AsmelashandBirhanusuggest that itmaytakeacoregroupof ‘like-minded’countries topush formultilateral,bindingaction.Others(J.Smith&Urpaleinen,2017)seethefeasibilityofcoercionaslim-ited,andpreferpeerpressurethroughinternationalorganisationssuchasG20andAsiaPacificEco-nomicCooperation(APEC).

MeansofImplementation

ThereisastrongneedforthisfunctiontobefulfilledintermsofFFSreform.WhitleyandvanderBurg(Whitley&vanderBurg,2015)suggesttheneedtoincreasetechnicalandfinancialsupportforna-tionalefforts,andtoensureclimatefinanceisnotusedtosupportfossilfuels.Resourcesandfinancefor‘complementarymeasures’indevelopingcountries,suchassupportforhealthservices,education,socialprotection,energy-sectordevelopmentandeconomicdiversification,needtobelinkedtosub-

20 SaudiArabia,forexample,hasreportedthatithadnoinefficientFFSandtherefore‘phasingoutineffi-

cientFFSdoesnotapplytoSaudiArabia’(J.Smith&Urpaleinen,2017).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 59

sidyreformprocesses,either intermsof institutionalarrangementsorcarefultiming. Itwillbe im-portant to not only increase these resources, but to also foster linkagesbetweenexisting supportmechanismsandtheprocessesofreformingFFS.

Internationalinstitutionscanputinplacefinancialandothereconomicincentives,particularlyforde-velopingcountries:byindicatingclearlythatfossilfuelsubsidyreformispartofacountry’smitigationportfolio,thelikelihoodincreasesthatsuchactionscanbeeligibleforsupport.Eventhoughnational–level subsidy reform ismore likely tobe triggeredbyeconomicand fiscalmotivations, theclimateregimecouldstrengthenthecaseforreformbyofferingtheseincentives(VanAsselt&Kulovesi,2017).

Overall,theprimarychannelsforgreaterinternationalambitionandactiononFFSreformmaybesum-marisedas:‘bodiesforreporting,trackingandaccountability;financialandtechnicalsupport,whichmustbedivertedfromprovidingsubsidiesandtowardsreform;multilateralandbilateralagreements(includingontrade);andagreaterunderstandingoftheprocessesbeingundertakenbyregionsandcountriesthatarealreadyleadingbyexampleinreformingsubsidiestofossilfuels’(Whitley&vanderBurg,2015).

4.8 Transport

4.8.1 Currentstatusandprospect

Thetransportsector isoneofthefastest-growingemissionsourcesworldwide. Intheperiod1990-2014,totalsectoralemissionsfromfuelcombustiongrewby71percentandreached23percentofglobalCO2emissions(7.5GtCO2)in2014(IEAfigures,includingemissionsfromroad,domesticnaviga-tion,domesticaviation,andotherdomestictransport,butalsomarinebunkersandaviationbunkers,seesection4.9)(IEA,2016a).

5.7GtCO2ofthesewereemittedbyroadtransportalone(IEA,2016a).Andtheroleofthetransportsectorissettobecomemoreprominenteveniftheworldmanagestoembarkona2°Ccompatiblepathway. Themajorityof 2°C-compatible scenarios analysed for the fifth IPCC report indicate thattransportwillcontributethesinglelargestshareofemissionsin2050asemissionsfromindustry,build-ingsandelectricitygenerationdecrease(IPCC,2014c).

Passengertransportaccountedfor60percent,freighttransportfor40percentofglobaltransportenergydemand.Urbantransportemissions(currently40percentemissionsshare)areprojectedtodoubleby2050despitetechnologicalimprovementsintheabsenceofaggressivemitigationpolicies(Gota,Huizenga,Peet,&Kaar,2015).

Privateroadtransportisdominatedbyprivately-ownedindividualvehicleswithlowuseeffectivenessandhighemissionsperpersonkilometre.Especiallyincities,traveldistancesarecomparablylow(cf.(Chapman,2007),andsection4.10).

Nearlyallgrowthinthetransportsector,bothpassengerandfreight,isexpectedtooccurindevelopingcountriesandemergingeconomies(SLoCaT,2015).Oneofthemainchallengesofthenearfuturewillthereforebetodecoupleexpectedgrowthintransportfiguresfromemissionsinthesecountries.Thiswillnotbeaneasytask,astransportinitscurrentformishighlydependentoncombustionofoilprod-ucts.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 60

• Roadtransportisalmostcompletelydependentoninternalcombustionenginesrunningongasolineordiesel.Electricalpowerandhydrogenfuelcellsarealternativepropulsionoptions,butarenotinveryhighuseasofyet.21

• Navigationalmostexclusivelyreliesonheavyoil.

• Aviationiscompletelydependentonkerosene,anotheroilderivative.

• Railtransporttoalargeextentalsoreliesondieselfuel,butelectricityasanenergysourceiswidelyusedaswell.

Decarbonisingtransportinindustrialisedcountrieswillnotbeanylessdifficult,buttheproblemstruc-tureissomewhatdifferent.Whileindevelopingandemergingcountriesthemaintaskistomakenewtransportcapacitiesindependentofoilproducts,transportinindustrialisedcountriesalreadyhasboththevehiclesandtheinfrastructurethatlocksinhighcarbonpractices.Thetaskinindustrialisedcoun-tries thereforewillbe toswitchexisting transportmodes.Thismeans largescale replacementofasystemthat is largelygeared towards servicingcombustion-basedvehicleswithanewsystemthatminimisestransportemissions.

CurrentstrategiesinthesectortofostermoresustainableformsoftransportveryoftenrelyontheAvoid-Shift-Improveframeworktowardsinfrastructureandservices(Bakker,vanAsselt,Gupta,Haug,&Saidi,2009;SRU,2005):

• Avoidtravelorreducetravel-length:Ideally,transportinfrastructureshouldbedesignedinawaythatminimisestheneedtotravel,andminimisesthelengthoftravelincaseofunavoid-abletravels.Thiscanbestbeachievedbyoptimisedinfrastructures,especiallyinurbanenvi-ronments(seesection4.10).Forfreight,thisalsomeansinfrastructuralplanninganddecisionsif(partsof)rawmaterialsorpre-productscanbesourcednearertotheareasofproductionorrefinement.

• Shifttraveltomoreclimate-friendlymodes:Iftravelcannotbeavoided,policiesshoulden-courageorregulatethatlow-emissiontransportoptionsarefavouredoverhighemissionones.Forpersonaltransport,thismeanstoencouragewalkingandbicyclingforshortertravels,andpublictransportsystemsforlongerdistanceones.Policieshereoftenincludeeconomicincen-tivesanddisincentives(Roadpricing,publictransportsubsidies),andregulations(e.g.car-freezones). For freight, this canmean incentivising theuseof rail or boat transport over roadfreight,whichagainmaytaketheformofeconomic(dis-)incentiveschemes(e.g.tollsystems),butalsomakingsurethatneededinfrastructures(e.g.rail lines)areinplace.Formotorisedtransportingeneral,electricvehicleshavetobemadethepreferred,andinthemediumtermonly,option.However,torenderelectricvehiclestrulyemissions-freewilldependonthede-carbonisationofthepowersector(seesection4.5).

• Improvetheenergyefficiencyofvehiclesandfuels:Technologically,bothfuelsandvehicles,butalsotransportinfrastructuressuchasroadsurfaceshavenotyetreachedtheirlimitsofenergyefficiency.Consequentially,policiesthatfosterenergyefficiencyshouldbeputinplacetoreapthehighest-possibleefficiency.Mostefficiencyimprovementsareeconomicallyposi-tive–policymakersshouldthereforecloselyscrutinisebarrierstoefficiencyimprovements.Itshouldbeclear,however,thatenergyefficiencyimprovementstendtolockincertaintechno-logicalpathways.Therefore,ifgovernanceframeworksaretostronglypushelectro-mobility,

21 Personalscootersareabitofanexception,asthereisastrongpush,especiallyinChina,forelectrified

scooters.Also,electricallyassistedbicyclesareincreasinglypopularandhavegainedasignificantshareoftheglobalbicyclemarket.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 61

itmaybecounterproductivetospendlargeresourcesonefficiencyimprovementsofcombus-tiblefuelsandenginetechnologies.

Barringdisruptiveinnovationsinthesectorthatcombinetechnologicalbreakthroughswithsocietalreconfigurations, theseapproachescontinue tobeapromisingavenue to"greening" the transportsector.However,itispossiblethatsuchaninnovationisimminent.Arecentprognosis(Arbib&Seba,2017)comestotheconclusionthattheemergenceofautonomousroadvehiclesinconjunctionwithdistributedpassengerservices(Lyft,Uber)andagrowingrateofelectricvehicleswill leadtoarun-awaytransportrevolutiontowardsautonomoustransportservicesthatarenolongerreliantonper-sonally-ownedvehicles,butratherfleetsofrobotictaxis(Transport-as-a-Service)thatarevastlymoreefficientbothintermsofenergyuseandutilisation.Theauthorsholdthatsuchserviceswouldallowvastlycheapercostspertravelledkilometrethancurrentformsofpersonalandfreighttransport,andwouldleadtoasignificantdecreaseinvehiclenumbers,effectivelyeliminatingcongestionandmakingpersonally-ownedinternalcombustionvehiclesmoreorlessobsoleteby2025,atleastinindustrialisedcountries.Atthesametime,batteriesinthoseautonomouscarswouldbeutilisedasstoragefortheelectricitygrid,furtherstrengtheningoptiontocompletelydecarbonisepowerproductionbyalleviat-ingcurrentconstraintsofpowerstorage.Theauthorsforeseearesultingdropinoildemandby30percentin2023,leadingtoaglobaloilpricecollapsetoaboutUSD25perbarrel.

Theanalysiscurrentlyisanoutlier,though.Mostotherstudiesforeseeamuchslowerchangetowardsformsofsustainabletransport,thoughtheauthorsclaimthatbyusingsystemsanalysistools,theyaremuchbetterabletopredicttrendsinthetransportsector.AresearchnotebyBloombergNewEnergyFinancefromearly2016predictsasalesofelectricvehiclestoreachatmost50percentofthemarketin2040inthemostoptimisticscenario(Morsy,2016).

Whatiscertainisthatthecombustionengineisunderpressure.Transportcontributesstronglytolocalairpollutionenhancingpressureonthesectortocleanup.Atthesametime,batterytechnologyisadvancingrapidlybothintermsofcostsandintermsofdrivingrange.Increasingnumbersofcountries(China,France,India,theNetherlands,Norway,theUK)aremullingplanstophaseoutorevenoutrightban salesofnewdiesel or gasoline vehicles in timeframes ranging from2025 to2040 (Chrisafis&Vaughan,2017;Stumpf,2017).Someincumbentmanufacturersarestartingtomovemorestronglytowardselectrification.Volvohasannouncedthatallnewmodelswillbeelectricorhybridvehiclesstartingin2019(Ewing,2017).VWrecentlyannouncedplanstoinvest€50billiontodevelop80newelectrifiedmodelsby2025(vonGermis,2017).

4.8.2 Mainchallengesandbarrierstowarddecarbonisation

Thetransportsectordoes,however,faceseriouschallengesthatbarthewaytochange.Powerfulin-cumbentactorsprofitimmenselyfromthestatusquo,andwilllikelyputupstrongresistanceagainsttheemergenceofaradicallychangedtransportconcept.Amongthemare:

• Thecar-manufacturingindustry.Thisindustryisamajoreconomicpowerinvehicle-producingcountries,oftenwithstronghistoricalandpersonaltiestopoliticians,butalsotoworkers,andsometimesthemilitaryaswell.Thecarindustryalsoissurroundedbyalongproductionchainthatwouldstandtoloseitscorebusiness.

• Theoilindustry.Asmosttransportvehicles,beitcars,planes,ships,ortrains,historicallyandcurrentlyrelyonoilproductstorun,theoilindustrystandstolosemassivelyiftheinternalcombustionengineweretobereplacedbyelectricalorhydrogenpropulsion.

• Themotoristlobby.Especiallyinindustrialisedcountries,thereareoftenhighlytraditionalcarclubsandassociationsthatarestronglyconservativeandhighlyscepticconcerningchangesof

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 62

transportationsystems,especiallyforpersonalvehicles.Completelydepersonalisedcar-shar-ingwouldthreatentheirpowerbase.

• Thefreightbusiness.Companiesinthefreightbusinessdonothaveaninterestinaradicallychangingtransportsector,asthiswouldpotentiallythreatentheirbaseofbusiness,andinanycase,wouldmeanalargesetoflostinvestments,e.g.intrucks.

Apartfromtheseactorsthereareanumberofbarriersthatstandagainstchange.

Technological:Technologiesassucharemostlynotaproblem,asmostinnovationsneededtofostermore sustainable transport systemsare inplace.The largestbarrierona technological level is thedevelopmentofhigh-yieldbatterysystems.However,a"techno-cultural"barriercanpotentiallybethatmanyengineersanddesignersimplicitlyfavoursystemicimprovementstoexisting,combustion-based technologiesover themore radical changesneeded for a large-scaledecarbonisationof thetransportsector.

Twootherbarriersare"techno-political"innature:Customersarecurrentlyfacedwithstandardisationproblemsinelectricalpropulsionsystems,astherearecurrentlynorealstandardssetforcharging,e.g.currents, connectors etc., which vary widely across manufacturers, countries, and even models(Pereirinha&Trovão,2016).Thislackofstandardisationmaydetercostumersfromadoptinginnova-tivetechnologiesearlyon.Theotheroneconcernsthechangeininfrastructurethatisneeded-currentinfrastructuresarestronglygearedtowardsservicingcombustionengines(fuelstationsetc.).Inordertofosterachangee.g.towardselectricalpropulsion,theinfrastructureneedstobechangedalmostcompletely.Another"socio-technical"barriertochangecanbetheabsenceofviablealternatives-asmuchdependsoninfrastructures,especiallyruralorremoteareasmayfacedifficultiesofaccess(nopublictransport,norailwaylinesforfreighttransportetc.).

Economic:Ascurrentmobilitypatternsrelyheavilyonindividualownershipofunits,replacementcostsfall towards individual users. This does impose a high economic burden to owners that especiallypoorerpeoplewillnotbeabletoafford.Anothereconomicbarrierconcernsthestate-fueltaxescanbealargesourceofincometostates,makingthemhesitanttopushtoostronglyforsun-settingfossil-basedtransportmodes.(Ontheotherhand,FFSconstitutealargeportionofmanystates'expendi-tures,sotheremaybeanetpositiveatleastinsomecases).

Institutional:Asallformsof(motorised)transportdependtolargeextentsoninfrastructures,andin-frastructuresconstitute large, long-terminvestments,any infrastructuredevelopmentconstitutesapotentialinstitutionallock-in.Aradicalchangeintransportinfrastructureasnecessitatedbyalow-orzero-carbonparadigmtriggers investmentneeds thatare toohigh toshoulder formanycountries,especiallyinthedevelopingworld,ontheirown.

Linkages:Aspointedoutabove,transportandoilindustriesstronglydependononeanother.Changesinonewillverylikelyleadtochangeintheother.Thisconstitutespotentialtoswattwofliesatonce,but also double opposition by two strong incumbents. Sector-wise, the transport sector is closelylinkedtonationalpowersectors,especiallyifafuturestrengtheningoftransportelectrificationistakenintoaccount.Also,due to infrastructureneeds,anychange in the transport sectorwillhave tobeaccompaniedbyadaptingurbansettlementsandinextensionnationalinfrastructurestoaccommo-dateshiftingparadigmsintransportsystems.Therefore,commontargetsandsolutionswillverylikelybemoreeffectiveandhavehigherprobabilitiestolimitcarbonemissionsthanisolatedsectoralinsti-tutions.

Culturalbarriers:Vehicleownershipisoftenconnectedwithasenseofpersonalfreedom,andanat-tachmenttothevehicle.Moreover,inmanycountriescarsareseenasastatussymbol.Somecountries(US,Germany)haveastronghistoricalandculturalbackgroundascarproducersinsomuchthatitisoftenperceivedasunthinkabletosunsetindividualcarownership.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 63

4.8.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignal

Asevidentfromnationaldiscussionsaboutendingtheuseofcombustionenginevehicles,targetsandtimetablescanbeastronglevertoredirectsectoraldevelopments.Internationalagreementonatar-gettocompletelyendtheuseoffossilfuelsinthetransportsectorwouldsendastrongsignaltoallcarmanufacturerstoeitherchangedirectionorbeputoutofbusiness.TheongoingscandalrelatedtoDiesel technologymayprovideawindowofopportunity inthisrespect.Asectoraldecarbonisationtargetwouldalsosupportavoidandshiftstrategiesastheseminimisetheneedforenergyinputsinthefirstplace.Agreementonanewparadigmcentredontransit-orienteddevelopmentandprioritis-ingpublicandnon-motorisedtransportoverindividualmotorisedtransportcouldbeevenmoreeffec-tivebutisprobablylessrealisticpolitically(seealsosection4.10).

Internationalcooperationcouldsetacommonroadmapforthesector,withdifferentiateddecarbon-isationtargetyearsfordifferentcountrieswithdifferentlevelsofdevelopment.Targetsandroadmapstoreachthemwouldhavetodistinguishbetweendifferentcapacitiesofcountries,andensuretech-nicalandfinancialaidandcooperationtoachievethegoals.Milestonesforachievingeverhigherlevelsofcarbonneutralitycouldbesetfordifferentcountrygroups,withaquickerpacefordevelopedcoun-tries,andsomemoreslackforlessdeveloped.

SettingRulestoFacilitateCollectiveAction

Definingcommonstandardsisaclassiccollectiveactionproblemthatprofitsfromcoordination.Inter-nationalgovernancecanplayalargeroleinremovingbarriersthatarisefromalackofstandardisation.Onceastandardisset, it is likelythat itwillbeadheredtoprovidedthereissomeenforcementbynationalentities in thebeginning.On theotherhand, leavingstandardisation to theprivatesectorregimesoftenleadstodivergentstrategiesandcomplicationsinfindingacommonground(seee.g.phonecharging),butmayalsoensuecompetitionthat,inturn,furtherdrivesinnovation.

Acommonregulatoryapproachofasmanycountriesaspossiblestrengthensthechancetopavethewaytowardsaglobalshifttowardssustainabletransportsystemsonceacriticaljunctureisreached.Harmonisationofrulesandregulations,suchascommonfleetemissionlimits,ortheformulationofcommonemissiontradingsystemsorotherformsofcarbonpricingcansignificantlyimprovethevia-bilityofsuchachange,asitaddressesconcernsofeconomiccompetitivenessandfree-ridingforindi-vidualcountries.

TransparencyandAccountability

Transparencyrequirementsinthetransportsectorwouldlikelyvarywiththescopeofinternationalcooperation,andconsequentlytherulesset.Commonstandardswillnotrequirestrongaccountability,asstandardsaremostlyself-enforcingoncetheyhavereachedacertainpointofpenetration.

Emissionlimitsshouldbemonitoredbyglobalinstitutions,creatingacommonknowledgebase.How-ever,suchatransparencyframeworkwouldneedtostayonaratherhighandabstractlevel,asnationaltransportsystemswillmostprobablynoteasilybeharmonised.Thedesignofatransparencyframe-workwouldneedtogetmoredetailifacommondecarbonisationroadmapisagreedinternationally.Inthatcase,atransparencyframeworkmonitoringthecompliancee.g.withagreedmilestoneswouldneedtobeputinplace.

Finally, if a harmonised system for carbon pricing and a trading system is extended to nationaltransport sectors,an international registrywillneed tobe installed inorder toensure thatagreedemission limitsandthresholdsarerespected inordertoensurethe integrityof thesystem.Sucha

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 64

registrywouldmostprobablynotonlycoverthetransportsector,butallregulatedsectorsunderacommonemissionlimit.

MeansofImplementation

Asregardsthebuild-upoflarge-scaleinfrastructures,internationalcooperationcouldtaketheformofrisksharingarrangementsthathelptobringdowncapitalcostsindevelopingcountrieswithgenerallydifficultinvestmentclimates.Thismayenabledevelopingcountriestoshouldertheincrementalcostsofmakingtherequiredinvestmentsclimatechangeresilientandwithafocusonlow-carbonsolutions.Technologycooperationcouldalsobeusefulinordertoimplementbestpracticesjointly.

Likely,risk-sharingwillnotsufficetoenableallcountriestocompletelyoverhaultheirtransportinfra-structure.Therefore,internationalcooperationwillmostlikelyalsohavetoincludearrangementsfortargetedfinancial,technicalandcapacityassistancewhereitismostneeded.

KnowledgeandLearning

Currentstudiesindicatethatmanydeveloping/emergingcountriesmimicinfrastructuredevelopmentsofindustrialisedcountries,albeitatoftenamuchgranderscale(Arndtetal.,2014).Internationalco-operation,mainlybutnotlimitedtoNorth-Southcooperation,onbestpracticesthroughpartnershipssuchasLocalGovernmentsforSustainability(ICLEI)orthroughtheNon-StateActorZoneforClimateAction, would help leapfrogging such suboptimal solutions. This would include common technicalknowledge,butwouldalsoextendtoexchangesonpoliciesthathaveshownhigheffectiveness.Whilepolicieswillalwaysneedtobeshapedaccordingtonationalcircumstance,policydialogueswillprovideusefulstartingpointsfortransportdecarbonisation.

4.9 Internationaltransport(aviationandmaritime)

4.9.1 Currentstatusandprospect

Global aviation (domestic and international combined) currently produces around twoper cent ofglobalCO2emissions;globalshippingaboutthreepercent(Gencsu&Hino,2015).22Incombination,however, the internationalshippingandaviationsectorsconstituteasignificantlygrowingshareofglobalemissions;growingbyaround80percentintermsofcarbonemittedbetween1990and2010,whilegrowthofothersectors intheworldeconomywasapproximately40percent(CDIAC2013a;CDIAC2013b;UNFCCC2013cited inBows-Larkin2015). Inpart thiswasdrivenby rapidgrowth inemergingeconomies,butalsoaroseasaconsequenceofthelackofcoverageofthesesectorsinthenationalmitigationpoliciesofUNFCCCAnnexInations(Bows-Larkin,2015).Thishighgrowthislikelytocontinue.Forshipping,CO2emissionsareexpectedtoriseby50-250percentby2050undercurrentpolicies(IMO,2014).Foraviation,arangeofscenariosispossibleinwhichCO2emissionsrisebyupto515percentbetween2000and2050(Gudmundsson&Anger,2012),althoughmoretypicalfiguresarearound220percent(Bows-Larkin,2015).

Theimplicationsfortheglobaltemperaturetargetsareserious:a50percentchanceofavoiding2�entailsareductionof71–76percentby2050foraviation,calculatesBows-Larkin(Bows-Larkin,2015).Bringingshippingintolinewouldrequirea50percentreductionfrom2012levels(T.W.P.Smithetal.,2015).Undercurrentpolicyandprojections,assumingthattotalemissionsfallsufficientlytohold

22 However,aviation’snon-CO2emissionsathighaltitudesintensifytheimpactofaviationemissionson

globalwarming,makingthemmuchgreaterthanthatofCO2alone.Blackcarbonemissions,interalia,fromshipsarealsorising(Azzara,Minjares,&Rutherford,2015).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 65

warmingat2�,the(international)aviationandshippingsectorscombinedcouldcontributenearly40percentoftotalCO2outputby2050(Cames,Graichen,Siemons,&Cook,2015).Governanceeffortstocontainorreversethesetrendsfacethedifficultyofallocatingresponsibilityforinternationalemis-sions,whichmakeupthemajorityofemissions,butwhicharenotcoveredunderdomestic-levelpolicyarrangements(Bows-Larkin,2015).

Tradeflowsandglobalisationrepresentimportantexogenoustrendsdrivingsectoraldevelopments.Totalinternationalseabornecargo,forexample,hasrisenfrom2.6billiontonnesin1970to9.5billiontonnesin2013(Gencsu&Hino,2015).Manystakeholderssuggestthatbecausethemaritimeindustryservesdemandsoriginatinginothersectors,managementofthedemandforshippingshouldnotbeattempteddirectly.

Thestructureoftheaviationindustry–featuringtwodominantmanufacturersandafewkeyairlines–issomewhatconducivetodecarbonisationefforts(Bows-Larkin,2015).Majorregionalshiftsarealsonotable,withgrowthofairtravelindevelopingmarkets,notablyinLatinAmericaandAsia.Inthecaseofshipping,acomplicatedindustrystructure-manyshipbuilders,owners,operators,shippers,char-terers and end-users –makes steps to encourage decarbonisationmore problematic (Bows-Larkin2015).FollowingBows-Larkin(Bows-Larkin,2015),inthediscussionbelowwedistinguishtechnologicalaspectsfrompractice/operationalanddemand-sideaspects.

Aviation

Concernoverenergycostshasdrivendevelopmentandrelativelywidespreaddeploymentofbettertechnologyintheformofextremelyefficientgasturbineengines.Opportunitiesforongoingimprove-mentsare,however,indecline(Bows-Larkin,2015).Furthergainswouldrequireafundamentalshiftindesign,e.g.open-rotorenginesorpropfans,whichcouldcutfuelintensityperaircraftbyuptoa50percent(Akerman,2005),butwhicharecurrentlyheldbackbyhighnoiseandvibrationlevels.Newconstructionmaterialscanalsodeliverbetterfuelefficiency,butrealbenefitsonlymaterializeasthefleetrenews.Biofuelsarebeingdevelopedandmayalsooffersomebenefits.Theindustry’sowntar-gets (seebelow) suggest that combined technologicaldevelopmentsoffer aone–twoper cent im-provementinfuelefficiencyperyear(Bows-Larkin,2015)(insufficientofitselftobecompatiblewiththe2℃target,althoughrecentlyfiguresof3.7percenthavebeenrecorded(IEA,2017b).

Intermsofpractices/operations’,unlikeshippingaviationcontinuestobelargelyorientedtowardsleisurepassengers-althoughaccordingtosomeestimatesonlyfivepercentoftheworldpopulationhaseverflown(PeakOil.com,2014).Industrypressuretoexpandairportcapacityhasmetwithsuccess.While increases inairportcapacity(and improvedairtrafficcontrol)canreducefuelconsumedperpassenger-km,theycarrytheriskofreboundeffects,maintainingorraisinggrowthrates,increasingabsoluteenergyconsumption(Bows-Larkin,2015).

Shipping

Relativelyhighengineefficiencymakesshippingarelativelylow-carbonfreightmover.Nevertheless,awiderangeof incrementaltechnologies,manyofwhichcouldberetrofitted,areyettobewidelyexploited(Mofor,Nuttall,&Newell,2015).Efficiencycanbedisaggregatedintotechnicaldesignandoperationalaspects;evenshipswithsimilardesignefficienciescanhavevastlydifferentoperationalefficiencies(Gencsu&Hino,2015).Speedisacriticalfactor:atenpercentreductioncorrespondstoa27percentdropinfueluseperunitoftime(Gencsu&Hino,2015).‘Slowsteaming’practices,widelyadoptedfrom2007–2012inresponsetotheglobaleconomicdownturn,reduceddailyfuelusebyanaverageof27percent,butbyover70percentinsomeshipsizecategories(IMO,2014).

Biofuelsarecurrentlythemostrelevantalternativeforreplacementorblendingwithfossilfuelsinthesector.Althoughexperiencewiththeiruseandthescaleoftheirapplicationintheshippingsectoris

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 66

stillminimal,recenttechnologylearningregardingsecondandthirdgenerationbiofuelsmakesthesethemostviablerenewableoptionwiththehighestlong-termpenetrationpotential(Moforetal.,2015).

WhatneedstochangetophaseoutGHGemissions?

Despitesomeencouragingrecentdevelopments,includingcommitmentsbytheaviationsectortocapnetemissionsat2020levels(principallybyoffsetting)(Gencsu&Hino,2015),progressinbothsectorshasbeenslow.ThelatestassessmentbytheIEAofprogresstowardsinterim2°Cscenariotargetsin2025warnsthatinternationalshippingis‘off-track’whileaviationshowssomeimprovementbutmoreeffort is needed (IEA, 2017b).Although lower carbonalternatives certainlyexist, phasingoutGHGemissionsentirelyinthesesectorsisadistantprospect.Mitigationpotentialsvarysignificantly:whileshippinghasmanytechnologicalandoperationaloptionsthatcouldbeeffectiveintheshorttome-diumterm,aviationdoesnot.Inthissection,weagaindistinguishtechnologicalmeasuresfrominter-ventionsbasedonchangingoperationsanddemand-sidemeasures.Webeginwithshipping.

MeetingtheIEA’s2�scenariorequirestheglobalshippingfleettoimprovefuelefficiencypervehicle-kmatanannualrateof2.3percentbetween2015and2025.Initscurrentform,theIMO’sEnergyEfficiencyDesignIndexmandatesaonepercentannualimprovementintheefficiencyoftheglobalfleetfrom2015to2025(IEA,2017b).Further improvementstoefficiency,throughawiderangeofincrementaltechnologies,manyofwhichcouldberetrofittedtoexistingships,arepossible(Moforetal.,2015).Inaddition,pioneeringwindpowertechnologies–includeFlettnerrotors,kites,andfixedorrigidsails-couldofferfuelsavingsofupto50percent(Moforetal.,2015).Regardingtherangeofalternativefuels,LNGcutstheemissionsintensityofoperationsintheshortterm,andisfavouredbythe sector as a transitional fuel; a suitable bunkering network is rapidly evolving on establishedtransportroutes(Moforetal.,2015).However,afleet-wideswitchtoLNGwouldbe insufficienttodeliver2�-typedecarbonisation,andwouldriskfurthercarbonlock-in.Biogas,biofuels,andmicro-algae are subject to the same sustainability concerns expressed about them in other sectors(Bengtsson,Fridell,&Andersson,2012).

Variousconceptsandprototypesexistforelectricandhydrogenfuelcell-poweredvessels.However,emissionsavingsdependontheprimarysourceofenergybeingused(Moforetal.,2015).Potentialforsolar-powerhasalsobeennoted(Moforetal.,2015),aswellasforalternativefuelssuchashydro-genandammonia.Developmentofhydrogenfuelcelltechnologyhasmadesignificantadvances,alt-houghsustainabilityofhydrogenproductionisacriticalissue,withalmostallcurrentcommercialpro-ductioncomingfromfossilfuels(Moforetal.,2015).Atleastinprinciple,nuclearpowercouldhaveasignificant decarbonising effect (Walsh,Mander, & Larkin, 2017), benefiting from development ofmodularnuclearreactorsinthepowersector.Todevelopsuccessfulmarinemitigation,‘itisessentialtoconsidertheinterdependenciesbetweenshipspeed,levelandpatternofdemandforservices,andtheextentandrateofinnovationinpropulsiontechnology’(Walshetal.,2017).Therateoftechno-logicalinnovationistooslow,meaningthat‘itisdifficulttoforeseehowdeepdecarbonisationcanbeachievedwithoutanimmediate,fleet-widespeedreduction;andaland-basedenergy-systemtransi-tionstronglyinfluencesshippingdemand,whichinturn,influencestheextentofrequiredlow-carbonpropulsiontechnologychange’(Walshetal.,2017).Reducingpowerrequirementsimprovesthepro-portionthatcouldbeprovidedbyrenewabletechnologies,andalsoallowsimmediatecutsinCO2tobedelivered(IMO,2014;Psaraftis&Kontovas,2013).

Thescaleofthetechnologicalchallengeforaviationismuchgreater.Here,emissioncutscannotbemadeby reducingspeedor introducingon-board renewableenergysources.Althoughbiofuelsareregularlytouted,andinitiativesandresearchpartnershipsareunderwaytoscaleuprenewable jetfuelandreducecosts(Gencsu&Hino,2015)theyfailtoaddresstheimpactofcontrailsoncloudfor-mationandaerosoldeposition(T.Smith,2015),andprovoketheaforementionedsustainabilitycon-

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 67

cerns.Arguably,theaviationsectorrepeatedlysuccumbstotechnology‘myths’,which‘mustberec-ognised,confrontedandovercomeasacriticalstep…tosustainableaviationclimatepolicy’(Peeters,2016).

Lesscontroversially,widerefficiencyimprovementsinaviationarepossibleandcost-effective:thedif-ferencebetweenthefuelefficiencyoftheleastandmostefficientUSairlineswas27percentin2013,andtherewasnoimprovementinfuelefficiencyinUSpassengerairlinesondomesticflightsin2012–2013(Gencsu&Hino,2015).In2017,theInternationalCivilAviationOrganisation(ICAO)adoptedaninternationalCO2standard,applicabletonewaircrafttypedesignsfrom2020,andtodesignsalreadyin-productionasof2023(ICAO,2017).

On thedemand-side, although investments inhigh-speed railmay serve to reducedemand for airtravel,itsroleislimitedinthataround80percentofallaviationemissionsarefromflightsover1,500km(ATAG,2014).Technological innovations,suchasvideo-conferencing,canalsoservetomanagedemandinsomecircumstances,savingtimeandmoneyforbusinessesandindividuals.

Tosummarise,‘[o]nlyelectricalpropulsion,demandreduction…oroffsettingremainingemissionswillenablefulldecarbonisationoftheaviationsector’(Camesetal.,2015).Biofuelscouldalsocontributeifsensitivelyhandled.

4.9.2 Mainchallengesandbarrierstowarddecarbonisation

Withshipping,acomplexsetofbarrierstotheadoptionoflowercarbonenergy(includingimprovedefficiencymeasures)canbecategorisedintermsoforganisational/structural,behavioural,marketandnon-marketfactors(Moforetal.,2015).Thiscomplexity,inpart,reflectstheuniqueandinternationalnatureoftheshippingindustry,withunderlyingconstraintsandfactorsbeyondtheabilityofindividualstatestomodify(Moforetal.,2015).Mostshipbuildinghasoccurredinjurisdictionswithoutclimatetargets,withmanydiversemanufacturers,aswellascharterers,owners,operators,andotherglobalstakeholders(Bows-Larkin,2015).

Withregardtoorganisational,structuralandbehaviouralbarriers,limitedR&Dfinancing,particularlyforinitialproof-of-concepttechnologies,isamajorfactor,togetherwithshipowners’concernsovertheriskofhiddenandadditionalcosts,aswellasopportunitycostsofrenewableenergysolutions.Historically, a lack of reliable information on costs and potential savings of specific operationalmeasuresorrenewableenergysolutionshasbeennoted(Gencsu&Hino,2015;Moforetal.,2015).Thefundamentalmarketfailureisoneofsplitincentivesbetweenshipownersandhirers,limitingthemotivationofownerstoinvestinsolutionssincebenefitsmaynotaccruetotheinvestingparty.Inves-torstendtoberiskaverse,especiallyaftertheshippingboomcollapsedin2006.Significantlevelsoffleetturnover/retrofittingmustbeachieved,themaintenanceofwhichacrossextendedperiodshashistoricallyproveddifficult(Walshetal.,2017).Sufficientlyrapidfleet-wideretrofitarguablyrequiresadequatedry-dockingservicesaroundtheworldandopportunitiesfordemonstratingnewtechnolo-gies (Walsh et al., 2017). Moreover, widespread technological uptake necessitates extensiveknowledgeexchangetoensurenewlyfittedtechnologiesareoperatedcorrectly.North-Southtech-nical co-operation and transfer of technologymaybe necessary. Early-adopterswould need to bestronglyincentivised(Walshetal.,2017).Furthermore,theshippingsector’slowpublicprofileresultsinlesssocietalpressuretochange.Ofthenon-marketbarriers,thedifferentclassesandscalesofships,themarketsandtraderoutesservedandthe lackofaccesstocapitalaresomeof thekeybarriers(Moforetal.,2015).

Intermsofspecifictechnologies,thehighpotentialofadvancedbiofuelstotransformtheshippingsectorultimatelydependsonanumberoffactors,includingtheglobalavailabilityofsustainablefeed-stock.Hydrogenfuelcellsalsoholdgreatpotentialbutthesustainabilityoftheenergysourceusedtoproducethehydrogen,aswellaslackofcost-effectiveandreliablelow-pressurestorageoptionsfor

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 68

thefuel,remaincriticalissues(Moforetal.,2015).Aradicaltechnologicalchangesuchasnuclearpro-pulsionwouldbecontingentonboththedevelopmentofappropriatemodularreactors,andaddress-ingwiderregulatoryandacceptabilitychallengesataglobalscale.

Intermsofslowsteaming,compensationintheformofincreasedshipsizeornumberstomaintainfreightflowsmightberequiredtoensureacceptabilitytotheindustry.Globalsupplychainsmustbecapableofaccommodatingspeedreductionsoverall journeylegs(Walshetal.,2017),whichmightrequirerestructuringofsomeindustries.

Thesimplerindustrystructureofaviation,comparedtoshipping,meansthatotherthingsbeingequal,incentivizingchangeshouldberelativelypractical(Bows-Larkin,2015).However,significantcommer-cial,technologicalandculturalbarriersexist.Forexample,currentpricesofbiofuelsarearoundthreetimeshigher thanconventional jet fuel.Althoughthe industry favoursoff-settingmeasures,uncer-taintyexistsoverlong-termavailabilityandcostofcredits(Gencsu&Hino,2015).Flyingishigherinpublicconsciousnessthantheshippingofgoods-makingdemandmanagementasensitiveissue.Theperceived‘righttofly’isbecomingmorewidelyengrainedaroundtheworld,evenamongthoseoth-erwiseengagedinmorepro-environmentalbehaviour(Alcock,2017).

Forbothinternationalshippingandaviation,thepowerofincumbentactorsinthepoliticalinstitutionsinvolvedinsectoralgovernance(tobeexploredfurtherinTask4.2)isafurtherimportantchallengetodecarbonisation.Nationaldelegationsto,andtechnicalworkinggroupsoftheInternationalMaritimeOrganisation(IMO)oftenincludeindustryrepresentatives.Industryvoicesexertinfluencethroughpar-ticularMemberStates(Darby,2016).Industrygroupshaveembracedthe‘fairshare’conceptforemis-sionsreduction(Vidal,2016),but insistthatanyoutcomemustnot inhibitdevelopment.Refusaloflargedevelopingcountriestoacceptreductiontargets(atleastuntil2014),inparticularChina,BrazilandIndia,hasalsoimpededprogress.Theimportantlobbyingroleofcommercialairlines,representedbytheAirTransportActionGroup(ATAG)andtheInternationalAirTransportAssociation(IATA),anassociationencompassingmorethan80percentofthesector,maybehighlighted.Overall,theavia-tionindustrymayberegardedastryingtodrivesomerelativelylimitedkindsofchange–suchasoff-setting-inordertohead-offmorefundamentalchangethatwouldbemoredetrimentaltoitsinterests(Goncalves,2017).

Anotherbarrieraffectingdecarbonisationeffortsinbothsectorsisthemajorperversesubsidyattheinternationallevelconstitutedbytheabsenceoftaxationofaviationandshippingfuels.Inthecaseofaviationfuel,thisisduetolong-standinglegalbilateralairserviceagreementswhicheffectivelypro-hibitsuchtaxationandwouldrequirerenegotiationstoalter.The incentiveforreducingfueluse isthusconsiderablylowerthanitcouldbe.Intheshippingsector,althoughmarinefuelrepresents50percentormoreofaship’soperatingcost,thefactthatitisuntaxedisonefactorbehindthelackofprogressinshippingefficiency,particularlydesignefficiency(Gencsu&Hino,2015).Indiscussionsofmeasurestointernalisecarbonexternalitiesforbothaviationandshipping,suchascarbontaxation,compensatingdevelopingcountriesfortheeconomicharmtheymightsuffer-ensuringthattheybear‘nonetincidence‘-iswidelyrecognizedascriticaltotheiracceptability(IMF,2011).

4.9.3 Thepromiseandpotentialofinternationalcooperation

Sincethevastmajorityofaviationandshippingactivitytakesplaceacrossnationalborders,interna-tionalharmonisationofpolicy responses isessential toeffectivegovernance. Impositionof stricterrequirementsonshipsregistered inone jurisdictionmaysimplypromptownerstore-registerelse-where,harmingonestate’scompetitivepositiontolittleenvironmentalbenefit.Meanwhile,thetrans-actioncostsofnationalregulatoryvariationcanbehighforshippingcompanies.Theliteraturenoteshowfierceglobalcompetition,particularlyinshippingbutalsoinaviation,makesinternationalcoop-erationessentialforraisingmitigationambition(Gencsu&Hino,2015).Givenitscomplexity,directly

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 69

influencingchangeintheinternationalshippingsectorisarguablymosteffectivelyencouragedbycom-biningglobal-ledpolicieswithmeasuresimplementedattheport-statelevel(Bows-Larkin,2015;IEA,2017b)

GuidanceandSignal

Giventheprojectionsforemissionsgrowth,andthetrendstowardsinternationalaviationandshippingtakingupmoreandmoreoftheavailable2/1.5°Ccarbonbudget,thereisasignificantneedtosignalmorestronglywhatlevelofemissionsconstitutesthesectoral‘fairshare’.Inthecaseofshipping,partsoftheindustryhavethemselvesexpressedinterestinsettingsuchatarget(Vidal,2016).

SettingRulestoFacilitateCollectiveAction

Thereissignificantneedforregulation(standards,rules)at international leveltoincentiviseglobal-scaleaction.Inbothsectors,globalemissionlimitscouldbeimplementedgloballybymarket-basedinstrumentssuchastaxationandemissionstrading,ormoredirecttechnologicalregulationthroughstandardsetting–oracombination.Internationalagreementtotaxaviationandshippingfuel(withrevenuespotentiallyrecycledintoresearchanddevelopmentfordecarbonisation)couldfacilitatecol-lectiveaction.Inprinciple,itisalsopossibleforstatestoremovetaxexemptionfromairserviceagree-mentsonabilateralbasis.Theemergenceofnewtechnologieswilllikelyrequireadequatestandards(agreeduponbyglobalinstitutionsandshipclassificationcompanies).Inshipping,requiringverifiedvesselefficiencyratings,takingintoaccounttheeffectofnewtechnologies,mayincentivisetheinstal-lationofsuchtechnologiesthroughenhancingthecompetitiveresalevalueofavessel.Inbothsectors,ensuringthatoffsetschemesandtheproductionofalternativefuelsadheretohighqualitystandardsiscritical,asside-effectscouldunderminetheeffectivenessofsuchmeasures.

Addressingdistributionalequity issues (esp. inNorth-Southcontext) is alsonecessary, andmaybepromotedbyinternationalagreementsthatarephasedinovertimeforcertainactors,orbyexplicitfinanceandtechnologytransfermeasures(seealsodiscussionbelow).

TransparencyandAccountability

Totheextentthatinternationalregulationisintroduced,implementationwouldrequireappropriatetransparency(monitoringandverification)andaccountability(enforcement).International,industry-wideeffortsareneededtoimprovetransparencyandstrengthenincentives,includingonuseofalter-nativejetfuelsandtoaccountforchangesinlifecycleGHGemissionsinordertoassessprogressto-wardachievingglobalgoals.

MeansofImplementation

Policiesthatprovidefinancefornewtechnologiescanincentiviseinnovativesolutions.Thismayassistincombatingthe‘landlordtenantproblem’inshipping(Walshetal.,2017).

GençsüandHino(Gencsu&Hino,2015),whileechoingtheadvocacyofport-levelmeasures,alsohigh-lighttheimportanceofthebankingsectorinincentivisingefficiency.Twoleadingshippingbanks,HSHNordbankandKfW-IPEXBank,useRightShip/CarbonWarRoom’sratingschemewhenevaluatingtheriskandreturnofaloan,favouringefficientships.

KnowledgeandLearning

Giventheevidentmarketfailures,particularlyinshipping,significantinternationallevelmeasuresareneededtoovercomelackofreliableinformationoncostsandpotentialsavingsofspecificoperationalmeasuresorrenewableenergysolutions.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 70

(Joint)R&Dforlow-carbontechnologies,involvingairlines,governmentsandotherstakeholdershasbeen recommended, particularly for new aircraft design and sustainable biofuels (Gencsu&Hino,2015).

Inshipping,theneedforimprovedinformationoncosts/savings/correctoperationofnewtechnolo-giesandoperationalmeasuresmaybehighlighted.

Linkages

Theliteraturenoteshowdecarbonisationofinternationalshippingcanbegreatlyfacilitatedbywiderdecarbonisationoftheeconomy.ForacountrysuchastheUK,asmuchas50percentofthetonnageimportedmaybefossilfuels(thefigurefrom2010).Changestothelevelsoffossilfuelconsumptionand thegrowth inbiomass/biofuels could thereforehavea significant impacton shippingdemand(Bows-Larkin,2015;Mander,Walsh,Gilbert,Traut,&Bows,2012).

Inter-linkagesarealsoevidentintermsofthepotentialeffectsofslowsteaming.Whilecompensationintheformofincreasedshipsizeornumberstomaintainfreightflowsmighthelpensureacceptabilityto the industry, the effects on global supply chainsmight require restructuringof some industries(Walshetal.,2017).

Regardingaviation,althoughtheindustryfavoursoff-settingmeasures,uncertaintyexistsoverlong-termavailabilityandcostofcredits(Gencsu&Hino,2015).Theavailabilitydependsonlinkageswiththecarbonmarketsassociatedwithothereconomicsectors.Scarcityissuesalsoariseforbothaviationandshippingintermsoftheneedtocompeteforsuppliesofbiofuelwithalternativeuses.

4.10 UrbanSystems/Settlements

4.10.1 Currentstatusandprospect

UrbanareasarethelocusofthemajorityofGHG-emittingactivities.Theyaresitesofhabitation,com-merce,energysupplyanduse,transport,wastemanagementandenergy-intensiveindustries.Takingintoaccountdirectandindirectemissions,urbanareascurrentlyaccountforaboutthree-fourthsofglobalenergyuseandenergy-relatedCO2emissions.Accountingonlyfordirectemissions,theshareis44percent.TherehavesofarbeenonlyfewattemptstoquantifytheurbancontributiontoallGHGs,arrivingatanestimateof37-49percentfortheyear2000(Seto,Dhakal,etal.,2014).

Percapitalevelsofenergyuseandemissionstendtobehigherthannationalaveragesindevelopingcountriesandlowerindevelopedcountries.Percapitaemissionlevelsvarystronglyamongcities,evenwithinthesamecountry.Thereisnotonesinglefactorresponsible,relevantfactorsincludeincome,populationdynamics,urbanform,locationalfactors,economicstructure,andmarketfailures(Seto,Dhakal,etal.,2014).Withintheseframeworkconditions,eachurbanareapursuesitsowntechnolog-ical,political,socialandculturalinnovationlogicandtransitionpathway(Schneidewindetal.,2015).

Toachievetheinternationalclimateobjectives,urbanenergyandmobilitysystemsaswellassystemsforheatingandcoolingbuildingsandwastemanagementwillneed tobedecarbonisedas soonaspossible.Aselectricity,transport,buildingsandwastearediscussedinotherchaptersofthisreport,thefollowingwill focusonurbanformand infrastructure.Theseareespeciallyrelevant for limitingtransportvolumes,the‘avoid’partoftheavoid-shift-improvestrategydiscussedinthetransportchap-ter.

Urbanformandinfrastructurearestronglyinterlinkedand,giventheirlonglifetimes,lock-inpatternsoflanduse,transportchoice,housing,andbehaviour.Onceinplace,theyaredifficulttochange.KeyaspectsofurbanformandinfrastructurethatimpactGHGemissionsaresettlementdensity,land-use

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 71

mix,connectivityofurbandesign,andaccessibility(foremployment,shoppingetc.).Thesefactorsareinterrelatedandinterdependent,e.g.highlyconnectedplacesarehighlyaccessible(Seto,Dhakal,etal.,2014).

UrbanmitigationneedstobesquaredwiththebreakneckurbanisationdynamicsintheglobalSouth,particularlyinAfricaandAsia.Whilecurrentlyroughlyhalfoftheglobalpopulation,about3.6billionpeople,livesinurbanareas,thisisexpectedtoincreaseto5.6-7.1billion,abouttwo-thirdsoftheglobalpopulation,by2050(UnitedNations,2014).Asresult,theincreaseinurbanlandcoverduringthefirstthreedecadesofthiscenturyisexpectedtobegreaterthanthecumulativeurbanexpansioninallofhumanhistory.InChinaalone,morecementwasusedinthethreeyearsfrom2008to2010thanintheentire20thcenturyintheUS(Smil,2013).Basedonprojectionsforpopulationdensitiesandeco-nomicandpopulationgrowth,world-wideurbanlandcoverisexpectedtoexpandby56–310percentbetween2000and2030.Mostofthisgrowthisexpectedtotakeplaceinsmall-tomedium-sizecitiesindevelopingcountries. Inascenariowhereglobalpopulation increases to9.3billionby2050anddevelopingcountriesexpandtheirbuiltenvironmentandinfrastructuretocurrentglobalaveragelev-elsusingcurrentlyavailabletechnology,theproductionofinfrastructurematerialsalonewouldgen-erateabout470GigatonnesofCO2emissions(Seto,Dhakal,etal.,2014).Thiscorrespondstoabouthalfthecumulative‘budget’ofCO2thatmaystillbeemittedifaverageglobaltemperatureincreaseistobelimitedtobelow2°Cwithalikelihoodofmorethan66percent(IPCC,2013).

Thekeychallengethereforeistoguidethisbreakneckurbanisationontosustainablepathways.Busi-nessasusual–incrementalapproachesandlessstructured,quasi-automaticurbanization–wouldleadtogrowthofhighlyunsustainablecities.Whatisrequiredistransformativestrategiesdepartingfromconventionalinfrastructurepatterns(WBGU,2016).

Atnationalandregional level,apolycentricapproachtourbandevelopmentcanhaveconsiderableadvantages. The emergingmega-cities frequently feature overtaxed infrastructures, overburdenedmunicipaladministrations,hostile-to-lifesettlementstructuresandsocio-economicallypolarizedur-bansocieties.Strengtheningsmallandmedium-sizedtownsandnetworkingthemwith largercitiescan combine the advantages of agglomeration and decentralization, allowing for better use of re-sourcesaswater, foodandenergydonothavetobetransportedover longdistances intothe fewcentres(WBGU,2016).

Atthelevelofindividualurbanareas,giventhewidevarietyoflocalsituations,therecanbenosche-maticmasterplanforurbanchange.Thetaskoflow-emissiondevelopmentvariesfundamentallyde-pendingonthecurrentlevelofurbanisation:

• Inestablishedurbanareas,thetaskistore-developurbanformandinfrastructure.Thekeystrategyistransit-oriented(re-)development,thatis,thecreationofcompact,pedestrian-ori-entedmixed-useresidential,businessandleisureareascenteredaroundhighqualitypublictransportsystems

• Inareasthatareurbanising,thetaskistoshapeurbanformandinfrastructuredevelopmenttowardssustainablepathways,establishingtransit-orienteddevelopmentasthebaseline,lim-itingurbansprawl,andprovidingaffordable,dignified,safeandloweco-impacthousing.

• Establishedurbanareasthatarestillgrowingdynamicallyfacebothchallengesatthesametime.

• Finally,low-lyingcitiesthatarefrequentlyhitbystrongstormsystemsfacethedoublechal-lenge of achieving low-emission and climate-resilient development (Huang, Busch, He, &Harvey,2015;Seto,Dhakal,etal.,2014;WBCSD,2010).

Given the central role of localisedurban strategies, a core elementof sustainability governance isgrantingcitiestherighttoself-governmentandprovidingthemwiththemeanstocharttheirownlocal

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 72

transformationpathways.Moreover,citiesshouldbeinvolvedinnationaldecision-makingprocesseswherevernationaldecisionsarerelevantforthem.(WBGU,2016).

Giventhehugevolumesofemissionsassociatedwiththeproductionofcurrentlyusedinfrastructurematerial,onekeyfactorofrelevanceforallurbanareasisthedevelopmentofmaterialsanddesignsthatfeaturerenewableresources,recycledmaterialsand/orlow-impactprocesses(WBCSD,2010).

4.10.2 Mainchallengesandbarrierstowarddecarbonisation

Themainchallengeofachievingurbanlow-emissiontransformationsistogetaheadoftherapidtrans-formationthatisalreadytakingplaceintheglobalSouth,breakneckurbanisation.Infrastructuredeci-sionsthataretakenoverthenext10-20yearswilldeterminetheurbanemissionprofilesofthefuture.

Indoingso,urbandevelopmentwillhavetoovercomeenshrinedparadigms.Mostcitiesintheworldtodayhavebeenbuiltas ‘zoned’ cities,wheredifferent typesof landuse (residential, commercial,manufacturing,service, recreational)havebeen largelykeptseparate.Anotherdominantparadigmhasbeentheequationofmobilitywith(individual)transport,withbuildingofevermoreinfrastructurefor cars at the heart of transportation strategies and policies (UnitedNationsHuman SettlementsProgramme,2013).

Theabilityofurbanareastosteertheirdevelopmentontoa low-emissioncoursedependsontheirgovernance,technical,financial,andinstitutionalcapacities.Whilethemostaccessiblemitigationop-portunitiesareinrapidlyurbanizingareaswhereurbanformandinfrastructurearenotyetlockedin,theseoftendisposeofthemostlimitedcapacities(Seto,Dhakal,etal.,2014;WBCSD,2010).

Manycitiesare implementingclimateactionplans,buttheir impactonurbanemissions isunclear.Therehassofarbeenlittlesystematicmonitoringandevaluation.Morefundamentally,consistentandcomparableemissionsdataatlocalscalesislacking,andthereislittleconsistencyandcomparabilityonlocalemissionsaccountingmethods.Moreover,currentinitiativesfocuslargelyonenergyefficiency.Relatively fewactionplansaddress land-useplanningandcross-sectoralmeasurestoreduceurbansprawlandpromote transit-orienteddevelopment.This reflects traditionalurbanisation ingeneral,wheredevelopmentusuallyoccurspiecebypieceinsteadofintegratedland-useandtransportationplanning(Seto,Dhakal,etal.,2014).

Inaddition,allurbanareasandespeciallyfastgrowingonesstrugglewithmoreimmediatechallenges,suchasprovidingadequatehousingandemploymentopportunities,ensuringaccesstoenergy,waterandsanitation,limitingairandwaterpollution.Indevelopingcountriesandemergingeconomies,one-thirdoftheurbanpopulationdoesnothaveadequatehousing,inSub-SaharanAfricaitistwo-thirds.Theabilitytomobiliseurbanmitigationactionsthereforeoftendependsontheabilitytorelatemiti-gationeffortsto localdevelopmentbenefits.Stand-alonemitigationapproacheswill fail;mitigationneedstobeembeddedinoverallconceptsofsustainableurbandevelopmentandqualityoflife(Seto,Dhakal,etal.,2014;WBGU,2016).

Asresult,crucialfactorsforsuccessfulmitigationare:

• institutionalarrangementsthatenabletheintegrationofmitigationwithotherhigh-priorityurbandevelopmentobjectives;

• amultilevelgovernancesystemthatempowerscitiestosteertheirtransformationsbythem-selves;

• spatialplanningcompetenciesandpoliticalwilltosupportintegratedland-useandtranspor-tationplanning;and

• sufficientfinancialandinstitutionalcapacities(Seto,Dhakal,etal.,2014).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 73

4.10.3 Thepromiseandpotentialofinternationalcooperation

Internationalinterdependenceofmitigationinurbanareasislow,therearenocompetitivenesscon-cernsortechnologyspill-overs.Nonetheless,thereissubstantialscopeforinternationalgovernancetoprovideguidanceandmeansofimplementationandtopromotetransparencyandmutuallearningamongcities.

GuidanceandSignal

Whereurbandevelopmentdoesnotsufferfromalackofplanning,itoftensuffersfromplanningdoneonthebasisofhigh-emissionparadigms,suchaszoningandorientationoftransport infrastructuretowardscars.Climate-friendlyurbandevelopmentcouldprofit strongly if internationalgovernancedevelopedanewparadigmofsustainableurbandevelopment.Thisparadigmwillhavetointegratemitigationwithotherhigh-priorityurbandevelopmentobjectives.Keyelementsofsuchaparadigmshouldincludeanobjectiveofnetzeroemissionsby2050,tobeachievedthroughmeanssuchaslim-itingurbansprawl,transit-orienteddevelopment,developmentofmixed-useareas,useofrenewableenergyresourcesandothers.

Rule-SettingtoFacilitateCollectiveAction

Giventhehugevarietyof localsituationthereseemslittlescopeforuniformrulesorstandardsforhowurbansystemsshouldbedesigned.

Nonetheless,internationalgovernancemightrecommendgrantingcitiestherighttoself-governmenttoenablethemtocharttheirownlocaltransformationpathwaysinlinewiththeirlocalcircumstances.

TransparencyandAccountability

Asnotedabove,whiletherearemanyurbanclimateinitiatives,theresofarislittlesystematicmoni-toringandassessmentoftheirimpacts.Internationalcooperationcouldworktoenhancemonitoringmethodologiesandcontributetobuildingcapacitiesfortheirimplementation.

Inaddition,aninternationalprocessofreviewandconsultationcouldhelptopromoteimplementation.Citiesornationalgovernmentscouldbeaskedormadetoreportontheirprogressinsustainableurbandevelopmentandthesereportscouldbemadesubjectofexpertorpeerreviews.

MeansofImplementation

Manyurbanareasintheworldarecommittedtodomoreonclimatechangebutareshortofcashandinstitutionalcapacities.Increasedprovisionofmeansofimplementationcouldthereforeunlocksub-stantialpotentialformoreaction.Resourcesshouldinparticularbeusedforstrengtheningadminis-trativecapacity.

KnowledgeandLearning

Keyelementsofthetransitiontosustainability,suchasdevelopmentofenergy,mobility,wasteandsanitationinfrastructure,willbedecidedincities.Itwouldthereforebehelpfulifcitieswereenabledtoplayaroleininternationalcooperation.Theyshouldbeallowedtoparticipateandspeakatrelevantinternationalforumsinordertoimproveexchangesbetweenthedifferentgovernancelevelsandtodeveloptransnationalcitynetworks(WBGU,2016).Thiswouldfacilitatemutuallearningamongcitiesaswellashelpnationaldelegationstobettertailorinstrumentsoftheinternationalregime,suchasmeansofimplementation,totheneedsofcities

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 74

Despitethehugevariationofurbanconditions,thereissubstantialpotentialforpolicylearningacrosscitieswhichhassofarnotbeenmobilised.Anespeciallypromisingapproachliesincomparativelearn-ingatthelevelofurbanquarters.Atthislevel,therearecomparablestructuresthatarelargelyinde-pendentofurbansizeandthusallowforinternationallearningprocesses.Aspecificapproachisor-ganisinglearningpartnershipsamongcities(Schneidewindetal.,2015).

4.11 Buildings

4.11.1 Currentstatusandprospect

The global buildings and construction sector accounts formore than half of globalwealth (GlobalAllianceforBuildingsandConstruction,2016).In2010,thebuildingssectorconsumed32percentoftotalglobalfinalenergyuse(51percentofglobalelectricityconsumption)andproduced19percentofGHGemissionsor9.18GtCO2eq(includingelectricity-related,whiledirectemissionsstoodat6.4percentoftheglobaltotal)(Luconetal.2014,p.687).GHGemissionsfromthebuildingsectorhavemorethandoubledsince1970(Luconetal.2014,p.678).MostoftheGHGemissionsinthebuildingssectorareindirectCO2emissionsthatemanatefromelectricityuseinbuildingsandareprojectedtogrowfasterthananyothersector,inparticularemissionsfromcommercialbuildings—1.8percentayearthrough2030(Knox,2015).

Populationgrowth,urbanisation,risingpercapitaincomes,andclimatechangearekeyfactorsthatwilldramaticallyimpactthissectoranddriveanincreaseofenergyuse.TheUnitedNationsDepart-mentofEconomicandSocialAffairs(UNDESA)estimatesglobalpopulationtogrowto9.7billionby2050 of which approximately 2.5 billion will be new urban inhabitants, mainly in Africa and Asia(UNDESA,2015).Urbanareaswillcomprise85percentofgrowthinbuildingenergyuseuntil2050,70per cent of them in developing countries (Diana Urge-Vorsatz, Cabeza, Serrano, Barreneche, &Petrichenko,2015).Asglobaltemperaturerises,thedemandforspacecoolingamongstwarmercoun-triesisexpectedtotriplebetween2010and2050(IEA,2013).Moreover,urbanisationistypicallyas-sociatedwithashiftfromtraditionalbiomassfuels(suchaswoodandwaste)tomoremodernfuels(suchasnaturalgasorelectricity),butalsowithgreaterpotentialforenergyefficiencymeasures.Over-all,theIPCChaswarnedthat,intheabsenceofaction,theuseofenergyinbuildingscoulddoubleorinworsecase,tripleby2050(Luconetal.,2014).Inordertomeetthe2°CobjectivesetoutbytheParisAgreement,thebuildingssectorwouldhavetoreduceenergyandprocess-basedCO2emissionsby60percentin2050comparedto2012(Dean,Dulac,Petrichenko,&Graham,2016).

Spatialheatingandcooling,cookingandwaterheatinginthebuildingssectoraccountforthelion’sshareofthebuildingssector’sfinalenergyconsumption.In2012,therespectivesharesinresidentialandcommercialbuildingswere:32and33percentforspaceheating,24and12percentforwaterheating,twoand32percentforcoolingand29percentforcooking(residentialbuildingsonly)(IEA2013inLuconetal.2014,p.681).Therelativelylargeshareofcookingensuesasaresultoftheuseoftraditionalbiomass(incombinationforwaterheating)byapproximately3billionpeoplewithlowcon-versionefficienciesindevelopingcountries(IEA,2013).

Thebuildingssectorvariesbothregionallyandwithinregions,dependingonclimate,economy,energyaccess,availabilityofenergysources,andenergy-relatedpolicies(Knox,2015).PercapitafinalenergyuseinbuildingsincountriesliketheUSandCanadacanbeasmuchasfivetotenfoldhigherthaninAfricaor LatinAmericaper se (D.Urge-Vorsatzet al., 2012). Spaceheating continues todominatebuildingenergyuseinOECDcountries,whilecookingandwaterheatingaccountfornearly60percentofbuildingenergydemandinnon-OECDcountries.Inthenon-OECDnations,consumptionofdeliveredenergyinbuildingsisestimatedtogrowby2.1percentperyearfrom2012to2040,nearlythreetimesthegrowthratefortheOECDnations(Knox,2015).Threequartersofthefinalenergyconsumptionfor

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 75

heatingandcoolingisfossilfuelbasedincludingthegenerationmixesforelectricityusedforheatingandcooling,andforcommercialheat.Renewablesconstitutetheremainingofwhichalmost90percentistraditionalbiomass(IEA,2015a).

AchievingthegoalsoftheParisAgreementwillrequireanambitiousmixofmainstreaminghighlyen-ergy-efficientnear-zeroornet-zeroenergyandenergy-plusbuildingsinnewconstruction,amassiveretrofitoftheexistingbuildingstockandaswitchtogreenersourcesofenergyinparticularelectricityfromrenewables(Deanetal.,2016).AlthoughthebuildingssectoriscurrentlyoneofthelargestGHGemittingsectors,itofferslargelow-costpotentialforreducingenergydemandandassociatedemis-sionsinallworldregionsby2030(Luconetal.,2014).Althoughdefinitionsvary,net-zeroenergybuild-ings(NZEBs)arebuildingswithon-siterenewableenergysystems(suchasPV,windturbines,orsolarthermal)thatgenerateanequivalentamountofenergyasisconsumedbythebuilding(Luconetal.,2014).Inthecaseofenergy-plusbuildings,suchrenewableenergygenerationexceedsconsumption.

EnormouspotentialforreducingenergyconsumptionandGHGemissionscanberealisedthroughret-rofittingexistingbuildingsaswellas,evenmoreso,inconstructingnewbuildings.Buildingsenvelopesarekey.AccordingtotheIEA,ahigh-performancebuildingenvelopeforexistingandnewbuildingsinOECDcountriescanreduceenergyrequiredforheatingto20-30percentofcurrentconsumptionwhileitcanboostenergysavingspotentialforcoolingbetween10-40percentinhotcountries(IEA,2013).Holistic retrofitscanresult in50–90percent finalenergysavings in thermalenergyuse inexistingbuildings,withthecostsavingsusuallysurpassinginvestments(D.Urge-Vorsatzetal.,2012).Asre-gardsnewbuildings,cost-effectivetechnologyandmaterialsnowmakeitpossibletoconstructbuild-ingsthatuse10–40percentofthefinalheatingandcoolingenergyofconventionalnewbuildingsinallworldregionsandclimatezones(D.Urge-Vorsatzetal.,2012).

LeadershipinEnergyandEnvironmentalDesigncertificationisthemostwidelyusedthird-partyveri-ficationforgreenbuildingsandensuresthatbuildingsuseonethirdlesselectricity(Knox,2015).TheWorldGreenBuildingTrends2016 study finds thatglobally, greenbuilding construction is steadilyrising,mostofthegrowthcomingfromemergingeconomiesinAsia.Smartbuildingtechnologyspend-ingisalsoexpectedtorisefromUSD6.3billionin2014toUSD17.4billionin2019(Feblowitz&Levine,2015).

Asregardscookstoves,biomassusedinopenfireorbasiccookstoves,stillrepresentstwo-thirdsofenergyconsumptionforcookingglobally.Moreefficientbiomassstovescandeliverfuelsavingsof30–60percentandchimney-includedmodelscanreduceindoorairpollutionlevelsby80–90percent(D.Urge-Vorsatzetal.,2012).andtransitionfromtraditionalbiomasstomodernfuelscouldsave3.5EJofenergy,(oraroundor34percentoftotalbuildingsenergyconsumptionin2010(IEA,2013).

4.11.2 Mainchallengesandbarrierstowarddecarbonisation

Thereisapalpablepaucityofstrongregulatorymeasuresorincentivesacrossallregionsandcountries,eventhoughanumberofaffordabletechnologiesandefficiencyimprovementsthatcanhelpdecar-bonisethesectorexist.Eveninmostdevelopedcountries,policiesthatmandateenergy-efficientret-rofitstypicallyresultinsavingsofonly20–40percentofthebuildingenergyuse(Guneralpetal.,2017).LowefficiencytargetsriskresultinginadecadeslonglockinforenergyuseandcorrespondingGHGemissions(D.Urge-Vorsatzetal.,2012).Moreover,eveninmostdevelopedregionsliketheEUevenwherepoliciesexist,implementationispoor(Boasson&Dupont,2015).TherateofretrofittingintheEUiscurrentlyamereonepercentannually,whichwouldrequireacenturytodecarbonisethesector.ManyOECDmembershaveindeedpursuedNZEBsforthepast10-12years,butprogressremainslowincludinginsidetheEU(Boasson&Dupont,2015;IEA,2015a).Introducingpoliciesthatmandatestate-of-the-artdeepretrofitscouldsave70-90percentofbuildingenergyuse(Guneralpetal.,2017).At

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 76

thepolicylevel,ambitionislowinnon-OECDnationstoo,wheretheemphasiswillbeonnewconstruc-tionsratherthanonretrofits.

Thelackoftraining,awarenessofexistingtechnologycostsandcapacitybuildingmeasuresconstitutean importantnon-financial barrier (IEA, 2013). The sector involves a largenumberof stakeholders(constructors, building product producers, buildingmanagers, architects, engineers, owners, occu-pants, investors, trades people, equipment manufacturers, suppliers, architects, lenders, insurers,codesandstandardssetters,zoningofficials,realtorsandothers)(Boasson&Dupont,2015;IEA,2013)and isdeeply fragmented (betweenthenationalor local level).Consumer-awarenessprogrammes,standards and labellingwhile effective tools toencouragepurchaseof themost efficient availabletechnologies,arenotprevalentacrosstheglobe,inparticularindevelopingcountries.Intheabsenceofawareness,easyaccesstoknowledgeandtechnology,andorganizedtraining,thelargenumberofprivate construction companiesmay either entirely perceive otherwise affordable decarbonisationmeasurestoharmtheircompetitivenessinahighlycompetitiverealestatemarketoroverlookthementirely.

TransitioningtoNZEBswouldbedifficulteventhough itmaybethemostefficientsolution.NZEBsremainlargelyunaffordable,especiallyinthedevelopingworld.Moreover,thereisadistinctlackofdesignersorbuilderswiththenecessaryskillsorexperiencetoconstructNZEBs.TechnicalchallengesalsoinhibitthewidespreadconstructionoftrueNZEBsandNZEBcommunitiesgiventheirsuitabilityforonlycertainbuildingtypesandsettlementpatterns,primarilylow-risebuildingsandlessdenselypopulatedresidentialareas.Moreover,theireconomicsarepresentlytypicallyunfavourable,asop-posedtohigh-efficiencybuildings(D.Urge-Vorsatzetal.,2012).Ina2010studycitedbytheIPCConlyabout300bothcommercialandresidentialnetzerooralmostNZEBsexistedworldwideatthetime(Luconetal.,2014).

Thecontinuedwidespreaduseofsolidfuels—includingwood,charcoal,coal,animaldung,andcropwaste—forcookingandheatingenergysupplyremainsanimportantsourceofbuildingssectorGHGemissions.Globally,thereremainsalackofadequatesupportforthesustainableproductionofcleanbiomassfuelsandrenewablefuelalternativesalongsidethecurrentfocusonstoveefficiencyandemis-sionsgiventhatdemand-sidesolutionsalonearenotenough(Putti,Venkata,Tsan,Mehta,&Kammila,2015).Thedrivetoincreasethefocusoncleancookingsolutionsremainsarbitraryacrosstheworld.Globally,morethan3billionpeople,particularlyinruralareasinthedevelopingworld,stillusesolidfuelsastheirprimarycookingandheatingenergysupply.

Andonlyabout200millionhaveaccesstoimprovedorcleancookstoves(Puttietal.,2015).Accesstofinance,consumereducation,qualitystand-ards,policyreform,andmarketintelligencewillbeneededforatransitiontomoreefficientcookingandheatingenergysupply(Puttietal.,2015).

Althoughimprovingbuildingefficiencyisoftenprofitable,investmentsarehinderedbyvariousbarriers:“marketbarriers(likehighinitialcostsandlowpriorityofenergyefficiencyindecision-making–andmarketfailurese.g.principal-agentproblems,transactioncosts,searchcosts,regulatorycomplianceissues)(IEA,2013),misplacedincentives,distortedenergyprice/taxregimes,limitedaccesstofinanc-ing,lackofinformationandawarenessofbenefits,regulatoryfailures,andsoon(Luconetal.,2014).Regulatory failurescan includepolicies thathave inhibitedthedeploymentof technologies.For in-stance,insomecountries,buildingcodesprohibittheinstallationofsolarthermalcollectorsonroofsorlocalregulationsexistthatmaynotfosterinnovativebuildingsolutions(IEA,2013).Decisionmakersthemselvesattimesdonothaveaccurateoradequateinformationonvariedaspects.

Theprincipal-agentproblemisalsoimportantespeciallyinOECDcountrieswhereeitherbuildingde-velopersseektominimisecostswithout the long-term interestsofownersoroccupiers inmindorwherelandlordsmakepurchaseheatingandcoolingequipmentfortenantswithoutregardtolife-cyclecosts(Murtishaw&Sathaye,2006).Stronganddiversemarketorientedpoliciesthatcanovercomethesehurdleswillhelpincatalysingpotentiallycost-effectiveinvestments(Luconetal.,2014).Thelack

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 77

ofrobustdataandlarge-scaledemonstrationprojectsthatevaluatestheperformanceofenergy-effi-cientandlow/zero-carbontechnologiesineachmarketsegmentalsocomposeabarrier(IEA,2011).

Financialchallengesalsoremain.AccordingtotheIEA(IEA,2013),decarbonisationinthesectorwouldrequireanestimatedUSD31trillionby2050.

4.11.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

Acommoninternationalgoaloffulldecarbonisationofthesector(e.g.bythesecondhalfofthecen-tury)withtargetsdifferentiatedbyregioncouldhelptoalignthediversityofactorsinthesector.Thiscouldbeanimportantsignal“toconsumersandmanufacturers,bothtomaximiseefficiencyandtolimit the costof future changes” (IEA,2011).Awell-definedglobal carbonneutral strategy for thebuildingssectorwithdifferentiatedtargetscanprovidearoadmapforsustainablebuildingssubsectors(likeheatingandcooling,cooking,heatingwater,wherechallengesareindeedsharedacrossanumberofcountriesand/orregions)(GlobalAllianceforBuildingsandConstruction,2016).

SettingRulestoFacilitateCollectiveAction

Internationalregulationcanplayacomplementaryrolebyaddressingcompetitivenessconcerns.Suchconcernsexisttotheextentthatdecarbonisingbuildingscausesignificantnetcosts.ThisisespeciallythecaseforthemoreadvancedtransitiontoNZEBs.Havingsaidthat,manyoftheoptionsforsignifi-cantlyreducingemissionsinthesectordonotinvolvesignificantnetcosts,butevengeneratenetben-efits.Onechallengeindevelopinganyinternationalruleswillbetotakeintoaccountthewidelyvaryingconditions indifferentcountriesandregions.Anadditionalpotentialmayexistwith respect to theinternationalharmonisationofcertainbuildingmaterials.

TransparencyandAccountability

Internationalagreementondifferentiatedtargets/ruleswouldrequireatransparencyframeworkforperformanceassessment.Collectionofdatawillbeessentialforregulartrackingofprogress.

MeansofImplementation

Theprovisionofadequatemeansofimplementationcanhelpaddresssomeofthekeybarrierstothedecarbonisationofthebuildingssectoratthegloballevel.Internationaltraining,capacitybuildingandawarenessprogrammesforthelargenumberofstakeholdersinvolvedinthebuildingssectorcanhelpraiseawarenessandenhanceskillsandexpertise.Suchcapacitybuildingcanhelpinformstakeholdersin particular in low-mid income countries about otherwise overlooked affordable decarbonisationmeasures.Internationalfinancehasakeyroletoplayindeliveringtheenormousfinanceandinvest-mentrequiredtobringaboutthetransitioninthebuildingssector,inparticularamongstlow-midin-comecountries.Internationalbankscanhelppromotedecarbonisationbyprioritizinggreenbuildingsthroughsoftloans,betterinterestratesorgreenbonds(WEF2011).Multilateraldevelopmentbankscanhelpensurethat investmentsareavailable inallcountries/regions.Aparticularpotentialexistsregardingthedistributionofcleancookstovesthatcanhelpreduceemissionsinthesectoratalargescaleinmanydevelopingcountries.

KnowledgeandLearning

Policy and technical knowledgeplatforms canhelp increase information and awareness, allow thesharingofbestpractices,enablediffusionoftechnicalknow-how,developsolutionstocommoncon-cernsliketheprincipal-agentproblemandempowerpolicymakerstodevelopeffectivepoliciesand

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 78

low-carbontechnologypriorities(IEA,2013).Theseplatformscanalsohelppromoteawarenessandknowledgeofavailablefinancialincentivesforhigh-performingproductsandsystems(IEA,2015a).Aglobaldatabasecanhelpbuildandmaintainreliableinformation,sectoralmapping,existingfinancialopportunities,climatecompatibleinnovations,andaprogressmeasurementsystem(GlobalAllianceforBuildingsandConstruction,2016).TheIEAalsorecommendsanarrayofstandardisedinformationpackagesthatcanallowdecisionmakerstocomparethepotentialoftechnologyalternatives,identifyperformancetargetsandenergyandCO2

savingsatthetimeofdesignorpurchase(IEA,2013).

Interlinkagestoothersectors

PowerSector:Afuelswitchtoelectricityforheatingwouldincreasetheconsumptionofelectricityinbuildings(beyondanincreasealreadyprojectedonthebasisofcurrenttrends).Thegrowthofenergyefficientorgreenbuildings,includinggenerationanduseofrenewableenergy,willconverselyreducethedemandinthepowersector.

Construction:Greaterefficiency inbuildingsmay increase theneed formoreefficientconstructionmaterialandperhapslesswaste.

4.12 Appliances

4.12.1 Currentstatusandprospect

Appliancesmakeupamajorshareofresidentialelectricitydemand:refrigerators(14percent),televi-sions(TVs)(sevenpercent),andwashingmachines(twopercent).Collectively,thesethreetypesofappliancesaccountedfor~761MtCO2ein2010(bigEE,2013a)equivalenttoabout2.5percentoftotalCO2 emissions from fuel combustion. Substantial emission reduction potential exists, if consumersopted for themostefficientmodelevery timeoneof theseappliances ispurchased.Thepotentialamountstoalmost0.5GtCO2perannumby2020(bigEE,2013a;IPCC,2014b).Thisdoesnotevencoverembodiedemissionsthatoccurintheprocessproducingandrecyclingofappliances.Forbigappliances,dependingontheemissionintensityoftheelectricityusedduringtheusephaseassociatedemissionsofproductionandrecyclingareestimatedtoamountto~20percentoftheemissionsthatoccurovertheproduct’slifecycle.ForTVsandInformationandCommunicationTechnology(ICT)equipmentthesharemaybeevengreater(GEA&IIASA,2012).Forrefrigerators,thereisanotherchallengeasmostrefrigerantsentailhighlypotentGHGsthatmayentertheatmosphereifnotrecycledproperly.23

AccordingtoUNEP’s“en.lighten”initiativelightingaccountsfor15percentofglobalelectricitycon-sumptiontranslatingintoroughlyfivepercentofglobalGHGemissions(UNEP,2016).Efficiencyim-provementsinlightinghavemadeparticularadvanceswithcostsofLightEmittingDiode(LED)lightingplungingand investmentssoaring (seebelow).Consequently,substantialenergysavingshavebeenrealizedover conventional lighting setups (145 terawatthoursorTWh in2016). Yet, these savingsrepresent only a fraction of the total remaining savings potential of an estimated 1600 TWh (IEA,2016b).

Cookingisthemostuniversalresidentialenergyservice.ItisresponsibleforaroundfivepercentofallGHGemissionsworldwide,whichisabout2GtCO2eqannually.Thelion’sshareofthisisduetoineffi-cientbiomass-orcoal-basedcookingpredominantlyindevelopingcountries.Energyconsumptionforthistypeofsolid-fuelcookingcanbecutinhalfatrelativelylowcostandsimultaneouslyrealizesub-stantialco-benefits(bigEE,2013a).

23 The issueof fluorinatedhydrocarbons(HFC)thatarecommon inrefrigerants is furtheraddressed in

section4.14.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 79

Annualemissionsarelikelytogrowfurtherinthecomingdecadesastheproliferationofappliancesincreasesindevelopingcountries.Typically,theappliancepenetrationincreaseswithlevelsofincome,butotherfactorssuchaswealth,affordabilitybutalsoculturalfactorsmayplayarole.Indevelopedcountries,thereisalmostubiquitouspenetrationofTVsandrefrigerators,butgreatervariabilityfordomesticwashingmachines.While95percentofEuropeanandJapanesehouseholdsownwashingmachine,thepenetrationrateseemstohavelevelledoffintheUSat~80percentandthereissomeindication that thismay also occur in emerging economies such as SouthAfrica andBrazil (Rao&Ummel,2017).

Themarketforenergyefficientappliancesalreadyisamassiveone,butisdrivenprimarilybypublicpolicies.In2015justoverUSD90billionwasspentonenergyefficientappliancesandlighting,anin-cremental investmentofUSD44billionoveraverageefficiencyproducts (IEA,2016b).Despite thisdevelopment,stillthishasnotledtoadecreaseinelectricityconsumption,becausetheincreaseinuptakeanduseofappliancesoutpacesefficiencygains.Forexample,inTVs,increasingownershipandinparticulareverlargerscreenshaveworkedagainstefficiencyimprovements(IEA,2016c).

TwoglobaltrendsareapproachingthatmayhavesignificantimpactontheenergyconsumptionandhenceassociatedGHGemissionswithrespecttoappliancesandelectronicconsumergoods.Onetrendisdigitalisation:increasinglysmartappliancesareintroducedintothemarket.Whilethismaycausehigherenergydemandbothasthesmartcomponentsintheappliancesrequireadditionalelectricityascomparedtonon-smartappliancesofthesamelevelofefficiencyregardingtheoriginalserviceaswellasfortheICTinfrastructurenecessarytoconnectthesmartappliances.Ontheotherhandasmart“internetofthings”mayleveragesystemicmitigationpotentialse.g.becausetheymakeappliancesresponsivepartsoftheenergysystemthatcanhelpreducepeakdemandandthuslimitdemandforenergystorage(Palensky&Dietrich,2011).Whichofthetwoeffectswillprevailovertheotherisatthisstageimpossibletoproject.

Thesecondgeneraltrendisstillfaronthehorizon,butmayneverthelesshaveastrongimpact.Cur-rently,mostelectricityinfrastructureisbasedonalternatingcurrent(AC).Theincreasinglyfragmentedgenerationofelectricitybasedondecentralizedrenewableenergysystemsmaychallengethis.SolarPVproducesdirectcurrent(DC)thatcurrentlyhastobetransformedinACtobefedintothegrid.Atthesametime,manyappliances(e.g.LEDlightingandICTequipment)alsorequireDCthatneedstobeconvertedbyexternalpowersupplies.EachAC/DCconversionreducesefficiency.Toavoidconver-sionlosses,ithasthereforebeenproposedtointroduceDC-baseddomesticpowersystemsalongsidetheexistingACinfrastructure(Pantano,May-Ostendorp,&Dayem,2016).

4.12.2 Mainchallengesandbarrierstowarddecarbonisation

Thechallengesfor increasingenergyefficiencyaresimilaracrossvarioussectors.Fortheuptakeofenergyefficientappliancesishinderedinteraliabythefollowingkeybarriers(bigEE,2013b):

• Economicandfinancialbarriers:efficiencymeasurestypicallyrequiresubstantialupfrontin-vestmentswhilethepayoffsmaterializeonlyovertime.Alsoformanufacturersthereisariskthatnewhighlyefficientproductsdonotmeetsufficientdemandandhenceinvestmentscan-notberecouped.

• Lackofknowledge:inmanycases,thereissimplynoinformationavailableoreasilyaccessibleatthepointatwhichinvestment/purchasedecisionsarebeingtaken.

• Lackofinterest:typically,operatingcostsforappliancesmakeuponlyasmallshareinhouse-holdbudgets.Atthesametime,searchingforefficientalternativesmayproducesignificanttransactioncosts.Also,thepriorityofthosemakingconsumptiondecisionsisonprovidinga

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 80

specificenergyservicetotheirhouseholdandnottominimizecostand/orenergyconsump-tion.

Even if energy efficiency improvements are realized, there further challenges that need to be ad-dressed tocurbabsoluteemissions in the sector.Amajorone is the reboundeffect:whenenergyservicesbecomemoreaffordablebecauseofefficiencyimprovements,thismayleadtoanincreaseofdemandinthesameservices.Theremayalsobeanindirectreboundeffectinthathouseholdsmayspend financial savings realized throughmoreefficientenergy servicesonother formsofemissionintensiveconsumption(Gillingham,Rapson,&Wagner,2016).

Anotherissueregardssufficiency.Sachsdefinessufficiencyinrelationtoefficiency:“Whileefficiencyisaboutdoingthingsright,sufficiencyisaboutdoingtherightthings”(Sachs,2015).Theconceptofsufficiencythusentailsrestrictionsonabsolutedemandforgoodsandservices(Samadietal.,2016).Inotherwords,theremaybeunsustainablelevelsofdemandforenergyservicesandhenceaneedtoreduceabsoluteconsumption levels. Inpractice, thiswouldmeanthat the trend toeverbiggerTVscreensormorevoluminous refrigerators is reducedandeventually reversed.While firstadvanceswith respect to sufficiencyenablingpolicieshavebeenmade (Thema,Thomas,Kopatz, Spitzner,&Ekardt,2017),theissueremainsstillamarginalone.

Marketsforefficientappliancesandconsumerelectronicsishighlydependentonpolicyinterventions.Demandisdriventoagreatextentbypolicies(IEA,2016c).Thepoliciescantargetatvariousstagesofthevaluechainofappliances.Themostcommonapproachesare(4E,2016;bigEE,2013b):

• Policiesthatreduceuncertainty formanufacturesbysignallingcredible long-termdemand.Thiscanbeachievedthroughpoliticalcommitmentsandlong-termgoals.

• Regulationofmanufacturessoastoprohibittheproductionoftheleastefficientappliances(MinimumEnergyPerformanceStandards–MEPS).Thisalsoreducescomplexityforconsum-ers.

• Enablingconsumerstocompareefficiencyofdifferentmodelsbysettinginformationrequire-mentsforretailersand/orefficiencylabelling.

• Monetaryincentivestoreplaceoldinefficientapplianceswithnewefficientones.

ProminentexamplesforpoliciesthataddressenergyefficiencyofappliancesaretheEU’sEcodesignDirective,theUSenergystar labelandtheJapanesetop-runner initiative.Thenumberofcountriesthathaveintroducedsimilarregulationsonthevarioustypesofapplianceshasincreasedsubstantiallyoverrecentyears,stillalargenumberofcountrieslacksuchregulationsandorlackthecapacitiestoadequatelyimplementandenforceregulations(IEA,2016b).

Asregardstheinterdependencieswithothersectoralsystems,theapplianceandconsumergoodssec-torhasanobviousrelationtothepowersector.Reducingelectricitydemandthroughenergyefficiencyinappliancesandconsumergoods isacriticalcomponent forasuccessful transformationofglobalpowersystems.

4.12.3 Thepromiseandpotentialofinternationalcooperation

Thepotentialleverageforinternationalcooperationislargelylimitedtothoseinstrumentsthattargetthemanufacturingindustryforappliancesandconsumergoods.Thereisverylimitedscopetoaddressconsumerdecisionmakingfromtheinternationallevel.Also,notallappliancesandconsumergoodsarecreatedequal:thedegreetowhichmarketsareglobalizedvaryforthedifferenttypesofappliances.Whileformostconsumerelectronics,includingTVs,themarketislargelyahomogenousglobalmarket,thisisnottrueforwhitegoodswheretraditionallyatleastthreelargelyseparatedmarketsexistedintermsofproductssoldandconsumerpreferencesalike:aEuropean,aNorthAmerican,andanAsian

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 81

market.However,inrecentyearsthishasstartedtochangeasespeciallyChineseandKoreanbrandshavestartedtotakeholdalsoinEuropeandNorthAmerica.

GuidanceandSignalFunction

Thefirstwayinwhichinternationalgovernancecouldadvancethetransformationofappliancesandconsumergoodmarketswouldbe throughsignallingclearandcrediblecommitment for long-termefficiencyimprovements(guidanceandsignalfunction).Asdiscussedabove,onekeybarrieristhehighdegreeofuncertaintyfacedbymanufacturerswithrespecttodemandforenergyefficientproducts.Politicalstatementsandlong-termgoalsforenergyefficiencyimprovementsincombinationwithcred-ibleshort-termpoliciestoachievethesetgoalscanhelpreducerisksandincentivizemanufacturerstoinvest in innovatinganddiffusinghighefficiencymodels. Forexample, theEU included theoveralltargettoimproveenergyefficiencyby20percentoverbusiness-as-usualprojectionsby2020inits2020climateandenergypackage,alongsidegoalstoreduceGHGemissionsandtoincreaserenewableenergydeployment.Includinganexplicittargetforenergyefficiencyalongsideothertargetscouldpro-videtherequiredsignalforthesector(Sterk&Hermwille,2013).Analternativetosuchaninterna-tionalgoalmightbearequirementtoestablishsuchtargetsatlowergovernancelevels.

Apartfromabstractpolicygoalsandpoliticalcommitments,anotherwaytoconveythe(investment)signaltothemanufacturersistosetupstrongMEPSandsetupclearandambitiousenergylabellingschemes.Theimportanceoftheguidanceandsignalfunctionofinternationalclimategovernanceishenceregardedhighlyimportant.

SettingRulestoFacilitateCollectiveAction

InternationallyharmonizedMEPS,efficiencylabels,informationrequirementsandmeasuringstand-ardscouldnotonlyhelptoconveyinvestmentsignalsbutwouldalsoservetofulfilthegovernancefunctionofenablingcollectiveactionandwouldhelptoaddresstheothertworemainingkeybarriersforincreaseduptakeofefficientappliances,namelylackofknowledgeandtosomeextentlackofin-terest on thepart of consumers. Efficiency labelling addresses the former.Minimumperformancestandardscanbeseenasawaytoovercomethelatterasitwouldincreasetheenergyperformanceofdefaultchoicesforthosewhohavenostronginterestinsearchingforthemostefficientalternativetoprocuringenergyservices.

What ismore, theharmonizationof labelsandstandardsmayhelp reducecoston thepartof theindustry.Ontheotherhand,acommonstandardforefficiencyassessmentsmaycreatethefoundationalsoforcommonminimumenergyperformancestandards.Butthereisalsoapotentialdownsidetoaglobalharmonizationofefficiencystandards. In thepast, thevariousefficiencystandardshaveen-gaged in competition on themost stringent efficiency labels. A harmonization of global efficiencystandardscutcurtailthiskindofcompetitionandhencecurtailanimportantdriveroftheevolutionofefficiencystandards.Giventheambivalenceofthepotentialeffectofinternationalharmonizationofefficiencylabellingandstandards,thecollectiveactionfunctionfortheappliancessectorisconsideredtobeofmediumimportance.

KnowledgeandLearning

Whilethenumberofcountriesthathaveintroducedsomeformofefficiencyregulationonthevarioustypesofapplianceshasincreasedsignificantly,thereisstillalargenumberofparticularlydevelopingcountriesthatlacksuchpoliciesand/orlackcapacitiestoimplementandenforcethem.Internationalcooperationcancontributetoredeemthisbyfacilitatingknowledgeproductionandlearningbothintermsoftechnologiesandpoliciesandmeasuresfordrivingenergyefficiencyimprovements.Thecon-tributionthatinternationalinstitutionscouldmaketoknowledgeandlearningisconsideredtobeofmediumimportance

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 82

MeansofImplementation

Giventhenatureofthesectorchallengeandsinceefficientappliancescanoftenpayforthemselvesinmanycasesduetoenergysavings,supplyingfinancialmeansofimplementationarenotconsideredacentralgovernancechallenge.Thesameholdsfortechnologytransfers.However,capacitybuildingonhowtoestablishMEPSandothertypesofefficiencypoliciesatthenationallevelshouldbeconsidered.Hence,themeansofimplementationfunctionisconsideredofmediumimportance.

TransparencyandAccountability

Thetransparencyandaccountabilityfunctionofinternationalgovernanceisonlyrelevanttotheextentthatcommonstandards (MEPS)areadopted internationally. In this case, it canhelpenforce thosestandards.

4.13 Financialsector

4.13.1 Currentstatusandprospect

Iftheworldistoholdglobaltemperatureincreasetowellbelow2°Candlimitthisto1.5°C,asagreedtoinParis,investmentpatternshavetochangedrastically.Significantadditionalinvestmentinlow-emissioninfrastructureandtechnologiesneedstobemobilised.Atthesametime,broaderfinancialflowshavetobealignedwithclimateobjectivesbyphasingouthigh-carboninfrastructureinvestments.Estimatesoftheinvestmentsneededtodecarbonizetheenergysectorarebasedondifferentmeth-odologiesandarerelativetodifferenttimeframesandsectors,andarethusnotdirectlycomparable.Nevertheless,asacommontrend,theseestimatesidentifytheorderofmagnitudeforannualinvest-mentsneedsinclimateactionby2020tobewellbeyondUSD1trillion(Mission2020,2017).Giventhelonglifespanofenergyandtransportinfrastructure,investmentchoicesto2030thatareincon-sistentwiththegoalsoftheParisAgreementriskbothalockinoffutureGHGemissionsaswellasfinancialinstabilityandlarge-scalestrandingofassets(OECD,2017).

Global financial flowsgoingto low-carbonandclimate-resilientdevelopmenthavebeengrowing inrecentyearsfromUSD97billionin2009/10(Buchner,Falconer,Hervé-Mignucci,&Trabacchi,2011),toanannualaverageofUSD367billionin2013/2014,withthemajority(93percent)ofthesefundsgoingtoeffortstoreduceGHGemissionsinthreemainareas:renewableenergygeneration,energyefficiency,andsustainabletransport(Buchneretal.,2016).Althoughthetrackingoffinancialflowstolow-carbondevelopmenthasbeenimproving,awiderangeofdefinitionsandmethodologiesarestillused.However,mostdataaggregatorsreportsimilarlevelsofannualrenewableenergyinvestmentinarangeofUSD250to265billionfortheperiod2013/14.(Buchneretal.,2016;IEA,2014a;UNFCCC,2016).

Nevertheless, investmentsstill fall significantlyshortofwhat isneededtoachievenationalclimatetargetsandglobalgoals.Therearedifferentestimatesforhowmuchinvestmentisneededtoshifttheworldontoawellbelow2°Cpathway,andverylittleliteratureisavailableoninvestmentneededtoshifttoapathwayconsistentwiththegoaltolimitglobaltemperatureincreaseto1.5°C.Reportsthatusescenariosthatarenotcompatiblewiththe1.5°Climitwillthereforeunderestimatetheactualscaleofinvestmentsneeded.

TherearevaryingestimatesofinvestmentsrequiredrangingfromUSD2.5-6.9trillionperyear,withdifferentestimatesreacheddependingonvariablesconsideredsuchasatmosphericGHGconcentra-tion,total investment,additional investment,andcoverageofcountriesand/orsectors.TheGlobalGreenGrowthInstitutehasestimatedthattheclimatefinancegapbetweencurrentinvestmentand

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 83

theinvestmentrequiredoverthenextfifteenyearsinnon-OECDcountriestostaybelowanatmos-phericGHGconcentrationof450partspermillion isUSD2.5–4.8trillion.BridgingthisgapwouldrequireanadditionalUSD166–322billionperyear(GlobalGreenGrowthInstitute,2016).

TheOECD,buildingonIEAandtheInternationalRenewableEnergyAgency’s(IRENA)jointanalysisofadditionalinvestmentrequiredinlow-carbontechnologiestoachievethe66percentprobabilityof2°Cscenario,estimatedthattheinvestmentrequiredtoremainbelow2°CwillbeUSD6.9trillionperyearoverthenext15yearsfornewinfrastructure,whichrepresentsmerelyatenpercentincreaserelativetotheUSD6.3trillionofannualinfrastructureinvestmentneedsbeforetakingintoaccountclimateissues(OECD,2017).ThisnumberistobecomparedwithcurrentinfrastructurespendingofaroundUSD3.4toUSD4.4trillion.Themajorityofinfrastructureinvestmentsarerequiredintransportandpower,twocriticalsectorsthatarealsoattheheartofdecarbonisationstrategies.

Inthiscontext,anewparadigmof“shiftingthetrillions”hasemerged,inwhichthenecessaryinvest-mentshiftfordecarbonisationrequirestrillionsofprivatefinancedollarstoberedirectedinsteadofonlybillionsbeingmobilisedbymainlypublicresourcesforclimate-specificinvestments.Thispointstotheindispensabilityofthenexusbetweentargetedclimateactionandthe“greening”ofbroadereconomicandfinancialpoliciesforfinancialstabilityandeconomicgrowth,requiringbothlong-termclimatestrategiesandclimate-alignedinvestmentenvironments.ThishasbeenacknowledgedintheParisAgreement’sgoalofmakingfinanceflowsconsistentwithapathwaytowardslowGHGemissionsandclimate-resilientdevelopment (Article2.1(c)),whichwill requirebothscalingdownfunding forhigh-emissionactivitiesandscalinguptheflowofclimatefinance.

Globally,energyinvestmentisnotyetconsistentwiththenecessarytransitionawayfromfossilfuelfinancing.Between2000and2014,capitalexpenditureonfossilfuelsupplyhasbeenincreasingstead-ily,triplinginrealtermsandinterruptedonlyin2009bythefinancialcrisisandmorerecentlybythesteepdropinglobalenergyprices.Morerecentestimatesof“brown”finance(i.e.high-carbonfinanc-ingand investments)putglobal investments inoil, gasandcoal supply in2015atUSD900billion,representingadeclineof18percentfromtheUSD1.1trillioninthepeakyear2014(OECD/IEA,2016).Itremainstobeseenwhetherthisisalastingchangeintheinvestmentflows.

Onthe“green”financeside,renewableenergyinvestmentsreachedarecordofUSD312.2billionin2015andaccountedfornearlyafifthoftotalenergyspendinginthatyear,establishingrenewablesasthelargestsourceofpowerinvestment.WhilespendingonrenewablepowercapacityhasdecreasedtoUSD241.6billioninthesubsequentyear,theinstalledcapacityin2016increasedtoreach161gi-gawatts,including136gigawattsfromnon-hydro,mainlywindandPVs(REN21,2017).Thisdiscrep-ancybetweendecreasinginvestmentsandincreasingcapacityreflectsthesteepcostdeclinesinwindturbinesandsolarPV(Lazard,2016).

Despitethepositivetrendstowardsagrowingmobilisationofclimatefinancing,onaglobalnetlevelbothpublicandprivatefinancearecurrentlystilldominatedbyhigh-carboninvestments.Forexample,whilethepublicandprivatemobilizedclimatefinancefordevelopingcountrieshasbeengrowingoverthepastdecadereachinganaverageforthetwoyearsofUSD57billionperyearfor2013/2014(OECD,2015a),itremainsasmallportionofgovernmentsubsidiesforfossilfuelconsumptionwhichreachedaroundUSD513billionayeargloballyinthesameperiod(IEA,2014a).PublicsupportbyG20govern-mentsinsubsidiestofossilfuelproductionhasbeenestimatedatUSD444billionayear(Bast,Doukas,Pickard,vandeBurg,&Whitley,2015).AglobalremovaloffossilfuelproductionsubsidieswouldresultinestimatedGHGemissionsreductionsofupto37GtCO2eqovertheperiod2017–2050(Gerasimchuketal.,2017).Toputthisincontext,totalglobalGHGemissionsin2014were51GtCO2eq(Gütschow,Jeffery,Gieseke,&Gebel,2017).

Public financingtomitigateclimatechangeremainskeybecause itdirectlymobilisesand leveragesprivatesectorinvestmentandindirectlycreatesscaledupandcommerciallysustainablemarketsfor

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 84

low-carbontechnologies(Maclean,Tan,Tirpak,Sonntag-O’Brien,&Usher,2008).Shiftingthetrillionsofglobalassetscontrolledbyprivateentities,includingtheglobalbankingsectorworthUSD140tril-lion;institutionalinvestors,suchaspensionsfundsandinsurancecompanies,managingoverUSD100trillion;andcapitalmarketsincludingbondsandequitiesofoverUSD100trillionandUSD73trillionrespectively(Buchneretal.,2016)fromhightolow-carbonalternativesremainsthekeychallengeforgreeningthefinancialsector.

Thefinancialsectorhasseenanumberofdevelopmentsinrecentyearswithrelevancetothe“shiftingthetrillions”challenge.MajorcreditratingagenciessuchasMoody’sandStandards&Poorarebegin-ningtoincorporateclimaterisksintheirratingcriteria.Stilltheseriskshavenotyetbeenfullyincludedincreditratings,whichsignalinvestorstherelativecreditrisksoffinancialobligationsissuedbycorpo-rationsinacomprehensivemanner.Carbonthusremainsahiddenrisktotheseinvestorsandhasoftenbeenreferredtoasthe“carbonassetbubble”,whichsomeanalystshaveconcludedposessimilarsys-temicriskstothefinancialmarketasthehousingcrisisthatledtotheglobalfinancialcrisisin2008(CarbonTracker,2011).Risksthatarecausedby“strandedassets”(i.e.assetsthathaveexperiencedunanticipatedwrite-downsordevaluation)arerecentlyreceivingmoreattentionbytheinvestmentindustry.ThevalueofglobalfinancialassetsatphysicalriskfromimpactsofclimatechangehasbeenestimatedatUSD2.5trillionbytheLondonSchoolofEconomics,andUSD4.2trillionbytheEconomist(EY,2016).

Theneedforbettertransparencyhasalsobeenrecognizedby,forexample,regulatorybodiessuchastheBankofEngland,andtheestablishmentoftheFinancialStabilityBoard(FSB)TaskForceonClimate-relatedFinancialDisclosuresthatisdevelopingvoluntaryclimate-relatedfinancialriskdisclosuresforusebycompaniesinprovidinginformationtoinvestors,lenders,insurersandotherstakeholders(TCFD,2016).Inonehigh-profilerecentexample,over63percentofExxonshareholdersvotedinfavourofaproposalcallingontheworld’sbiggestoilcompanytodisclosetheriskitfacesfromclimatechangeandstress-testitsassetsforclimateriskeachyear(Rushe,2017).

Further,climatespecificfinancialinstrumentssuchasgreenorclimatebonds,includingtheintroduc-tionofstandardsandcertification,havesuccessfullybeenaddedasfinancialproductswithinthefi-nancialsectorinrecentyears.AnnualissuanceofGreenBondsreachedUSD81billionin2016,whichrepresentsa92percentgrowthon2015figures(ClimateBondsInitiativeMarketsTeam,2016)andoverallthemarketstillremainsinitsinitialphaseofdevelopment.

Beyondthesedevelopments,severalmajorfinancialinstitutionshaverepeatedlyexpressedtheirneedforclear,stableandlong-termpolicyframeworkstoaccelerateandfurtherscale-upinvestmentsinclimatesolutions,showingtheirwillingnesstodriveaninvestmentshift.Inaddition,acoalitionofin-stitutionalinvestors(CDP,2017;UNClimateSummit2014,2014)committedaheadoftheParisAgree-ment todecarbonizingUSD100billion in institutionalequity investments. Several individualbankshavealsopledgeddecarbonisationmeasures.Forexample,DeutscheBankhascommittedtoendnewcoal investmentsandtogradually reducetheexposureof itscurrentportfolio tosuch investments(TheGuardian,2017).Fundingfor‘extremefossilfuels’droppedby22percentfromthepreviousyearin2016from37ofthelargestprivatebanksinNorthAmerica,Europe,Japan,China,andAustralia.Whilethissteepdropinfundingisapositivedevelopment,ithastobethestartofasustainedandrapidphase-outratherthanatemporarydecline(RAN,Banktrack,SierraClub&OCI2017).

Amonggrass-rootinitiativestargetingthefinancialsector,theglobalfossilfueldivestmentmovementhasgainedmomentumthroughdecisionsof somemajor insurancecompanies,pension funds,andfoundations inseveralcountriestodivest fromfossil fuelassets, includingtheRockefellerBrothersFund(RockefellerBrothersFund,2017),France’slargestinsurancecompanyAXA(AXA,n.d.),andtheNorwegian Government Pension Fund (The Storting, 2015) (Stadelmann, Roberts, & Michaelowa,2011).Attheendof2016,andoneyearaftertheadoptionoftheParisAgreement,institutionswithatotalvalueofUSD5.45trillionhavejoinedthedivestmentmovement(ArabellaAdvisors,2016).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 85

Inthearenaofmultilateraldevelopmentassistanceandinternationalcooperationforsupportingcli-matechangeactionsindevelopingcountries,multilateraldevelopmentbanks(MDBs)continuetoplayacriticalroleinbridgingtheflowoffundsbetweenpublicandprivateactors.In2015,thesixlargestMDBsmobilizedatotalofUSD81billion,includingUSD56billionleveragedfromotherinvestors(TheWorldBank,2016).Despitethis,MDBscouldbetteraligntheirfinancingforinfrastructurewithlow-emissionpathways,particularlyinthetransportandwatersectors(OECD,2017).

4.13.2 Mainchallengesandbarrierstowarddecarbonisation

Despite the above developments and emerging shifts that demonstrate the potential for climate-alignedinvestments,asignificantaccelerationin“shiftingthetrillions”towardsgreensourcesofen-ergy isneededtoavoidexceeding theParisAgreement’s temperature limit.Sucha transformationrequiresreformsinanumberofareas,includingforexample,disclosureofinformationaboutclimateriskstofinancialmarkets,mainstreamingrisksandimpactsassociatedwithclimatechangeintoinvest-mentdecisions,andmovingfromshort-termtowardslong-terminvestmenthorizons.Further,policyframeworksinfluencinginvestmentsintheenergysectormayneedtobereformedsothatfossilfuelexternalitiesareinternalisedintoproductionandconsumptionpractices.ThisshouldincludesettingstrongcarbonpricesandeliminatingdistortingFFSandothersupporttofossilfuels.Developingcli-mate-compatiblefinancialinstrumentsandinvestmentcriteriawillalsohelptoinforminvestmentde-cisionsthatwillcontributetowarddecarbonisationandimprovetransparencyofthosedecisions.

However,therearechallengesandbarrierstoachievingtheseoutcomes,includingeconomic,political,institutionalandknowledgebarriers.

Inconsistentpolicysignalsbygovernmentsaresignificantbarriersforadecisiveandorderlylow-car-bontransition.TheParisAgreementhasgivenaclearsignalthatstrengtheningtheglobalresponsetothethreatofclimatechangeneedstomakefinancial flowsconsistentwithapathwaytowards lowGHGemissionsandclimate-resilientdevelopment.However,anumberofstudieshaveconcludedthatgovernments’backingandsupporttofossilfuelproductioncreateenergymarketdistortionsbysend-ingcontrarysignals to investorsthatcontinuetodependonfossil fuels (Gerasimchuketal.,2017).Clearlong-termpoliciesandsufficientregulatoryframeworksareneededtosendappropriatesignalstomarkets and investors, and to incentivize the engagement of the private sector (OECD/IEA andIRENA,2017).

WhilevariouseffortsandinitiativessuchascarbontradingandreformingandshiftingFFShavestartedtheshifttolow-carbondevelopment,thesearegenerallyatinsufficientscaleandstillinearlyphases.Forinstance,G20countries,whichaccountfor75percentofglobalGHGemissionsandabout82percentofglobalenergy-relatedCO2emissions,havenot liveduptotheircommitmenttophasingoutinefficientFFS.Whilethesecountrieshavedecreasedtheenergyandcarbonintensityoftheirecono-mies,theyarestillattheearlystagesofdecarbonisationandtheircollectiveeffortsarenotyetsuffi-cienttoleadtoanoverallreductioninGHGemissions.Whilerenewableenergyinthesecountriesisontherise,fossilfuelsstilldominatetheenergymarketwithcoalbeingtheprimaryenergysupplyformostG20countries(Burcketal.,2017).

Subsidiestofossilfuelproductionfurtherdistortenergymarketsbyloweringcostsofoil,coalandgasproduction,therebyencouragingfossilfuelconsumption.Thisisoneofthemainreasonswhyenergyefficiencyandcleanenergyinvestmentsstillremainlesscompetitiveinsomemarkets(Gerasimchuketal.,2017).SomestudieshavefoundthatabarrierforremovingFFS,particularlyindevelopingcoun-tries,istherisingcostofenergywhichisusuallytransferredtohouseholdconsumers,whicharemostsensitivetopricerises(Roberts,2016).However,thereareotherstudiesthatindicateeliminatingFFSdoesnotaffectallhouseholdsequallyandusually it is thehigher incomegroupsthatbenefitmostfromFFS(Coady,Parry,Sears,&Shang,2015).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 86

Subsidiesforfossilfuelsandothermarketdistortionsthatdonotreflecttheexternalitiesofthefulleconomic,socialandenvironmentalcostoffossilfuelscaninpartbeaddressedwithmarket-basedmechanismsintendedtopricecarbonthrough,forexample,emissiontradingschemesorcarbontaxes.However,remainingbarrierstothemarketpenetrationofsuchmechanismsincludelowpricesofcar-bon and their insufficient coverage relative to global GHG emissions. Prices under carbon-pricingschemesremaintoolowinG20countriestoencourageasubstantialshifttolowcarboneconomies(Burcketal.,2017).

Carbonpricing,ifwelldesigned,couldbeatoolthathelpstolowerGHGemissionsandshiftinvest-mentstolow-carbonsourcesofenergy.Variousstudiesindicatethatcarbonisgenerallystillpricedverylowwherecarbon-pricingschemesareinplace.Currently60percentofCO2emissionsarepricedatzeroandlessthantenpercentoftheemissionsarepricedatEUR30ormore(OECD,2017).TheHigh-LevelCommissiononCarbonPriceshasstatedthat.acarbonpricelevelthatisconsistentwithholdingglobaltemperatureincreasebelow2°CisatleastUSD40-80pertonneofCO2by2020andUSD50–100pertonneofCO2by2030,withasupportivepolicyenvironmentinplace(CarbonPricingLeadershipCoalition,2017).Sincethestudyusedscenariostolimitwarmingbelow2°Cwithagreaterthan66percentprobability,holdingglobaltemperatureincreasetowellbelow2°Candlimitthisto1.5°Cwouldimplycarbonpricesatthehighrangeorabovetheseestimates.

AccordingtoCarbonPricingWatch(2017),thenumberofcarbonpricinginitiativesimplementedorscheduledhasalmostdoubledoverthepastfiveyears,including40nationaland25subnationaljuris-dictions,responsibleforaboutaquarterofglobalGHGemissions.However,onlyabouthalfofthetotalemissionsfromthesejurisdictionsarecoveredbythecarbon-pricinginitiatives,leadingtoatotalcov-erageofonlyabout15percentofglobalGHGemissionsorabout8GtCO2eq(WorldBank&Ecofys,2017).

Lackof informationandknowledge isanotherbarrier that institutional investorsandcentralbanksface.Thoughtheawarenessandresponsivenesstoclimaterelatedrisksofassetownersandinvestorshasincreased,mostofthemstilllackin-housecapacityandexperiencetodevelopaninformedviewaboutclimatechangescenariosandstrategizeaccordingly.Moreover,manyoftheseinvestorsfinditdifficulttoincorporateclimaterisksintotheirinvestmentstrategies(EY,2016).Onestudyevenfoundthatcentralbanksdonotconsidermainstreamingclimatechangeintotheiroperationaldecisionsistheirresponsibility,withonestatedreasonbeingtheneedtoavoiddistortingthemarket(Matikainenetal.2017).

Anothermajorbarrieristhefactthatfinancialinvestorsareprioritizingfinancingshort-termliabilitieswhichhasnegativeimpactongreeninvestments,whichoftenrequirehighupfrontinvestmentcosts(MatthewScott,vanHuizen,&Jung,2017).Highperceivedrisks,limitedfinancialviabilityandlimitedlong-termcapital formbarriers for theprivatesector to invest incapital intenserenewableenergyprojects.Green investments typicallysufferhigher riskperceptionsduetoadependenceonpublicpolicyand,often,therelativeimmaturityoftechnologies,markets,andindustries,especiallyindevel-opingcountries(Frisari,Hervé-Mignucci,Micale,&Mazza,2013).However,investorsoftendonottakeintoaccountthatdelayedactionwouldhaveasignificantimpactonstrandedassets,createdbyphys-icalclimatechangeimpactsandthetransitiontoalow-carboneconomy(IRENA2017b).Anoverarch-ingchallengeisthereforehowtoleveragethefinancialsystemtosupportthelow-carbontransitionintherealeconomy.Thepublicsectorcanhelptoovercomethesebarriersthroughtheuseofpublicfinancingmechanismssuchasriskmitigationinstrumentsincludingriskpoolingandtransfer,publicconcessionalfinancingandguarantees.

Whilethereisgrowingmomentumforfinancialinstitutionstodiscloseclimaterisksintheirinvestmentportfolios to investors, the lackof coherent, comparableand standardizedapproach toassessanddiscloserisksremainsthebiggestbarrier.Inordertoaddressthisconcern,theG20in2015requestedtheFSBtoreviewhowthefinancialsectorcantakeaccountofclimaterelatedissues(TCFD,2016).The

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 87

TaskForceonClimate-relatedFinancialDisclosures,establishedbytheFSB,designedacoherentbutvoluntaryframeworkfordisclosingclear,comparableandconsistentinformationabouttherisksandopportunitiesofclimatechange.TheTaskForcerecommendedthatclimate-relatedfinancialdisclo-suresshouldbemainstreamedintofinancialinstitutions’publicannualfinancialfilingstoinforminves-torsandothersonclimate-relatedrisksandopportunities(TCFD,2017).Thefactthatitisvoluntarycontinuestocreatechallenges-withtheexceptionofFrance,thatbecamethefirstcountrytointro-ducemandatoryclimatechangerelatedreportingforinstitutionalinvestorsin2016(Rust,2016).

4.13.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignal

Anoverallinternationallyagreedobjectivetobringinternationalfinanceandinvestmentfullyinlinewithclimateobjectives(“greening”ofinternationalfinanceandinvestment)couldsendastrongsignaltoinvestors.

Apart fromthat, thesignalcouldalsoemanate fromandbereinforcedbyconsistentandcoherentclimatepolicyactionsbygovernments(OECD/IEAandIRENA,2017).Providingstrategicenvironmentalandeconomicpolicy signalsand frameworks for investorswas identifiedby theG20asoneof theoptionstoscale-upgreenfinancing(MatthewScottetal.,2017).Suchclimatepolicysignalsandguid-ancecaninfluencefinanceflowsanddriveinvestmentstowardsalow-emissionandclimateresilientpathway,whichinturnwillcontributetothedegreeofdecarbonisationglobally(Burcketal.,2017).

TheremovalofFFSandpricingofcarboninparticularcansendsignalstomarketsandinvestorsthatgovernmentsarecreating long-termregulatoryframeworksandenablingenvironmentsforaligninginvestmentswiththegoalssetoutintheParisAgreement.

Moregenerally,targetedinternationalinitiativesandcooperationaimedatdecarbonisationofecon-omiesorspecificsectorscanhelpsendsignalstoinvestorsregardinginvestmentandportfoliodeci-sions(e.g.phasingoutcoalplantsintheelectricitymix,renewableenergytargets,electricvehicletar-getsandphaseoutofcombustionengines,greenbuildingstandards).

SettingRulestoFacilitateCollectiveAction

Theabsenceofanyinternationalburdensharingmechanismorrulesregardingtheprovisionandmo-bilization of financial resources to developing countries raises the question ofwhether developedcountryPartieswithobligationstoprovidefinancialsupportfollowthroughwithdeliveryofsuchsup-port.Inordertoensurethatallindustrialisednationsprovidetheirfairshareofsupporttodevelopingcountriesinlinewiththeirhistoricalresponsibilityandcapacitytopay,thefeasibilityofdevelopingfairburdensharingapproachescouldbeconsidered.However,inpreviousinternationalnegotiations,con-tributorscouldneitheragreeontheconceptnorformulasforburdensharing.

Reachinginternationalconsensusonconcepts,definitionsandmethodologiesrelatedtowhatcountsasclimatefinanceandsettingcommonrulesforreportingonclimatefinanceprovided,neededandreceivedisaprerequisiteforimprovedtransparencyofclimatefinanceflowsforenhancingtrustandmobilizingcooperationamongcountries.

SharedcommitmentsandtargetsforreformingandeliminatingFFSandpricingcarboninlinewithadistributedglobalcarbonbudgetofferprotectionagainstexploitationbyfree-riders.Alackofinterna-tionalcooperationmaydecreasethecompetitivenessofcountriestakingclimateactionanddiscour-agegovernmentsrelyingonfossilfuelstointernalizethefullcostsofcarbon.Aglobalpricetargetsuchasaninternationallyagreedminimumcarbonpricewouldcreateastrongmarketsignalandincentivestoincreaseaction“toshiftthetrillions”(Cramton,MacKay,Ockenfels,&Stoft,2017).Forpurposesof

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 88

accountability and trackingprogressof fossil fuel subsidy reformsand carbonpricingmechanisms,commonreportingsystemsshouldbeestablished.

Internationalcooperationinmultilateralorganisations,institutionsandforasuchasOECD,G20,UN-FCCC,andmultilateralclimatefundscanshapeinternationalnormsbysettingrulesonwhichtypeoffinancialinvestmentsaresocially,economicallyandenvironmentallybeneficialandacceptable.Inad-ditiontosharedtargetsbetweencountries,MDBsandInternationalFinancialInstitutionshaveakeyroletoplaybysettingtargetsforphasingoutfossilfuelinvestmentsandmainstreamingclimatecon-siderationintotheirentireportfolios.Similarly,commonrulessuchasexcludingcoalandotherfossilfuelactivitiesarenecessaryforexportcreditagencieswhocurrentlystillprovideguaranteesforcoalinvestmentsindevelopingcountries.

TransparencyandAccountability

Internationaltransparencyandaccountabilityarekeyelementsfortrackingprogressonthefulfilmentofdevelopedcountries’obligationstomobilizeandprovideclimatefinancetodevelopingcountries,aswellasfortrackingprogressonglobaleffortsofshiftingallfinancialflowsfrombrowntowardsgreeninvestments.Existingtransparencyeffortslacktwomainelementsthatcouldbenefitfromincreasedinternationalcooperation:firstly,accountingforbothsidesoftheclimatefinanceledger,includingnotonly the climate-compatible investmentsbutalso thehigh-carbon investmentsor “brown finance”going to fossil fuel extraction andproduction, formeasuring the net climate benefit (Bodnar,Ott,Thwaites,DeMarez,&Kretschmer,2017);andsecondlycoherentandstandardizedapproachesforfinancial institutionstoassessandreportclimate-relatedfinancialriskandtoprovidedisclosurere-porting.

MeansofImplementation

Publicfinanceisneededtoleverageandmobilizeadditionalclimatefinance,particularlyfromthepri-vatesector.Coordinationandcooperationamongdonorcountriesandbilateral/multilateralfundsandinstitutions(e.g.GreenClimateFund,GlobalEnvironmentFacility,MDBsincludingtheWorldBank)isrequiredtoensurecoherenceandminimizeduplicationofeffortsintheprovisionofclimatefinance,capacity-buildingandtechnologytransfer.Thebuildingofinstitutionalcapacityingovernmentsandfinancialinstitutionsiscriticalforputtinginplaceregulatoryframeworksandpolicyreformstoalignpublicandprivatefinancingwithglobalclimatetargets.Especiallythefinancialsectorcurrentlylackscapacityfordevelopingappropriatemethodologiesforassessingclimate-relatedrisksinallinvestmentdecisions.

KnowledgeandLearning

Decouplingemissionsfromeconomicgrowthisanewpathofdevelopmentthatrequiresmoregener-ationanddisseminationofrelevantdata,knowledgeandadaptivelearning(Burcketal.,2017).Inthisregard,internationalcooperationtofacilitateplatformsforexchangeofknowledgeandlearningaboutwhichpoliciesworkbesttomobilizeclimatefinanceanddivestassetsfromfossilfuelswillbecritical.Internationalcooperationamongfinancialinstitutionsandinvestorsisneededtofacilitatesharingofknowledgeandexamplesofbestpractice,includingindevelopingscenariosandnewmethodologiesrelatedtoclimate-relatedriskanalysisandmanagementinthefinancialsector.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 89

4.14 FluorinatedGHGs

4.14.1 Currentstatusandprospect

FluorinatedGHGsorF-gasesarea familyofmanmadegasesused inmainly industrialapplications.TherearefourtypesofF-gases:hydrofluorocarbons(HFCs),perfluorocarbons(PFCs),sulphurhexaflu-oride(SF6)andnitrogentrifluoride(NF3).WhileF-gasesareenergyefficientandsafeforusersgiventheirlowlevelsoftoxicityandflammability,theyhave(duetotheirverylongatmosphericlifetimes)veryhighglobalwarmingpotentials–thousandsoftimesgreaterthanCO2.HFCsweredevelopedinthe1990sassubstitutestoozone-erodingchlorofluorocarbons(CFCs)andhydrochlorofluorocarbons(HCFCs)whicharetobephasedoutundertheMontrealProtocolfortheprotectionoftheozonelayer.PFCsandSF6werealreadyinusepriortotheMontrealProtocol.

F-gasesrepresentedlessthantwopercentofanthropogenicGHGemissionsin2010(BlancoG.etal.,2014),buthavealmostdoubledfromanestimated1.1percent(or0.5GtCO2eq)ofanthropogenicGHGemissionsin2004(IPCC,2007).Intheabsenceofmitigationmeasures,thetotalglobalemissionsofF-gaseshavebeenestimatedtoamounttoabout4GtCO2eqby2050(Gschrey,Schwarz,Elsner,&Engelhardt,2011;IPCC/TEAP,2005;Purohit&Höglund-Isaksson,2017;TEAP,2016).HFCsarethefast-est-growingGHGswithanannualestimatedglobalgrowthrateoftento15percent(Andersen,2015).Whileby200280percentofHFCemissionshadoriginatedfromindustrializedcountries(UNEP,2002),theshareofdevelopingcountriesby2012hadincreasedtomorethan50percent(Rigby,2014).De-velopingcountriesarealsoexpectedtoleadfuturegrowthinHFCemissions(DuncanBrack,Andersen,& Sun, 2016; Purohit & Höglund-Isaksson, 2017; TEAP, 2016; Velders, Fahey, Daniel, Andersen, &McFarland,2015).

F-gasesareusedinalimitednumberofapplications.HFCsareprimarilyusedasrefrigerants(includinginairconditioningsystemsinvehiclesandbuildings),aerosolpropellants,foamblowingagents,sol-vents,andfireretardants(TEAP,2016).Theyarereleasedintotheatmosphereduringmanufacturingprocessesandthroughleaks,servicing,anddisposalofequipmentinwhichtheyareused.PFCsareemittedasaby-productofvariousindustrialprocessesassociatedwithaluminiumproductionandthemanufacturingofsemiconductors.SF6isusedinelectricaltransmissionanddistributionequipment,includingcircuitbreakers,magnesiumprocessing,semiconductorandflatpaneldisplaysmanufactur-ing, as a tracer gas for leak detection and filler for sound-insulatedwindows (Purohit&Höglund-Isaksson,2017;TEAP,2016).

DriversforgrowthinuseofF-gasesincludeclimatechange,growthinpopulationandGDP,growthincommercialandindustrialvalue,andgrowthinnumberofvehicles(BlancoG.etal.,2014;Purohit&Höglund-Isaksson,2017).Climatechangeinparticular,witheverincreasingglobaltemperatures,willboosttheneedformorerefrigerationandairconditioning.

AlternativesfortheuseofF-gasesarealreadywidelycommerciallyavailableandtestedandarebeingfurtherdeveloped.TheyalreadyenablesignificantemissionreductionsatlowcostandshouldevenmakeaphaseoutofF-gasespossible.Newlydevelopedhydrofluoroolefins(HFOs)arecurrentlybeingintroducedasnewrefrigerants,aerosolpropellantsandfoamblowingagentsthatcouldreplacetradi-tionalHFCs(Greenpeace,2016;TEAP,2016).TheyareasubsetofHFCsbutwithshortatmosphericlifetimesandlowglobalwarmingpotentials,althoughtheymaystillposethreatstotheenvironment(Greenpeace,2016). Iso-butane,n-propane,propene,ammonia,Fluoro-ketone,andotherscanalsoreplaceHFCsinahostofapplicationslikeaerosols,air-conditioning,heatpumpsorfoams.TheyhavelongbeenprovenasalternativestoCFCsandHCFCsandcouldthusalsoreplaceHFCs.RetrofittingandswitchingtonewconversionmodelscanhelpmitigatePFCemissionsfromaluminiumproductionwhileNF3canreplacePFCsinsemi-conductors.SulphurdioxidecanreplaceSF6inmagnesiumproductionandcasting.Goodpracticemeasureslikeleakagecontrolandend-of-liferecollectionandrecyclingcan

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 90

alsocontributetoreducingF-gasemissions(Purohit&Höglund-Isaksson,2017;Seidel,Ye,AndersenStephen,&Hillbrand,2016;TEAP,2016).

Costsdifferacrossdifferentapplicationsandalternatives(attimesevenbeingnegative),butoverallphasingdown/outF-gaseswillrequireadditionalinvestmentsandcomeata(low)netcost(nottakingintoaccounttheavoidedenvironmentaldamage).By2050,mostF-gasusescouldthusbephasedouttechnicallyandcumulativeemissionsbereducedbymorethan70percentatamarginalabatementcostoflessthan10EuropertonneofCO2eq(leadingtoareductionofmorethan50percentfromcurrentlevels)(Purohit&Höglund-Isaksson,2017;TEAP,2016).

4.14.2 Mainchallengesandbarrierstowarddecarbonisation

AfirstmajoreconomicbarrierconcernsthecostsandinvestmentsincurredbyswitchingfromF-gases.Asmentionedabove,whilesomealternativespromisenetsavings,overallcostswillneedtobebornandinvestmentswillberequired.Whilesmalleremissionreductionsmaybeachievedfairlyeasilybyeither substitutinggasesor implementingmarginalefficiency improvements,deeper reductions in-volveincreasingmarginalcostsandrequirenewcapitaloralternativeprocessescominginathighercosts.Sometechnologiesremainprohibitivelyexpensive.Thereislimitedincentiveforindividualac-torstocoversuchcostsandinvestments.Inaddition,userindustrieswillpartiallyhavetoadapttech-nicalroutinesandpracticesandinstallnewequipment(totheextentdrop-inalternativesarenotavail-able), contributing toan inertia in thedeploymentofavailablealternative technologies (Purohit&Höglund-Isaksson,2017).

PoliticaloppositionbypartsoftheF-gasindustryhasalsobeenanimportantobstacle.Thechemicalindustry,animportantinfluenceinmanycountries,hasarguedagainstF-gascontrolsaslongasthisseemedtoleadtoalossofbusinesstothem.ThisoppositionhassoftenedandevendisappearedwiththeinvestmentcycleforF-gasescomingtoanend(andrelatedintellectualpropertyrightsexpiring)andwith the industrymakingprogresson thedevelopmentof substitutes suchasHFOspromisingfuturebusiness(andnewintellectualpropertyrights).Thisfollowsapatternalsoobservedwithre-specttotheregulationandphase-outofCFCsandotherozone-depletingsubstances.

Regulatoryhurdlesarerelativelylimited.Regulatoryframeworksexistworldwideasaresultofthreedecadesofeffortstophaseoutozone-depletingsubstances,whichespeciallyHFCspartiallyreplaced.SubstitutingF-gasesinlargepartsconstitutesasimilarchallengethatcanbuildontheexistingframe-works forCFCs andotherozone-depleting substances.Accordingly, regulations to tackle certain F-gasesexistincertaincountriesandregions,includingtheEU,Japan,theUS,Australia,Norway,Swit-zerlandandChina(Purohit&Höglund-Isaksson,2017).

Finally,differencesincapacitybetweendevelopedanddevelopingcountriesneedtobeacknowledged.PatentsonHFOprocessesandapplicationsheldbyindustryindevelopedcountrieslimitopportunitiesforawiderangeof industry indevelopingcountries(inbothproductionandconsumptionsectors).Patentchallengescreatetechnologyandlegaluncertainties(WorldBank,2015).Moreover,technolo-giespertainingtonaturalsubstances,whichareatechnicallyfeasiblealternativeandwouldhelpde-velopingcountriesleapfrogHFCsaltogether,arecostlyandprimarilyavailableinindustrializedcoun-tries(Greenpeace,2016).Overall,especiallythelimitedavailabilityoftechnologyandfinanceaswellastheoverallcostsputconstraintsoneffortstoreduceandphaseoutF-gasesindevelopingcountries.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 91

4.14.3 Thepromiseandpotentialofinternationalcooperation

GuidanceandSignalFunction

Aglobalphase-outgoalfortheproductionandconsumptionofF-gasesandarelatedroadmapwithinterimstepsmayprovideguidancetotheactorsproducingandconsumingF-gases.AspecificgoalforF-gaseswouldbemoretangibleforrelevantactorsthanageneralglobalGHGemissiontarget,asitmightnotbeclearfromsuchaglobaltargetwhatthemorespecificaimforF-gasesshouldbe.Adif-ferentiationoftheglobalgoalbyregionsandcountrieswouldaddvalueinviewofvaryingcapacitiesandnationalcircumstances(e.g.varyingroleofrefrigerationandairconditioningindifferentregions).

SettingRulestoFacilitateCollectiveAction

GiventhecostimplicationsofphasingdownF-gasesandlackingincentivesforcounteringtheinertiainvolvedinthedeploymentofcommerciallyavailable,affordabletechnologies,thereisahighdemandforinternationalregulationtoaligncountriesandotheractorstowardaphase-don/outroadmap.

TransparencyandAccountability

Global rules for phasing out F-gaseswill consequently require appropriate provisions for ensuringtransparencyandaccountabilitysothatanyfreeridingcanbediscoveredandaddressed.Inthisregard,itmaybenotedthat,adangerofillicittradeinrelevantsubstancesnotwithstanding,therelevantreg-ulatedactivities(productionanduseofthesechemicals)isintrinsicallyrelativetransparent(produc-tionisconcentratedinfewlargefacilitiesanduseinlargepartoccursinproductsthatarewidelyavail-able).

CapacityBuilding,TechnologyandFinance(meansofimplementation)

ThereisahighdemandformultilateralfundingandtechnologytransferinordertoenableandensurethatdevelopingcountriescanphaseoutF-gases.AsuccessfulblueprintexistsintheformoftheMul-tilateralFundfortheImplementationoftheMontrealProtocol.Financialsupportwouldallowdevel-opingcountriestoadopttechnologicalalternativesmoreeasily.

Capacitybuildingcouldperformcomplementaryfunctions.Trainingandskillsdevelopmentinparticu-larfordevelopingcountrieswillbebeneficialinordertoenhancetheuptakeofnewtechnologiesandpracticesandincreasethemitigationpotentialofgoodpracticemeasureslikeleakagecontrolandend-of-liferecollectionandrecycling.

KnowledgeandLearning

Whilemanyofthetechnologiesrequiredalreadyexistandrelevantsolutionsareinlargepartknown,internationalcooperationmayhelptransferrelevantknowledge(e.g.byestablishingaglobaldatabaseandclearinghousethatcanhelpbuildandmaintainreliableinformation,regionalmapping,existingtechnologiesandfinancialopportunities).

Linkages

Power:Someofthealternativesubstances/technologiesmayleadtoahigherconsumptionofelectric-ity.However,technologicaladvancesarelikelytomakeupforsuchincreasedpowerdemandtoalargeextent.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 92

5. ConclusionsThisreporthasundertakentoshedfurtherlightonthespecificfunctionsthatcooperationininterna-tionalgovernance institutionscanperformsoas tocontribute tomitigatingglobal climatechange.Fromtherelevantliterature,wehavetothisendderivedfivegeneralgovernancefunctionsofinter-nationalinstitutions:guidanceandsignal,settingrules,transparencyandaccountability,meansofim-plementation,andknowledgeandlearning.Thishasprovidedasolidbasisforseparatelyanalysing14keysectoralsystemsastotheneedanddemandforinternationalgovernanceinstitutionstoperformthesefivegovernancefunctions.Thissectorallydifferentiatedapproachfollowsfromtheincreasinglysharedinsightthatmitigatingclimatechangefacesveryvariedchallengesandopportunitiesindiffer-entsectorsandfieldsofaction.Itshouldanddidallowustoidentifyandspecifyingreaterdetailthepotentialofinternationalgovernanceinstitutionstocontributetomitigatingclimatechange.

It shouldbeworthpointingout thatouranalysisat this stageabstracts fromtheworldofexistinginternationalinstitutions(bothintergovernmentalandtransnational).Itdoesnotincludeorimplyanassessmentoftheperformanceofthevariousexistinginternationalinstitutionsinaddressingclimatechangeandcontributing to thegovernance functionsdistinguished.Wehavehencehereaimed toidentifyandspecify thepotentialof international institutions ingeneral tocontributetomitigatingclimatechangeinlightofthespecificchallengesandcircumstancescharacterisingthesectoralsystemsinfocus.Thisismeanttoenableustocontrastthispotentialwiththeactualcontributioninternationalinstitutionsmake,inordertoidentifythescopeforenhancingthiscontributionandtoidentifyrelatedgaps–ananalysisthatistobeconductedaspartoftask4.2oftheproject.Wehaveherenotevaluatedexistinginternationalgovernanceefforts.

Weprovideasnapshotsummaryofourresults inMatrices5.1,5.2and5.3.Matrix5.1providesanoverviewofmainchallengesandbarrierstodecarbonisationbysectoralsystem.Theoverviewbacksupourhypothesisthatchallengesdifferconsiderablyamongthem.Allsuchsystemsfeatureanumberofspecificbarriersrelatingtothesector-specificactorsandoptions.Nonetheless,somecommonpat-ternscanbeidentified.

Inmanysectoralsystems,economicbarrierssuchashighermarginalcostsofclimate-friendlytechnol-ogiesandpracticesarekey,includinginagriculture,LULUCF,waste,energy-intensiveindustries,andF-gases.Insomeofthesesectors,ahightradeintensityfuelsconcerns(agriculture,energy-intensiveindustries,F-gases)thatthecostofclimateactionwouldendangerinternationalcompetitiveness.Inothersectors,mitigationoptionssuchasrenewableelectricity,efficientbuildingsandappliancesin-creasinglyhave loworevennegativemarginalcostsovertheir lifetime,butupfront investmentre-quirementsarehigher,whichcreatesabiastowardslessefficientoptionsandposesproblemsforac-torsandcountrieswithlimitedaccesstocapital.

Politicalandinstitutionalbarriersareparticularlypronouncedinsectoralsystemsthataredominatedby large incumbentcorporations, suchaspower,energy-intensive industries,nationaland interna-tionaltransportandF-gases.Theseincumbentsoftenfiercelytrytoprotecttheirestablishedbusinessmodels.Uncleardivisionof labouramongrelevantnationalagenciesand/orlackofenforcementofregulationshavebeenidentifiedasbarrierinanumberofsectorsincludingLULUCF,waste,urbansys-temsandbuildings(especiallyinlesscapacitatedcountries).

Technologicalbarriersarenotakeyconcerninmanysectoralsystems,butinsomefulldecarbonisa-tionwill requiresubstantial furthertechnological researchanddevelopment.Thesesectors includeagriculture,power,energy-intensiveindustries,internationalandnationaltransportandbuildings(re-gardingnetzero-emissionbuildings).

Awareness,informationandcapacityarekeybarriersinmostsectors.Awarenessofproblems,infor-mationaboutmitigationoptionsandeffectivepolicies,andthetechnicalskillsoftheworkforceneed

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 93

tobeimprovedacrosstheboard(withsomewhatvaryingprominenceoftheseelementsacrosssec-toralsystems).

Basedontheanalysisofsectoralbarriers,Matrix5.2providesaveryroughgradingofthesignificanceofthefivedifferentgovernancefunctionsineachofthe14sectoralsystemsinto“high”,“medium”and“low”.Thisgradingisbasedonaqualitativeexpertassessment(ratherthananyquantifiedcriteria).Gradingashighindicatesthatthegovernancefunctioninquestionisconsideredasacrucialprioritytobeaddressedby internationalcooperation(climatemitigationmaynotbeabletoadvancewithoutsuchcooperation).Mediumsignificanceimpliesthatprovidingthisfunctionisalsoimportantsothatcooperationinthisrespecthasconsiderablepotential(withoutnecessarilybeingcrucialforprogress).Gradingaslowimpliesthatthegovernancefunctionhaslittlepotentialandmayatbestmakeacom-plementarycontribution.Wereadilyadmitthatsuchagradingonlydeliversacrudepicture,whichfurthermoreissubjecttochallengebyotherexperts.

ThetextualentriesinMatrix5.3providesomefurtherdetailonthespecificsregardingthepotentialcontributionofinternationalinstitutionstothegovernancefunctionspersectoralsystem.Inescapably,thismatrix/tablecannotreflectthenuancesascontainedintheprecedingsectoralanalysis,buthastofocusonprovidingbriefsummariesofthemainpoints.Theinterestedreaderisreferredtothesectoralanalysesinsection4forfurtherdetails.

Withrespecttotheguidanceandsignalfunction,thesynopsisshowsthatthereisageneraldemandforsuchguidanceandsignalinthedifferentsectoralsystems.Thecirculareconomythatisitselfnotcontributingtoclimatechangeconstitutesthesoleexception,as itwouldbestbedrivenbytargetsandvisionsforthesectoralsystemsthatarekeyforasectoraleconomy(includingwaste,energyin-tensiveindustries,etc.).Agriculturescoressomewhatlowerbecauseofthespecificcharacteristicsofthissectoralsystemandinparticularsinceafullphase-outofemissionsinthissectorseemstechno-logicallyandsocio-economicallyunfeasible(whichhindersthedeterminationofclear-cutoverarchingguidingtargets). Inthe largemajorityofsectoralsystems,there isaclearaddedvalueofestablish-ing/havinginternationallyagreedtargetsandvisions.Suchtargetsandvisionshavethepotentialtoalignactorsgloballytowardsdecarbonisation.

ThispotentialisnotleastrootedintheneedtocompletelyphaseoutnetGHGemissionsasearlyaspossibleinthesecondhalfofthiscenturyinordertoenableholdingtheincreaseofglobalaveragetemperature towellbelow2/1.5°C,as recognised inArticles2and4of theParisAgreement.Thisopensuptheopportunityofestablishinggeneraltargetsthatcanprovidedirectguidancetoindividualactorswithinsectoralsystems.Forexample,theneedtoachievenet-zeroemissionswithinthenextfewdecadestranslatesintotheneedtoimmediatelyhaltinvestmentintofossilfuelpowerstations,aclear target providingdirect guidance to any investor. In contrast, a hypothetical target of halvingemissionswouldnotnecessarilyprovidesuchclearguidance to individual investorsaseachoneofthemmayassumethe50%reductionwouldberealisedbyothers.

TheentriesinMatrix5.3illustratethattheaddedvalueliesinparticularwithtargetsandvisionsthatareconcreteenoughfortherelevantsectoralactors.Hence,theLULUCFsectorcouldbenefitfromanagreedtargettohaltdeforestationandtoturnthesectorfromanetsourcetoanetsinkofGHGs.Similarly,thebuildingssectorcouldbeguidedbyaclearvisionofafulldecarbonisationofthissectoranditscomponents(heating,cooling,cooking,heatingwater).Asthisexampleindicates,guidanceandsignaltosectoralactorsmightevenbestinvolveafurtherdifferentiationoftargetsandvisionsbeyondthesectoringeneraltowardssub-sectorsandkeyactivitiesinthesectoralsystem.Asafurtherexample,greeningfinanceandinvestmentmightbenefitfromarelatedoverallobjective,butthesignalarguablyalsoresultsfromspecific,concreteobjectivestofullyremoveFFSbyaspecificdateandtointroducecarbonpricing.Giventhecrosscuttingnatureoffinancing,thesignalarguablyemanatesfromthemixofspecificfinanceobjectivesandcross-sectoralandsectoralclimateobjectivesandpolicyframeworks

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 94

atbothnationalandinternationallevels.Overall,thesectoraltargetsunderconsiderationintheanal-ysishencegomuchbeyondthegeneralobjectivesenshrinedintheParisAgreementthatremainataratherabstractlevelwhenitcomestosectoralaction.

Asconcernssettingrules,wefindamorevariedpicture,withthegradesinMatrix5.2spanningthefullspectrum.Inunderstandingthisgradingandtheoverallpicture,itmaybeusefultoappreciatethattheneedanddemandforinternationalregulationcanbetracedbacktoatleastthreeverydifferentsourcesthatarenotmutuallyexclusive:First,inafewsectorsinternationalcompetitionandinterde-pendenceprovideastrongandevencompellingrationaleforaninternationalburdensharingandre-assuranceof implementation (energy-intensive industries,F-gases,…)aswellas foracommonap-proach(internationaltransport).Second,insomecasestheestablishmentofinternationalrules/stand-ardsseemstoenablecooperativeactionandprogressbyactors.Forexample,internationalstandardsseemtoberequiredtoenabletheestablishmentofrelatedexchangerelationships(results-basedpay-ments)intheLULUCFsector.Similarly,labellingandcertificationmayberequiredinordertoenablethecirculareconomygivenglobalvaluechains.Third, international regulationcouldservetomakeevengovernmentsactwhomaynototherwiseseethisasapriority.Thismay,forexample,bethecaseespeciallyasregardswasteandbuildingsandwouldneedtogohandinhandwiththeprovisionofsufficientmeansofimplementation(thisthirdcasewouldinitselfleadatbesttoagradingas“medium”sinceinternationalregulationcouldhardlybeseenascrucial).Overall,thereisclearlyalowerneedanddemandfor internationalregulation insomesectoralsystems(includingwaste,urbansystems,transport,andappliances)becauseactionintheseisdrivenbyotherfactors.

Asinthecaseoftheguidanceandsignalfunction,acloserlookatthespecificneedspersectoralsys-temisrequired,takingintoaccountpotentiallydifferentsituationsasregardsdifferentcomponentsofthissystem.Anoverarching,aggregateassessment(asreflectedinMatrix5.2)cannotdojusticetothefrequentlyvaryingcharacteristicsofdifferentcomponentsof thesectoralsystems in focus.Forexample,whilemanycausesofagriculturalGHGemissionsmaynotcruciallyneedtobeaddressedbymeansofinternationalregulation(e.g.CH4emissionsfromricepaddies),reducingandmodifyinguseoffertilisermaybenefitfrominternationalrulessinceitisacomponentaffectingthecompetitivenessoninternationalmarkets.Similarly,removingFFSmaybeoneparticulararearegardingextractivein-dustriesandfinanceandinvestmentforwhichinternationalagreement/regulationmayberequired.Ingeneral,anyaddedvalueofinternationalregulationinmostcasesrelatestoparticularcomponentsandspecificelementsofasectoralsystemanditsgovernance(ratherthanthesectorasawhole;fordetails,seeMatrix5.3andtheanalysesinsection4).Ameaningfulanalysisthusneedstofurtherdis-aggregatebeyondthelevelofsectoralsystems,forwhichthedistinctionbetweendifferentsectoralsystemswouldappeartoprovideausefulentrypoint.

Transparencyandaccountabilityaregenerallycloselylinkedtotheneedforinternationalregulationand itsunderlyingrationale.This linkshouldnotcomeasasurprisesincethetransparencyandac-countabilityatstakespecificallyrelatetotheimplementationofagreedrules(ratherthantotranspar-encyingeneral;seesection3.4above).Thedemandforsuchtransparencyandaccountabilityispar-ticularlypronouncedwhereinternationalcompetitionandinterdependenceprovideastrongmotiva-tionforfree-ridingand,consequently,thesettingofrulesandchecksontheirimplementation.Itmaybeforthisreasonthatinternationaltransportandenergyintensiveindustrieshighonthisfunction.Also,addressingLULUCFseemstorequirehighlevelsoftransparencytoensuretrustintheexchangerelationshipimpliedinresults-basedpaymentsonthebasisofinternationalrules.

Therewouldappeartobethreeconditionsunderwhichasectoralsystemscoreslowerontranspar-encyandaccountability.First,thedemandforaninstitutiontoperformthisfunctionmaybedamp-enedevenincaseofhighdemandforinternationalregulationandhighcompetition,iftheregulatedactivities are intrinsically relatively transparent themselves (extractive industries, F-gases, alsotransport).Second,demandforinternationalgovernanceoftransparencyandaccountabilitymaybe

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 95

ratherlowbecauseofalowdemandforinternationalregulationthatwouldrequireimplementationinthefirstplace(e.g.waste,urbansystems,appliances).Third,theinternationalregulationrequiredmayitselfnotprimarilyaddresscompetitivenessissuesbutenableandfacilitateactiontoreduceemis-sions(e.g.circulareconomy).

Insomesectoralsystems,theserationalesmix(power,buildings,agriculture).Thisisalsoagainacon-sequenceofthedifferentneedsandconditionsofdifferentsegmentsandcomponentsofthesectoralsystemsinvestigatedthataremoreobviousinsomeareasthaninothers,eventhoughtheymaybeacommonfeatureoverall.Apossibleinternationalagreementonlimitingtheuseoffertilisermay,duetoitsimplicationsforinternationalcompetition,requireinternationaltransparencyandaccountabilityprovisions.Incontrast,internationalfoodlabellingregulationmay(dependingonitsdesign)beself-enforcing.Similarly,internationaltechnicalstandardsforelectricvehiclesmaybequasiself-enforcing,whereascompliancewithinternationalemissionstandardmayrequireclosescrutinyandfollow-up.

Thedemandfortheprovisionofadequatemeansofimplementationisoverallrelativelyhighacrossthesectoralsystems,especiallysincemanydevelopingcountriesrequiresomeformofassistanceinordertoadvancesufficientlyfast.Mostsectoralsystemshencescore“high”onthisfunction.Somearerated“medium”or“medium-high”,mainlybecausetheintrinsicincentivesandtheeconomicrationaleforactionaresostrongthatadditionalmeansofimplementationareconsideredlesscrucial(buildings,appliances,financialsector).Inthecaseofinternationaltransportandextractiveindustries,therele-vantsectoralactorseven indevelopingcountriesarearguably relativelywell-resourced inorder totakeactionevenwithoutfullprovisionofmeansofimplementation.Forexample,manydevelopingcountryairlinessuccessfullycompetewiththeirdevelopedcountrycompetitorsandmanyfossilfuelexportingcountries(includingmanymembersoftheOrganisationofPetroleumExportingCountries–OPEC)havesignificantcapitalreserves.Eveninthesecases,somemeasureofsupportforadvancingthetransition,includingaccesstocapital,mayberequired.

Again,therearesignificantdifferencesbetweenthevarioussectoralsystemssothatacloser,differ-entiatedlookisrequiredforidentifyingthespecificneeds.Insomesectors,technologydiffusionmaybeaprominentchallenge(e.g.agriculture,waste),inotherstechnologydevelopmentortransfer(e.g.shipping,power,energy-intensiveindustries,transport,F-gases).Inseveralsectors,capacitybuilding(ofvariouskinds)ismuchneeded(LULUCF,waste,power,transport,urbansystems,buildings,appli-ances,financialsector).Inmostsectoralsystems,theneedforeitherdirectfinancingoptionsoraccesstofinanceandinvestmentloomslarge(exception:appliances),andthereisageneralcross—sectoralneedformore long-termfinancingoptions(tobeadvancedby internationalcooperation). Inafewcases,therelatedneedspecificallyconcernsrisk-sharing(powerandtransport).Overall,thevariationintheneedprofilesofvarioussectoralsystemshencederivesfromthedifferentneedsforthethreemeansofimplementationdistinguished(technology,finance,capacitybuilding–alloftheseoronlysomepart/mixture)aswellasvaryingneedsforthespecificformofeachofthesemeansofimplemen-tation.

Thereisalsosomelevelofdemandforinternationallycoordinatedknowledgeandlearningacrossthesectoralsystems.Inmostsectoralsystem,thisdemandis“high”or“medium”.Lesserscoresexistonlywithrespectto:(1)F-gaseswhereknowledgeaboutalternativesandeffectivepoliciesiswidelyavail-able,alsoasaresultofthelong-lastingeffortstophaseoutozone-depletingCFCs;and(2)thepowersectorwhererenewableenergytechnologieshavespreadandmaturedashasknowledgeaboutre-latedpolicyframeworks.Intheothersectoralsystems,internationalcooperationcansignificantlyad-vancetechnologydevelopment,thedesignofeffectivepoliciesandawarenessraising.Foragriculture,thecirculareconomy,energy-intensiveindustries,urbansystems,andthefinancialsector,knowledgeandlearningseemacentralchallengewithrespecttodecarbonisation(inthecaseofthecircularecon-omyandurbansystemsalsoduetotherelativelyrecentnatureoftheirframing).

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 96

Asthisoverviewalreadyindicates,alsoinregardtothisfunction,theaggregationas“knowledgeandlearning”masksasignificantvarianceastowhatthespecificdemandforthisfunctionentailsfordif-ferentsectoralsystems.Insomesuchsystems,thereisaparticularneedforawarenessraisingsup-portedbyinternationalinstitutions(agriculture,buildings,waste,financialsector).Forsome,technol-ogydevelopmentandresearchcoordinationseemcrucial(agriculture,internationaltransport,energy-intensiveindustries).Inseveralareas,thereisamoreorlessspecificpotentialforpromotingtechnicaland/orpolicy learningacross countriesand jurisdictions (LULUCF,waste, circulareconomy,power,buildings,extractiveindustries,transport,urbansystems,appliances,financialsector).Insomecases,specificdemandforthecreationofparticular informationordataexists(LULUCF,waste,extractiveindustries, internationaltransport,financialsector).Overall,thereappearstobe,nexttothediffer-encesofthegeneralimportanceofknowledgeandlearning,aspecificfocusandmixofmorespecificneedsidentifiableforeachsectoralsystem.

Whilewemaygroupsectoralsystemsalongkeydemandsforinternationalgovernanceperfunctions(asperabove),therearefewclearpatternsemerging.Ahighdemandforinternationalregulationdoesnotcorrelatewithaloworhighdemandforknowledgeandlearningormeansofimplementation.Nordoesahighor lowdemand formeansof implementationcorrelatewithahighor lowdemand forpromotingknowledgeandlearning.Afewcorrelationsgetvisibleifwesub-divideanddisentanglethegovernancefunctionsasdoneabove.Hence,ademandforpromotingpolicyandtechnicallearningaswellasforcapacitybuildingseemstocorrelatetosomeextentwithalowerdegreeofinternationalcompetitionandinterdependence.Asalreadymentioned,ahighdemandforinternationalregulationrootedinhighinterdependenceandcompetitionusuallyleadstoarelativelyhighdemandfortrans-parencyandaccountability.Apartfromtheserelativelyfewcorrelationsandlinks,thespecificneedanddemandforthefulfilmentofthegovernancefunctionswouldappeartoberatherrootedinthespecificcharacteristicsandconditionsoftherespectivesectoralsystemsthatarelargelyindependentoftheofthevariousgovernancefunctionsandtheircomponents.

Overall,theapplicationofourframingofthegovernancefunctionsofinternationalinstitutionsinthesectoralanalysisrevealsitspotential,butalsosomelimitations.Itenablesamoretargeted,differenti-atedanddetailedanalysisofthevaryingdemandfortheperformanceofcertaingovernancefunctionsbyinternationalinstitutionsinspecificsectoralsystems.Itthereforeadvancesfromanoverallaggre-gateperspectiveoninternationalclimategovernancethattreatsitasoneintegratedproblemtowardsamoreappropriateoutlookthattakesintoaccountthemultifacetednatureofthischallengeinvariousrelevantsectorsandcontexts.Suchamoredetaileddiagnosisenablesustoidentifymoreappropriateandmoretargetedcuresforthedifferentaspectsofthechallenge.Italsoprovidesanopportunitytoinvestigateand take intoaccount the furtherdifferentiation thatexistswithinsectoral systems.Asdemonstratedinouranalysis,settingrules,meansofimplementationandknowledgeandlearningcaneachmeanvariousthings.Thisdifferentiationshouldbeinvestigatedsinceitrequiresappropriatelyadaptedresponsesandcreatesvaryingdemandsforinternationalgovernance.

Thisneedforfurtherdisaggregationanddifferentiationcanalsobeconsideredoneofthelimitationsoftheapproachchosen.Itdemonstratesthatthedistinctionofvarioussectoralsystemsisnotneces-sarilyenoughtogetagriponanalysingtheunderlyingproblemstructuresandrelateddemandsforinternationalgovernance.Asmentioned,however, itmaybeconsideredto facilitategettingtothebottomoftheproblemstructuresandrelatedneedsandpotentials.Afurtherlimitationconcernsthetransparencyandaccountabilityfunctionthatappearstobecloselylinkedtothedemandforsettinginternationalrulesanditsunderlyingrationales.Forexample,thedemandforthisfunctionisparticu-larlypronouncedwhereinternationalregulationistoaddress issues involvingcompetitivenesscon-cernsandinternational interdependence.Thisraisesthequestiontowhatextentthisfunctionmayformpartoftheanalysisofthefunctionofsettinginternationalrulesinthefirstplace.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 97

Allinall,thesectorallydifferentiatedapproachdevelopedinthisreportpromisestoconstituteainno-vativeandsoundbasisforanalysingtheeffectivenessandadequacyofinternationalclimategovern-ance.Theobjectiveoftheoverallworkpackageandprojectistohelpidentifyoptionsforenhancingtheeffectivenessandadequacyofinternationalclimateprotection.Ourapproachadvancesthestateoftheartbysystematicallydisaggregatingtheoverallgovernancechallengeintothespecificsectoralandsub-sectoralelementsofthischallenge.Ittherebyenablesustodeliveramoredifferentiatedpic-tureof thebarriersandopportunities thatexist indifferent fieldsofactionandcanorneed tobeaddressedbyinternationalinstitutionsandcooperation.Thisshouldenableustoclearlyidentifyexist-inggapsandpotentialstobeaddressed invarying internationalgovernance institutions,whichwillneedtobefurthersubstantiatedinTask4.2oftheproject.

Hence, our analysis of the demand for international governance across different sectoral systemsshouldconstituteasoundbasisforthenextstepsandtasksinWorkPackage4oftheCOP21RIPPLESproject. Itprovidessuitablebenchmarks for investigatingexisting international institutionsand thecontributiontheymaketomeetingthedemandforinternationalgovernanceidentified.Thisinvesti-gationistoenableustoidentifyremaininggapsandunderdevelopedpotentialsandtosuggestprior-itiesinthisrespect.SuchananalysisshouldprovideusefulinputandguidancetopolicymakersintheEUandbeyondforidentifyingscopeandprioritiesforactiontoimproveinternationalclimategovern-ancetoacceleratethedecarbonisationofoursocietiessoastoenhancethechancestoholdglobaltemperatureincreasewellbelow2/1.5°C,inlinewiththeParisAgreement.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 98

SectoralGovernanceMatrix5.1:BarriersandChallengestoDecarbonisation

Sectors FinancialandEconomic InstitutionalandPolitical Technological Awareness/Inform./Capacity

Agriculture • Lowerproductivityofsomealternativepractices

• Highupfrontcostsofconvertingpractices

• Limitedpotentialofcurrenttechnologies,needfornewbreedsandvarieties

• Slowdisseminationofbestfarmingpractice

• Socialpreferenceformeat

• Lackofinformationaboutclimateimpacts

LULUCF • Lackofinternalisationofforestbenefits

• Demandpullespeciallyfromwealthycountries

• Pressurefromoveralleconomicanddemographicdevelopment

• Insistenceonrighttoexploitnationalnaturalresources

• Overlappingresponsibilitiesofnationalministries

• Lackofclearlandtenureandland-userightsandenforcement

• Noagreeddefinitionofforests• Uncertaintiesaboutcarbon

contentofforests,particularlysoils

Waste • Costofsustainablewastemanagement

• Lackofstringentwasteregulationandenforcement

• Uncleardivisionoflabouramongnationalagencies

• Lackoforganisationofwastecollection

• Lackoftechnicaltraining• Lackofawareness

Circulareconomy

• Highupfrontinvestmentsforchangingbusinessmodels,designs,supplychains

• Underdevelopedmarkets

• Highupfrontcostsofdurableproducts

• Regulationofinternationalvaluechainsdifficult

• Impactonexportersofmanufacturing

• Complexityofmaterials • Poorreversecyclelogistics• Lackofinformationonflowsof

materials/productcomposition

• Poorsortingandhandlingofwaste

• Consumerpreferences

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 99

Sectors FinancialandEconomic InstitutionalandPolitical Technological Awareness/Inform./Capacity

Power • HighupfrontinvestmentforRE

• HighoverallcostforCCS• Costofre-buildinggrid

infrastructure

• Blockingpowerofincumbents,“techno-industrialcomplex”

• Appropriatemarketregulation/design

• DeployabilityofCCS• Intermittencyofwindand

solar

• Storagesolutions• Newgridinfrastructure

• Lackofskilledworkers

Energy-i.industry

• Longinvestmentcycles,highinvestmentrequirementsandrisksandlongpaybacksofnewtechnologies

• Fearoflosingcompetitiveness/stuntingdevelopment

• Complexityofglobalvaluechains

• Technologicalinertia,insufficientR&Dspending

• Innovativetechnologiesstillatexperimentalstage

ExtractiveIndustries

• Resourcecurse:unwillingnessbyinvestorstoinvestinothersectors

• “Justtransition”ofregionsrelyingonfossilfuelextraction

• Poweroffossilfuelcompanies

• Distributionalconflictsaroundforegoingresourcerentsandsubsidyreform

• Riskofstrandedassets–oilandgascompanies“toobigtofail”

• LackoftransparencyonFFS• Lackofgovernmentcapacityto

substituteFFSbymoretargetedpolicies

Transport • Veryhighinfrastructureexpenditurerequired(change)

• Higherupfrontcostsofnewvehicletechnologies

• Powerofcarandoilcompanies,motoristlobbies,freightbusiness

• Lackofstandardsforelectricvehicles

• Fueltaxesamajorsourceofpublicincome

• Developmentofhigh-yieldbatteries

• Carculture• Engineerbiastowards

incrementalimprovementofexistingtechnologies

Internationaltransport

• Notaxationofaviationandshippingfuels

• Splitincentivesbetweenshipownersandhirers

• Highpriceofbiofuels

• Effortsharingcontroversy• Powerofincumbents

• Lowpublicprofileofshippingsector(lackofpressure)

• Technicalproblemsregardinguseofbiofuels,hydrogen,electricity

• InsufficientR&Dspending

• Lackofinformationonreductionpotential

• Perceived‘righttofly’

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 100

Sectors FinancialandEconomic InstitutionalandPolitical Technological Awareness/Inform./Capacity

• Restructuringofsupplychainsneededforslowsteaming

UrbanSystems • Veryhighinfrastructureexpenditurerequired

• Lock in of high-emissioninfrastructure throughongoingurbanisation

• Lack of integrated land-use andtransportationplanning

• Enshrined paradigms such aszoningandequatingmobilitywith(car)transport

• Limitedcapacitiesandcompetingprioritiesofcities

• Lackoflocalemissionsdataandmonitoring/evaluationoflocalclimateactions

Buildings • Highupfrontinvestment

• Lackingaccesstofinance,particularlyindevelopingcountries

• Lackofregulations/incentivesandenforcement

• Largenumberofstakeholders,strongfragmentationofsector

• Splitincentivesbetweenbuilders,landlordsandtenants

• TechnicalchallengesofNZEBs

• Lackoftechnicalskillsamongdesignersandbuilders

• Lackofawarenessofoptions• Lowpriorityofefficiency

Appliances • Highupfrontcosts • Lackofinformationforbuyers

• Lowpriorityofefficiencyinpurchasedecisions

• Preferenceforeverlargerappl.

Financialsector • Highriskperceptionofgreeninvestment

• Lackoflong-termcapital

• Short-terminvestmenthorizons

• Lackofadequateregulatoryframeworks

• FFS

• Lackofinformationabout/standardstoassessclimaterisks

• Lackofcapacitytoassessclimaterisks

FluorinatedGHGs

• Deepreductionsrequirenewtechnologieswithhighcosts

• Resistanceby(chemical)industry • Accesstonewtechnologies(patents)

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 101

SectoralGovernanceMatrix5.2:SignificanceofGovernanceFunctions

Sectors GuidanceandSignal SettingRules TransparencyandAccountability

MeansofImplementation

KnowledgeandLearning

Agriculture Medium Medium Low High High

LULUCF High High High High Medium

Waste High Low-Medium Low High Medium

Circulareconomy (-) High Low High High

Power High Medium-High Medium High Low-Medium

Energy-i.industry High High Medium-high High High

ExtractiveIndustries High High Medium(FFS:High)24 Medium-High Medium

Transport High Medium-High Low High Medium

Internationaltransport High High High Medium Medium

UrbanSystems High Low Medium High High

Buildings High Medium-High Medium Medium-High Medium

Appliances High Medium Low Medium Medium

Financialsector High High Medium(FFS:High)24 Medium High

FluorinatedGHGs High High Medium High Low

24 Separateentryforfossil-fuelsubsidyreformwhichhasahighneedfortransparencyandaccountabilitytounderpininternationalagreement.

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 102

SectoralGovernanceMatrix5.3:MainPotentialContributionsofInternationalInstitutions

SectorsGuidanceandSignal SettingRules Transparencyand

AccountabilityMeansof

implementationKnowledgeand

Learning

Agriculture • Sector-specificreductiontargetandsubtargetsforfertiliseruse,emissionreductionfromentericfermentation–nationaltargets

• Labelling• Reductionoffertiliser

use(includingassistance)

• Carbonprice

• Implementationofanyrules(seerules)

• Technologydiffusionandadaptation

• Financeandinvestment

• Internationalresearchefforts

• Awarenessraising(waste,diets)

LULUCF • Targettohaltandrevertdeforestationandtoturnsectorfromanetsourcetoanetsink

• Economicincentivestopreserveandregrowforests(results-basedpayments)

• Referencelevelsandmonitoringofresults

• Finance• Capacitybuildingfor

legalandinstitutionalframeworks

• Jointaccountingmethodologies

• Policylearning(legalandinstitutionalframeworks)

• Geographicalinformationsystem

Waste • Sector-specificdecarbonisationtargetandsubtargetssuchasendinguncontrolleddumping,burning,andlandfilling

• Commonglobalregulationsandstandards(e.g.prohibitionoflandfilling)

• Wouldberequiredformonitoringofinternationalregulation

• Transparencyofsectordevelopments

• Internationalcapacitybuilding

• Internationalfinance• Technologydiffusion

• Policyandtechnicalknowledgeexchange

• Internationaldatabase

Circulareconomy • Bestintegratedintovisionforcoreemission-causingsectors

• EPR,passports,labellingandclearmaterialspricing(byvaluechain)

• Implementationofanyregulatorymechanisms

• Technicalskillsdevelopment

• Internationalfinancingoptions

• Policyandtechnicaldialogueplatforms

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 103

SectorsGuidanceandSignal SettingRules Transparencyand

AccountabilityMeansof

implementationKnowledgeand

Learning• Certification

programmes• Supportforcross-

industrycollaboration

Power • Signalforlow-carboninvestmentsinenergyinfrastructure.

• coordinatedtargetsetting(decreasingimportanceduetoincreasinglycompetitiverenewableenergytechnologies)

• coordinationattheregionallevel(especiallygriddevelopment)

• requiredtosupportcollectiveactionfunction

• risksharingforcapitalintensiveinvestmentsinsustainablepowersystems,especiallyindevelopingcountries

• internationaltransferofrenewableenergyandenergystoragetechnologies

• administrativeandtechnologicalcapacitybuilding

• sharingofgoodpracticepoliciese.g.onmarketdesignsandlong-termplanning

Energy-intensiveindustry

• Sectoraldecarbonisationobjectivesandrelatednational,regional,globalroadmaps

• Internationalemissionlimitsand/orcarbonpricing(productionorconsumption)

• Requiredtomonitorandverifyimplementationofrules

• Financialsupport/incentivesandtechnologytransfer

• Globalknowledgeandlearningplatform(s)(policylearning)

• InternationalR&D

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 104

SectorsGuidanceandSignal SettingRules Transparencyand

AccountabilityMeansof

implementationKnowledgeand

Learning

ExtractiveIndustries • Phaseoutoffossilfuelextractionasapafter2050

• PhaseoutofFFSbyfirmdeadline

• GlobalregulationofFFextraction(rights)

• AgreementonFFSphasedown/out

• GlobalregulationwouldrequireT&A(butrelativelyhighintrinsictransparencyofregulatedactivities)

• RequiredformonitoringofFFSreform

• Totrackprogress,createpeerpressure

• Technicalandfinancialsupportfornationalreformefforts(transitionawayfromFFextraction)

• DefinitionofFFS• International

comparabledata(especiallyonFFS)

• Enhancepolicylearningre.‘nationalinterests’

Transport • Internationaltransportdecarbonisationtargetandroadmap(differentiated)

• Newmobilityparadigm(transit-orienteddevelopment&prioritisingpublicandnon-motorisedtransport)

• Commontechnicalstandards(e.g.forelectricvehicles)

• Commonregulation,e.g.emissionscontrol,carbonpricing

• Noneedformonitoringofcommonstandards

• Neededforemissionlimitsandcarbonpricing

• Financialrisk-sharingforlargeinfrastructureprojects

• Finance,technologyandcapacitybuilding

• Learningpartnerships(especiallyNorth-Southcooperation)ontechnologiesandpolicydesign(includingpolicyintegrationwithothersectorssuchaspowerandurbansettlements)

Internationaltransport

• Globallimitsandphase-outof(net)emissions(withdifferentiation)

• Globallimitsonemissions

• Internalisationofexternalitiesinfuelprices/carbon

• Toensureeffectiveimplementationofinternationalrules

• Accesstocapital/fi-nance,e.g.toimple-mentretrofits(ship-ping)

• Incentivisingofearlytechnologyadoption

• (Joint)R&Dforlow-carbontechnologies

• Informationoncosts/savings/newtechnologiesand

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 105

SectorsGuidanceandSignal SettingRules Transparencyand

AccountabilityMeansof

implementationKnowledgeand

Learningpricing/emissionstrading

• Operationalandtechnologicalprescriptions(e.g.speedlimits)

• Technicalcooperation/transfer(shipping)

operationalmeasures(shipping).

UrbanSystems • Newparadigmofsustainableurbandevelopmentintegratingmitigationandotherdevelopmentobjectives(includingzeroemissionsgoal)

• Littlescopeforuniformrulesorstandards

• Needforsystematicmonitoringandassessmentofandinternationalconsultationonurbanclimateactions

• Strongneedforbuildingurbanplanningcapacityandfinancialsupportformitigationmeasures

• Participationofcitiesininternationalforumstopromotemutuallearning

• Establishmentoflearningpartnershipsbetweencities

Buildings • Sector-specificdecarbonisationtargetandsub-targetsforsubsectors(likeheating,cooling,cookingandheatingwater)

• Internationaltechnicalstandardsandagreementonfar-reachingdecarbonisationobjectives

• Monitoringofimplementationofrules

• Training,capacitybuildingandawarenessraising

• Financeandinvestment

• Policyandtechnicalknowledgeplatforms

• Globaldatabase

Appliances • Internationalenergyefficiencytargetand/orrequirementtoestablishsuchtarget

• harmonizationofstandardsandlabel-ling(butcouldalsolimitupwardcompeti-tionamongdifferentlabels/schemes)

• MayhelptoenforcecommonlyagreedMEPS

• CapacitybuildingforpolicymakersfortheintroductionofMEPSregulation/efficiencylabelling

• knowledgediffusionontechnologyandeffectiveefficiencylabelling

COP21RIPPLES–D4.1–GovernanceFunctions–Final–30September2017 106

SectorsGuidanceandSignal SettingRules Transparencyand

AccountabilityMeansof

implementationKnowledgeand

Learning

Financialsector • Overallobjectiveto“green”financialflows

• PricingofcarbonandremovalofFFS

• Sectoraldecarbonisationtargets

• Fairburdensharingapproaches

• Minimumcarbonpriceandfossilfuelsubsidyremoval

• Agreementonacceptabletypesoffinancialinvestments

• Coherentandstandardizedapproachesforfinancialinstitutionstoassessandreportclimate-relatedfinancialrisk

• Monitoringofimplementationofrules

• Commonrulesforaccountingforandreportingonclimatefinanceprovided,neededandreceived

• Accountingofbothclimatecompatibleandhighcarboninvestmentstotrackprogress

• Publicfinancetoleverageandmobilizeprivatefinance

• Coordinationandcooperationamongdonorcountriesandclimatefinancedeliveryinstitutions

• Buildinginstitutionalcapacityingovernmentsandfinancialinstitutions

• Exchangeofknowledgeonpolicies

• Exchangeknowledgeamongfinancialinstitutionsforclimaterisksanalysisandmanagement

• Systematicdatacollectiononcostsofclimaterisks

FluorinatedGHGs • PhaseouttargetforF-gases(productionandconsumption)

• Regulatorymechanisms/phase-outobligations

• Implementationofanyrules(seerules)

• Financialincentives• Technologytransfer

• Globalinformationsharing

107

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

References4E.(2016).AchievementsofApplianceEnergyEfficiencyStandardsandLabellingPrograms-AGlobal

Assessmentin2016.Noplace:IEATechnologyCollaborationProgrammeonEnergyEfficientEnd-Use Equipment. Retrieved fromhttp://www.superefficient.org/Research/PublicationLibrary/2016/IEA-4E-Achievements-of-national-EESL-programs-report-2016

Abbott,K.W.(2012).Thetransnationalregimecomplexforclimatechange.EnvironmentandPlanningC: Government and Policy, 30(4), 571–590. Retrieved fromhttp://journals.sagepub.com/doi/abs/10.1068/c11127

Abbott, K. W., Genschel, P., Snidal, D., & Zangl, B. (Eds.). (2015). International Organizations asOrchestrators.Cambridge:CambridgeUniversityPress.

Adhya,T.K.,Linquist,B.,Searchinger,T.,Wassmann,R.,&Yan,X.(2014).WettingandDrying:ReducingGreenhouseGasEmissionsandSavingWaterfromRiceProduction(CreatingaSustainableFoodFutureNo.8).WashingtonDC.Retrievedfromhttp://www.wri.org/sites/default/files/wetting-drying-reducing-greenhouse-gas-emissions-saving-water-rice-production.pdf

Ahman, M., Lechtenbohmer, S., Nilsson, L. J., & Schneider, C. (2016). Decarbonising the EnergyIntensiveBasicMaterialsIndustrythroughElectrification-ImplicationsforFutureEUElectricityDemand.Energy,115(3),1623–1631.https://doi.org/10.1016/j.energy.2016.07.110

Akerman,J.(2005).SustainableAirTransport-OnTrackin2050.TransportationResearchD:TransportandtheEnvironment,10(2),111–126.

Alcock,I.(2017).“Green”ontheGroundbutnotintheAir:Pro-environmentalAttitudesareRelatedtoHouseholdBehavioursbutnotDiscretionaryAirTravel.GlobalEnvironmentalChange,42,136–147.

Andersen,S.O.(2015).LessonsfromtheStratosphericOzoneLayerProtectionforClimate.JournalofEnvironmental Studies and Sciences, 5(2), 143–162. https://doi.org/doi:10.1007/s13412-014-0213-9.

ArabellaAdvisors.(2016).TheGlobalFossilFuelDivestmentandCleanEnergyInvestmentMovement.No place: Arabella Advisors. Retrieved from https://www.arabellaadvisors.com/wp-content/uploads/2016/12/Global_Divestment_Report_2016.pdf

Arbib, J.,&Seba,T. (2017).RethinkingTransportation2020-2030.TheDisruptionofTransportationandtheCollapseoftheInternal-CombustionVehicleandOilIndustries.SanFrancisco:RethinkX.Retrievedfromhttps://www.rethinkx.com/transportation

Arndt, W.-H., Bei, X., Günter, E., Fahl, U., Jain, A., Lah, O., … Tomaschek, J. (2014). Mobility andTransportationConceptsforSustainableTransportationinFutureMegacities.InW.-H.Arndt(Ed.),MobilityandTransportation:ConceptsforSustainableTransportinFutureMegacities(pp.108–122).Berlin:jovisVerlagGmbH.

Asmelash, H. B. (2017). FallingOil Prices and Sustainable Energy Transition towards aMultilateralAgreementonFossil-FuelSubsidies.InD.Arent,C.Arndt,M.Miller,F.Tarp,&O.Zinaman(Eds.),PoliticalEconomyofCleanEnergyTransitions(pp.349–367).Oxford:OxfordUniversityPress.

ATAG.(2014).AviationBenefitsBeyondBorders.Geneva:AirTransportActionGroup.Retrievedfromhttps://aviationbenefits.org/media/26786/ATAG__AviationBenefits2014_FULL_LowRes.pdf

AXA.(n.d.).AXAGroupPolicyonInvestmentsinCoalMiningandCoal-basedEnergy.NoPlace:AXAGroup. Retrieved from https://cdn.axa.com/www-axa-com%2Fab00881a-160f-434f-b76d-ef46d1b85843_axa_coal_policy_b.pdf

Azzara,A.,Minjares,R.,&Rutherford,D. (2015).NeedsandOpportunities toReduceBlackCarbonEmissions from Maritime Shipping (No. 2015–2). Washington DC. Retrieved from

108

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

http://www.theicct.org/sites/default/files/publications/ICCT_black-carbon-maritime-shipping_20150324.pdf

Bailey, K. (2017). How the Waste Industry Can Lead on Climate Change. Retrieved fromhttp://www.waste360.com/emissions/how-waste-industry-can-lead-climate-change

Bakker,S.J.A.,vanAsselt,H.,Gupta,J.,Haug,C.,&Saidi,M.A.R.(2009).DifferentiationintheCDM:OptionsandImpacts.Amsterdam:EnergyResearchCentreoftheNetherlands,VriijeUniversiteitAmsterdam.Retrievedfromhttp://www.mnp.nl/bibliotheek/rapporten/500102023.pdf

Barrett,S.(2011).WhyCooperate?:TheIncentivetoSupplyGlobalPublicGoods.WhyCooperate?:TheIncentive to Supply Global Public Goods. New York: Oxford University Press.https://doi.org/10.1093/acprof:oso/9780199211890.001.0001

Bast,E.,Doukas,A.,Pickard,S.,vandeBurg,L.,&Whitley,S.(2015).Emptypromises:G20subsidiestooil,gasandcoalproduction.ODI&OilChangeInternational.London,WashingtonDC.Retrievedfromhttps://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9957.pdf

Behrens,A.,Rizos,V.,&Tuokko,K.(2017).TheCircularEconomy-AReviewofDefinitions,Processesand Impacts. Brussels: Centre for European Policy Studies. Retrieved fromhttps://www.ceps.eu/system/files/RR2017-08_CircularEconomy.pdf

Bengtsson,S.,Fridell,E.,&Andersson,K.(2012).EnvironmentalAssessmentofTwoPathwaysTowardsthe Use of Biofuels in Shipping. Energy Policy, 44, 451–463.https://doi.org/10.1016/J.ENPOL.2012.02.030

Bennett,S.,&Heidug,W.(2014).CCSforTrade-exposedSectors:AnEvaluationofIncentivePolicies.EnergyProcedia,63,6887–6902.https://doi.org/10.1016/J.EGYPRO.2014.11.723

Bergema,R.,deJong,S.,Kraak,J.,Usanov,A.,&vanderGaast,M.(2016).ACircularEconomyandDeveloping Countries: A Data Analysis of the Impact of a Circular Economy on Resource-Dependent Developing Nations. Issue Brief 3. The Hague: Centre of Expertise on Resources.Retrievedfromhttp://hcss.nl/sites/default/files/files/reports/CEO_TheCircularEconomy.pdf

Biermann,F.,Pattberg,P.,VanAsselt,H.,&Zelli,F.(2009).TheFragmentationofGlobalGovernanceArchitectures:AFrameworkforAnalysis.GlobalEnvironmentalPolitics,9(4),14–40.Retrievedfromhttp://muse.jhu.edu/journals/gep/summary/v009/9.4.biermann.html

bigEE. (2013a). Appliances Guide - Residential Appliances. Retrieved fromhttp://www.bigee.net/en/appliances/guide/residential/group/2/

bigEE.(2013b).WhyPolicyNeedstoAssistBuildingandApplianceMarketstoBecomeEnergy-Efficient.Wuppertal: Wuppertal Institute for Climate, Environment and Energy. Retrieved fromhttp://www.bigee.net/media/filer_public/2013/11/28/bigee_txt_0005_pg_why_policy_is_needed.pdf

BlancoG.,Gerlagh,R.,Suh,S.,Barrett,J.,Coninck,H.C.de,Morejon,C.F.D.,…P.Zhou.(2014).Drivers,TrendsandMitigation.InR.Edenhofer,O.,Pichs-Madruga,E.F.Y.Sokona,S.Kadner,K.Seyboth,A.Adler,…J.C.Minx(Eds.),ClimateChange2014:MitigationofClimateChange.ContributionofWorkingGroup III to the Fifth Assessment Report of the Intergovernmental Panel on ClimateChange.Cambridge/NewYork:CambridgeUniversityPres.

Boasson,E.,&Dupont,C.(2015).Buildings:GoodIntentionsUnfulfilled.InC.Dupont&S.Oberthur(Eds.),DecarbonizationoftheEU:InternalPoliciesandExternalStrategies(pp.137–158).London:PalgraveMacmillan.https://doi.org/DOIhttps://doi.org/10.1057/9781137406835_7

Bodansky,D.(2010).TheArtandCraftofInternationalEnvironmentalLaw.Cambridge,MA/London:HarvardUniversityPress.

Bodansky,D.(2012).TheDurbanPlatform:IssuesandOptionsfora2015Agreement.Arlington,VA:Center for Climate and Energy Solutions. Retrieved fromhttps://www.c2es.org/docUploads/durban-platform-issues-and-options.pdf

109

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Bodansky,D. (2017). TheParisClimateChangeAgreement:ANewHope?TheAmerican JournalofInternationalLaw,110(2),288–319.https://doi.org/10.5305/amerjintelaw.110.2.0288

Bodnar,P.,Ott,C.,Thwaites,J.,DeMarez,L.,&Kretschmer,B.(2017).NetClimateFinance:ReconcilingtheCleanandDirtySidesoftheFinanceLedger.NoPlace:RockyMountainInstitute.Retrievedfrom https://d231jw5ce53gcq.cloudfront.net/wp-content/uploads/2017/07/RMI_Net_Climate_Finance_Discussion_Paper_2017-1.pdf

Borrás,S.,&Edler,J.(Eds.).(2014).TheGovernanceofSocio-TechnicalSystems:ExplainingChange(Eu-SPRI Fo). Cheltenham/Northampton, MA: Edward Elgar Publishing. Retrieved fromhttp://www.e-elgar.com/shop/the-governance-of-socio-technical-systems

Bourguignon, D. (2016). Closing the Loop - New Circular Economy Package. Brussels: EuropeanParliament/European Parliamentary Research Service. Retrieved fromhttp://www.europarl.europa.eu/RegData/etudes/BRIE/2016/573899/EPRS_BRI(2016)573899_EN.pdf

Bows-Larkin,A.(2015).AllAdrift:Aviation,Shipping,andClimateChangePolicy.ClimatePolicy,15(6),681–702.https://doi.org/10.1080/14693062.2014.965125

Bradford, A. (2015). Deforestation: Facts, Causes and Effects. Retrieved fromhttp://www.livescience.com/27692-deforestation.html

Brown,G.(2017,April22).BritishPowerGenerationAchievesFirstEverCoal-FreeDay.TheGuardian.Retrieved from https://www.theguardian.com/environment/2017/apr/21/britain-set-for-first-coal-free-day-since-the-industrial-revolution

Buchner, B., Falconer, A., Hervé-Mignucci, M., & Trabacchi, C. (2011). The Landscape of ClimateFinance. Venice. Retrieved from https://climatepolicyinitiative.org/wp-content/uploads/2011/10/The-Landscape-of-Climate-Finance-120120.pdf

Buchner,B.,Stadelmann,M.,Wilkinson,J.,Mazza,F.,Rosenberg,A.,&Abramskiehn,D.(2016).GlobalClimate Finance: An Updated View on 2013 & 2014 Flows. No Place. Retrieved fromhttps://climatepolicyinitiative.org/wp-content/uploads/2014/11/The-Global-Landscape-of-Climate-Finance-2014.pdf

Bulkeley,H.,Andonova,L.B.,Betsill,M.M.,Compagnon,D.,Hale,T.,Hoffmann,M.J.,…Vandeveer,S.D.(2014).TransnationalClimateChangeGovernance.NewYork:CambridgeUniversityPress.

Bulkeley, H., & Newell, P. (2015). Governing Climate Change (2nd ed.). London and New York:Routledge.

Bulmer,J.(2012).ComplianceRegimesinMultilateralEnvironmentalAgreements.InJ.Brunnée,M.Doelle,&L.Rajamani(Eds.),PromotingComplianceinanEvolvingClimateRegime(pp.55–73).Cambridge:CambridgeUniversityPress.

Bulte,E.,Joenie,M.,&Jansen,H.(2000).IsThereTooMuchorTooLittleNaturalForestintheAtlanticZoneofCostaRica?CanadianJournalofForestResearch,30(3),495–506.

Burck,J.,Höhne,N.,Hagemann,M.,Gonzales-Zuñiga,S.,Leipold,G.,Marten,F.,…Nakhooda,S.(2017).BrowntoGreen:AssessingTheG20Transitiontoalow-carboneconomy.Berlin.Retrievedfromhttp://www.climate-transparency.org/wp-content/uploads/2016/08/Brown-to-Green-Assessing-the-G20-transition-to-a-low-carbon-economy.pdf

Butler, R. (2012a). Human Threats to Rainforests - Economic Restructuring. Retrieved fromhttp://rainforests.mongabay.com/0805.htm

Butler, R. (2012b). Population, Poverty, and Deforestation. Retrieved fromhttp://rainforests.mongabay.com/0816.htm

Butler, R. (2017). Calculating Deforestation in the Amazon. Retrieved fromhttp://rainforests.mongabay.com/amazon/deforestation_calculations.html

110

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Caldecott,B.,Sartor,O.,&Spencer,T.(2017).LessonsfromPrevious“CoalTransitions”–High-LevelSummaryforDecision-Makers.Partof“CoalTransitions:ResearchandDialogueontheFutureofCoal” Project. Paris, London. Retrieved fromhttps://coaltransitions.files.wordpress.com/2016/09/coal_synthesisreport_v04.pdf

Cames,M.,Graichen,J.,Siemons,A.,&Cook,V.(2015).EmissionReductionTargetsforInternationalAviationandShipping.Brussels:EuropeanParliamentDirectorateGeneral for InternalPoliciesPolicyDepartment.https://doi.org/IP/A/ENVI/2015-11

CarbonPricingLeadershipCoalition.(2017).ReportoftheHigh-LevelCommissiononCarbonPrices.NoPlace. Retrieved fromhttps://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/5949402936e5d3af64b94bab/1497972781902/ENGLISH+EX+SUM+CarbonPricing.pdf

Carbon Tracker. (2011).Unburnable Carbon – Are theworld’s financialmarkets carrying a carbonbubble? No Place. Retrieved from https://www.carbontracker.org/wp-content/uploads/2014/09/Unburnable-Carbon-Full-rev2-1.pdf

Cardona,D.,&Avendano,T.(2010).ExtractiveIndustriesandREDD-SinningThenPrayingEvenstheScoreorHowtoLegitimisePillagingandDestruction.InJ.Cabello&T.Gilbertson(Eds.),NoREDD!A Reader (pp. 60–68). Cancun: Carbon TradeWatch. Retrieved fromhttp://no-redd.com/wp-content/uploads/2015/01/REDDreaderEN.pdf

CDIAC.(2013a).Fossil-FuelCO2EmissionsbyNation.RoaneCounty,TN:CarbonDioxideInformationAnalysisCentre,USDepartmentofEnergyOfficeofScience&OakRidgeNationalLaboratory.Retrievedfromhttp://cdiac.ornl.gov/trends/emis/tre_coun.html

CDIAC. (2013b). Kyoto-Related Fossil-Fuel CO2 Emission Totals. Roane County, TN: CarbonDioxideInformationAnalysisCentre,USDepartmentofEnergyOfficeofScience&OakRidgeNationalLaboratory.Retrievedfromhttp://cdiac.ornl.gov/trends/emis/annex.html

CDP. (2017,May22). Press release:Over280global investors (managingmore than$17 trillion inassets)urgeG7tostandbyParisAgreementanddriveitsswiftimplementation.CDP.Retrievedfrom https://www.cdp.net/en/articles/media/press-release-more-than-200-global-investors-managing-over-15-trillion-in-assets-urge-g7-leaders-to-stand-by-paris-agreement-and-drive-its-swift-implementation

CEFIC. (2013). European chemistry for growth: Unlocking a competitive, low carbon and energyefficientfuture.NoPlace:EuropeanChemicalsIndustryCouncilCEFIC.

Ceres.(2014).InvestingintheCleanTrillion:ClosingtheCleanEnergyInvestmentGap.Ceres.Boston.Retrieved from https://www.ceres.org/sites/default/files/reports/2017-03/Ceres_CleanTrillion_Report_012114.pdf

Chapman,L.(2007).TransportandClimateChange:AReview.JournalofTransportGeography,15(5),354–367.https://doi.org/10.1016/j.jtrangeo.2006.11.008

Chayes, A., & Chayes, A. (1993). On Compliance. International Organization, 47(2), 175–205.https://doi.org/10.1017/S0020818300027910

Cherian,A.(2015).EnergyandGlobalClimateChange:BridgingtheSustainableDevelopmentDivide.WestSussex:JohnWiley&Sons.

Chrisafis,A.,&Vaughan,A.(2017,July6).Francetobansalesofpetrolanddieselcarsby2040.TheGuardian. Retrieved from https://www.theguardian.com/business/2017/jul/06/france-ban-petrol-diesel-cars-2040-emmanuel-macron-volvo

ClimateBondsInitiativeMarketsTeam.(2016).GreenBondsHighlights2016.NoPlace:ClimateBondsInitiative. Retrieved from https://www.climatebonds.net/files/files/2016 GB MarketRoundup.pdf

Coady,D.,Parry,I.,Sears,L.,&Shang,B.(2015).HowLargeAreGlobalEnergySubsidies?(IMFWorking

111

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Paper No. WP/15/105). Washington, DC. Retrieved fromhttps://www.imf.org/external/pubs/ft/wp/2015/wp15105.pdf

Conserve Energy Future. (n.d.). What is Waste Management and Methods of Waste Disposal?Retrieved from http://www.conserve-energy-future.com/waste-management-and-waste-disposal-methods.php

Consultancy.uk. (2015). Global chemicals market to grow to 5.1 trillion by 2020. Retrieved fromhttp://www.consultancy.uk/news/2745/global-chemicals-market-to-grow-to-51-trillion-by-2020

Cramton,P.,MacKay,D.J.,Ockenfels,A.,&Stoft,S.(Eds.).(2017).GlobalCarbonPricing:ThePathtoClimateCooperation.Cambridge,MA/London:TheMITPress.

Cullen, J. (2010).WellMet2050’s Findings and Recommendations on Reusing Steel and AluminiumWithoutMelting(SteelandAluminiumFacts).

Darby, M. (2016). Offshore Carbon: Why a Climate Deal for Carbon is Sinking. Retrieved fromhttp://www.climatechangenews.com/2016/07/15/offshore-carbon-why-a-climate-deal-for-shipping-is-sinking/

DeBúrca,G.,Keohane,R.O.,&Sabel,C.(2014).GlobalExperimentalistGovernance.BritishJournalofPoliticalScience,44(3),477–486.https://doi.org/10.1017/S0007123414000076

deConinck,H.,&Bäckstrand,K.(2011).AnInternationalRelationsperspectiveontheglobalpoliticsofcarbondioxidecaptureandstorage.GlobalEnvironmentalChange,21(2),368–378.Retrievedfromhttps://doi.org/10.1016/j.gloenvcha.2011.03.006

Dean,B.,Dulac,J.,Petrichenko,K.,&Graham,P.(2016).GlobalStatusReport2016:TowardsZero-Emission Efficient and Resilient Buildings. Nairobi: United Nations Environment Programme.Retrievedfromhttps://wedocs.unep.org/rest/bitstreams/45611/retrieve

DeFries,R.,Achard,F.,Brown,S.,Herold,M.,Murdivarso,D.,Schlamadinger,B.,&DeSouza,C.(2007).EarthObservationsforEstimatingGreenhouseGasEmissionsfromDeforestationinDevelopingCountries.EnvironmentalScience&Policy,10(4),385–394.

Denjean,B.,Su,T.,Attwood,C.,Bridle,R.,Duan,H.,&Gerasimchuk,I.(2016).SubsidiestoCoalPowerGenerationinChina.Winnipeg:International InstituteforSustainableDevelopment.Retrievedfrom https://www.iisd.org/sites/default/files/publications/subsidies-coal-power-generation-china.pdf

Dipaola, A. (2016). Cheapest Solar on Record Offered as Abu Dhabi Expands Renewables.Bloomberg.com. Bloomberg. Retrieved from ttps://www.bloomberg.com/news/articles/2016-09-19/cheapest-solar-on-record-said-to-be-offered-for-abu-dhabi

Doukas, A., DeAngelis, K., & Ghio, N. (2017). Talk is Cheap: HowG20 Governments are FinancingClimateDisaster.NoPlace:OilChangeInternational,FriendsoftheEarthU.S.,theSierraClubandWWF European Policy Office. Retrieved fromhttp://priceofoil.org/content/uploads/2017/07/talk_is_cheap_G20_report_July2017.pdf

Duncan Brack, Andersen, S. O., & Sun, X. (2016).National Hydrofluorocarbon (Hfc) Inventories: Asummary of the key findings from the first tranche of studies. No Place. Retrieved fromhttp://www.ccacoalition.org/en/resources/national-hydrofluorocarbon-hfc-inventories-summary-key-findings-first-tranche-studies

Dupont,C.(2016).ClimatePolicyIntegrationintoEUEnergyPolicy:ProgressandProspects.London:Routledge.

Dupont,C.,&Oberthür,S.(Eds.).(2015).DecarbonizationintheEuropeanUnion:InternalPoliciesandExternalStrategies.Houndmills:PalgraveMacMillan.

Ecofys. (2013). World GHG Emissions Flow Chart 2010. Retrieved from

112

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

https://www.ecofys.com/files/files/asn-ecofys-2013-world-ghg-emissions-flow-chart-2010.pdf

Ecofys & Circle Economy. (2016). Implementing Circular Economy Globally Makes Paris TargetsAchievable. No Place: Ecofys & Circle Economy. Retrieved fromhttp://www.ecofys.com/files/files/circle-economy-ecofys-2016-circular-economy-white-paper.pdf

Edenhofer, O. (2015). King Coal and the Queen of Subsidies. Science, 349(6254), 1286–1287.https://doi.org/10.1126/science.aad0674

Edenhofer,O.,Flachsland,C.,Jakob,M.,&Lessmann,K.(2013).TheAtmosphereasaGlobalCommons– Challenges for International Cooperation and Governance (The Harvard Project on ClimateAgreements, Discussion Paper No. MCC Working paper 1-2013). Berlin. Retrieved fromhttps://www.mcc-berlin.net/fileadmin/data/pdf/Final_revised_Edenhofer_et_al_The_atmosphere_as_a_Global_Commons_2013.pdf

Ehrhardt-Martinez,K.(2003).Demographics,Democracy,Development,DisparityandDeforestation:ACrossnationalAssessmentoftheSocialCausesofDeforestation.PaperpresentedattheannualmeetingoftheAmericanSociologicalAssociation,AtlantaHiltonHotel,Atlanta,GA,Aug16,2003.Retrievedfromhttp://www.allacademic.com/meta/p107488_index.html

EIA.(2017).InternationalEnergyStatistics.Retrievedfromhttps://www.eia.gov/beta/international/

EllenMacArthurFoundation.(2013).TowardstheCircularEconomy1and2:Economicandbusinessrationale foranacceleratedtransition.NoPlace:EllenMacArthurFoundation.Retrievedfromhttps://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf

EllenMacArthurFoundation.(2014).TowardstheCircularEconomy,AcceleratingtheScale-upAcrossGlobal Supply Chains (No. Volume 3). No Place: Ellen McArthur Foundation. Retrieved fromhttps://www.ellenmacarthurfoundation.org/assets/downloads/publications/Towards-the-circular-economy-volume-3.pdf

Ellen MacArthur Foundation. (2015). Circular Economy Overview. Retrieved fromhttps://www.ellenmacarthurfoundation.org/circular-economy/overview/concept

EllenMacArthurFoundation.(2016).TheNewPlasticsEconomy–RethinkingtheFutureofPlastics.NoPlace:EllenMacArthurFoundation.Retrievedfromhttps://tinyurl.com/msp6fb4

EPA. (2015).AdvancingSustainableMaterialsManagement:FactsandFigures2013.EPA.NoPlace:United States Environmental Protection Agency (EPA). Retrieved fromhttps://www.epa.gov/sites/production/files/2015-09/documents/2013_advncng_smm_rpt.pdf

EuropeanCommission.(2017a).FinanceforInnovation,TowardstheETSInnovationFund.Brussels:European Commission. Retrieved fromhttps://ec.europa.eu/clima/sites/clima/files/events/docs/0115/20170612_report_en.pdf

EuropeanCommission.(2017b).ReportfromtheCommissiontotheEuropeanParliament,theCouncil,the European Economic and Social Committee and the Committee of the Regions on theimplementation of the Circular Economy Action Plan. Brussels: European Commission.https://doi.org/COM(2017)33final

Eurostat. (2016). Municipal Waste Generation and Treatment, by Type of Treatment Method.Retrieved fromhttp://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tsdpc240&language=en

Ewing,J.(2017,July5).Volvo,BettingonElectric,MovestoPhaseOutConventionalEngines.TheNewYorkTimes.NoPlace.Retrievedfromhttps://www.nytimes.com/2017/07/05/business/energy-environment/volvo-hybrid-electric-car.html

113

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

EY. (2016).Climate change:The investmentperspective.NoPlace:EYFinancialsClimateChange&Sustainability.

Falkner, R. (2016). The Paris Agreement and the new logic of international climate politics.InternationalAffairs,92(5),1107–1125.https://doi.org/10.1111/1468-2346.12708

FAO.(2002).WorldAgriculturetowards2015/2030:AnFAOPerspective.London:Earthscan.Retrievedfromhttp://www.fao.org/3/a-y4252e.pdf

FAO.(2010).GlobalForestResourcesAssessment2010.Rome:FoodandAgricultureOrganizationoftheUnitedNations.Retrievedfromhttp://www.fao.org/docrep/013/i1757e/i1757e.pdf

FAO. (2014). Agriculture’s Greenhouse Gas Emissions on the Rise. Retrieved fromhttp://www.fao.org/news/story/en/item/216137/icode/

FAO.(2015).TheGlobalForestResourcesAssessment2015.Rome:FoodandAgricultureOrganizationoftheUnitedNations.Retrievedfromhttp://www.fao.org/3/a-i4808e.pdf

FAO. (2016). FAO, Forests and Climate Change:Working with countries to mitigate and adapt toclimate change through sustainable forest management. Rome. Retrieved fromhttp://www.fao.org/docrep/017/i2906e/i2906e00.pdf

FAO. (2017). Global Livestock Environmental Assessment Model - Results. Retrieved fromhttp://www.fao.org/gleam/results/en/

FAOSTAT. (2014). Land Use Total Data. Retrieved September 25, 2017, fromhttp://www.fao.org/faostat/en/#data/GL

Feblowitz,J.,&Levine,S.(2015).BusinessStrategy:GlobalSmartBuildingTechnologySpending2015-2019 Forecast. IDC Energy Insights: Smart Building Strategies. No Place: International DataCorporation(IDC).Retrievedfromhttps://www.idc.com/getdoc.jsp?containerId=EI254932

Ferronato,N.,D’avino,C.,Ragazzi,M.,Torretta,V.,DeFeo,G.,&Rada,E.C.(2017).SocialSurveysabout Solid Waste Management within Higher Education Institutes: A Comparison. MDPISustainability,9(3),1–17.https://doi.org/10.3390/su9030391

Florin, N.,&Madden, B. (2017). Here’sWhyWe Should Be TurningOur Rubbish Into Fuel.WorldEconomic Forum. No Place: World Economic Forum. Retrieved fromhttp://amp.weforum.org/agenda/2017/05/heres-why-we-should-be-turning-our-rubbish-into-fuel?utm_content=buffer602b5&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer

FrankfurtSchool/UNEP/Bloomberg.(2016).GlobalTrendsinRenewableEnergyInvestment.FrankfurtamMain:FrankfurtSchool-UNEPCollaboratingCentreforClimate&SustainableEnergyFinance,UNEP’sDivisionofTechnology,IndustryandEconomic(DTIE),BloombergNewEnergyFinance.Retrieved from http://fs-unep-centre.org/sites/default/files/publications/globaltrendsinrenewableenergyinvestment2016lowres_0.pdf

Freeman,C.,&Soete,L.(1997).Theeconomicsofindustrialinnovation(3rded.).Cambridge,MA:MITPress.

FriendsoftheEarth.(2007).FoodandClimateChange.NoPlace:FriendsoftheEarth.Retrievedfromhttps://www.foe.co.uk/sites/default/files/downloads/food_climate_change.pdf

Frisari,G.,Hervé-Mignucci,M.,Micale,V.,&Mazza,F. (2013).RiskGaps:AMapofRiskMitigationInstruments for Clean Investments. No Place. Retrieved fromhttp://climatepolicyinitiative.org/wp-content/uploads/2013/01/Risk-Gaps-A-Map-of-Risk-Mitigation-Instruments-for-Clean-Investments.pdf

G20.(2009).Leaders’Statement.InPittsburghSummit.Pittsburgh:G20.

G7.(2015).Leaders’Declaration.G7Summit7-8June.SchlossElmau:G7.

114

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Gaan,N.(2008).ClimateChangeandInternationalPolitics(1sted.).NewDelhi:Kalpaz.

Gaede, J.,&Meadowcroft, J. (2016). CarbonCapture and StorageDemonstration and Low-CarbonEnergy Transitions: Explaining Limited Progress. In T. Van de Graaf, Benjamin K. Sovacool,Arunabha Ghosh, Florian Kern, & Michael T. Klare (Eds.), The Palgrave Handbook of theInternational Political Economy of Energy (pp. 319–340). London: Palgrave Macmillan.https://doi.org/https://doi.org/10.1057/978-1-137-55631-8_13

GEA,&IIASA.(2012).EnergyEnd-Use:Buildings.InGlobalEnergyAssessment-TowardaSustainableFuture(pp.649–760).Cambridge,Laxenburg:CambridgeUniversityPress,InternationalInstituteforAppliedSystemsAnalysis.Retrievedfromhttp://www.globalenergyassessment.org/

Gehring, T. (1994). Dynamic International Regimes: Institutions for International EnvironmentalGovernance.Frankfurt/M.,Berlin,Bern,NewYork,Paris,Wien:PeterLang.

Gehring,T.(2007).Treaty-MakingandTreatyEvolution.InDanielBodansky,JuttaBrunnée,&E.Hey(Eds.), The Oxford Handbook of International Environmental Law (pp. 469–497). New York:OxfordUniversityPress.

Gehring, T., & Faude, B. (2014). A theory of emerging order within institutional complexes: Howcompetition among regulatory international institutions leads to institutional adaptation anddivision of labor. Review of International Organizations, 9(4), 471–498.https://doi.org/10.1007/s11558-014-9197-1

Gencsu, I., & Hino, M. (2015). Raising Ambition to Reduce International Aviation and MaritimeEmissions. London, Washington, DC: New Climate Economy. Retrieved fromhttp://newclimateeconomy.report/misc/working-papers

Gerasimchuk, I.,Bassi,A.,Ordonez,C.,Doukas,A.,Merrill,L.,&Whitley,S. (2017).ZombieEnergy:ClimateBenefitsofEndingSubsidiestoFossilFuelProduction.Winnipeg:InternationalInstituteforSustainableDevelopment.

Gilbert,A.,Sovacool,B.K.,Johnstone,P.,&Stirling,A.(2017).CostOverrunsandFinancialRiskintheConstruction of Nuclear Power Reactors: A Critical Appraisal. Energy Policy, 102, 644–649.https://doi.org/10.1016/j.enpol.2016.04.001

Gillingham, K., Rapson,D.,&Wagner,G. (2016). The Rebound Effect and Energy Efficiency Policy.Review of Environmental Economics and Policy, 10(1), 68–88.https://doi.org/10.1093/reep/rev017

GlobalAllianceforBuildingsandConstruction.(2016).Towards,LowCarbonandResilientReal-Estate.No Place: Global Alliance for Buildings and Construction. Retrieved fromhttps://www.climatechance2016.com/uploads/media/57dbaad92eee8.pdf

Global Green Growth Institute. (2016). Mind the Gap: Bridging the Climate Financing Gap withInnovative Financial Mechanisms. No Place: Global Green Growth Institute. Retrieved fromhttp://gggi.org/wp-content/uploads/2017/03/Mind-the-Gap_web.pdf

GlobalMethaneInitiative.(n.d.).GlobalMethaneEmissionsandMitigationOpportunities.Retrievedfromhttp://www.globalmethane.org/documents/analysis_fs_en.pdf

Goncalves, V. K. (2017). Climate Change and International Civil Aviation Negotiations. ContextoInternacional, 39(2), 443–458. Retrieved from http://dx.doi.org/10.1590/S0102-8529.2017390200012

Gota, S., Huizenga, C., Peet, K., & Kaar, G. (2015). Intended Nationally-Determined Contributions(INDCs)OfferOpportunities forAmbitiousActiononTransportandClimateChange.Bangkok:Partnership on Sustainable Low Carbon Transport. Retrieved fromhttp://slocat.net/sites/default/files/indc_report_-final_version_-_2015-11-25_-_unformatted-2.pdf

Greenpeace.(2016).HFOs:thenewgenerationofF-gases,GreenpeacePositionPaper.Retrievedfrom

115

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

http://www.greenpeace.org/international/Global/international/documents/climate/HFOs-the-new-generation-of-f-gases.pdf%0A

Grin,J.,Schot,J.,&Rotmans,J.(2010).TransitionstoSustainableDevelopment.NewDirectionsintheStudyofLongtermtransformativechange.NewYork/London:Routledge.

Gschrey,B.,Schwarz,W.,Elsner,C.,&Engelhardt,R.(2011).HighincreaseofglobalF-gasemissionsuntil 2050. Greenhouse Gas Measurement and Management, 1(2), 85–92.https://doi.org/10.1080/20430779.2011.579352

Gudmundsson, S. V., & Anger, A. (2012). Global Carbon Dioxide Emissions Scenarios for AviationDerived from IPCC Storylines: A Meta-analysis. Transportation Research D: Transport andEnvironment,17(1),61–65.

Guneralp,B., Zhou,Y.,Urge-Vorsatz,D.,Gupta,M., Yu, S., Patel,P. L.,…Seto,K.C. (2017).GlobalScenariosofUrbanDensityandItsImpactsonBuildingEnergyUseThrough2050,114(34),8945–8950.https://doi.org/10.1073/pnas.1606035114

Gupta, A., & van Asselt, H. (2017). Transparency in multilateral climate politics: Furthering (ordistracting from) accountability? Regulation & Governance, (early view).https://doi.org/10.1111/rego.12159

Gütschow,J.,Jeffery,L.,Gieseke,R.,&Gebel,R.(2017).ThePRIMAP-histnationalhistoricalemissionstime.GFZDataServices.,seriesv1.Retrievedfromhttps://doi.org/10.5880/PIK.2017.001

Haas,E.B.(1990).WhenKnowledgeIsPower:ThreeModelsofChangeinInternationalOrganizations.Berkeley:UniversityofCaliforniaPress.

Haas,W.,Krausmann,F.,Wiedenhofer,D.,&Heinz,M.(2015).HowCircularistheGlobalEconomy?AnAssessmentofMaterialFlows,WasteProduction,andRecyclingintheEuropeanUnionandthe World in 2005. Journal of Industrial Ecology, 19(5), 765–777. Retrieved fromhttp://onlinelibrary.wiley.com/doi/10.1111/jiec.12244/full

Hasenclever, A.,Mayer, P., & Rittberger, V. (1997). Theories of International Regimes. Cambridge:CambridgeUniversityPress.

Havlik,P.,Valin,H.,Herrero,M.,Obersteiner,M.,Schmid,E.,Rufino,M.C.,…Notenbaert,A.(2014).ClimateChangeMitigationThroughLivestockSystemTransitions.Proceedingsof theNationalAcademyofSciences,111(10),3709–3714.https://doi.org/10.1073/pnas.1308044111

Hawken, P. (2017). Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse GlobalWarming. New York: Penguin Books. Retrieved fromhttp://www.drawdown.org/solutions/energy/waste-energy

Hermwille,L.(2017).EnRoutetoaJustGlobalEnergyTransformation?–TheFormativePoweroftheSDGs and the Paris Agreement. Berlin: Friedrich Ebert Stiftung. Retrieved fromhttp://library.fes.de/pdf-files/iez/13453.pdf

Hermwille,L.,Obergassel,W.,Ott,H.E.,&Beuermann,C.(2017).UNFCCCbeforeandafterParis–What’sNecessaryforanEffectiveClimateRegime?ClimatePolicy,17(2),150–170.

Herrero,M.,Henderson,B.,Havlik,P.,Thornton,P.K.,Conant,R.T.,Smith,P.,…Stehfest,E.(2016).GreenhouseGasMitigationPotentialsintheLivestockSector.NatureClimateChange,6(5),452–461.

Hirsch,T.(2015).Learningfromthe&quot;Energiewende&quot;-WhatDevelopingCountriesExpectfromGermany(Study).Berlin:Friedrich-Ebert-Stiftung.

Holmes, I. (2017).Pathwaysto1.5/2°C-CompatibleOil: IsManagedDeclinetheOnlyWay?London:E3G. Retrieved from https://www.environmental-finance.com/assets/files/research/E3G_Briefing_Future_pathways_2degC_oil_FEB2017.pdf

Holmes, I., & Orozco, D. (2017). What Happened to the International Oil Companies? Simulating

116

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

the1.5/2°CTransition.London:E3G.

Hoornweg,D.,&Bhada-Tata,P.(2012).WhataWaste-AReviewofSolidWasteManagement.WorldBank Urban Development Series. Washington DC: World Bank. Retrieved fromhttp://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf

Hristov,A.N.,Oh,J.,Giallongo,F.,Frederick,T.W.,Harper,M.T.,Weeks,H.L.,…Duval,S.(2015).AnInhibitorPersistentlyDecreasedEntericMethaneEmissionfromDairyCowsWithNoNegativeEffectonMilkProduction.Proceedingsof theNationalAcademyofSciences,112(34),10663–10668.https://doi.org/10.1073/pnas.1515515112

Hu, H., & Xiong, L. (2014). Genetic Engineering and Breeding of Drought-Resistant Crops. AnnualReview of Plant Biology, 65(1), 715–741. https://doi.org/10.1146/annurev-arplant-050213-040000

Huang,C.,Busch,C.,He,D.,&Harvey,H.(2015).12GreenGuidelines.CDBC’sGreenandSmartUrbanDevelopment Guidelines. No Place: China Development Bank Capital. Retrieved fromhttp://energyinnovation.org/wp-content/uploads/2015/12/12-Green-Guidelines.pdf

IAEA.(2017).PRIS-PowerReactorInformationSystem.Retrievedfromhttps://www.iaea.org/pris/

ICAO. (2017). ICAO Council Adopts New CO2 Emissions Standard for Aircraft. Retrieved fromhttps://www.icao.int/Newsroom/Pages/ICAO-Council-adopts-new-CO2-emissions-standard-for-aircraft.aspx

IEA. (2011).TechnologyRoadmapEnergy-efficientBuildings:HeatingandCoolingEquipment.Paris:International Energy Agency. Retrieved fromhttps://www.iea.org/publications/freepublications/publication/buildings_roadmap.pdf

IEA.(2012).WorldEnergyOutlook2012.Paris:InternationalEnergyAgency.

IEA. (2013). Transition to Sustainable Buildings: Strategies and Opportunities to 2050. Paris:International Energy Agency. Retrieved fromhttps://www.iea.org/publications/freepublications/publication/Building2013_free.pdf

IEA.(2014a).WorldEnergyInvestmentOutlook.Paris:InternationalEnergyAgency.

IEA.(2014b).WorldEnergyOutlook2014.Paris:InternationalEnergyAgency.

IEA.(2015a).EnergyTechnologyPerspectives2015MobilisingInnovationtoAccelerateClimateAction.Paris:InternationalEnergyAgency.Retrievedfromhttp://www.iea.org/t&c/

IEA. (2015b). WEO 2015 Energy Access Database. Retrieved fromhttp://www.worldenergyoutlook.org/resources/energydevelopment/energyaccessdatabase/

IEA.(2015c).WorldEnergyOutlook2015.Paris:InternationalEnergyAgency.

IEA.(2016a).CO2EmissionsfromFuelCombustion.Paris:InternationalEnergyAgency.Retrievedfromhttp://www.oecd-ilibrary.org/content/serial/22199446

IEA.(2016b).EnergyEfficiencyMarketReport2016.Paris:InternationalEnergyAgency.Retrievedfromhttp://www.oecd-ilibrary.org/content/book/9789264266100-en

IEA.(2016c).EnergyTechnologyPerspectives2016-TowardsSustainableUrbanEnergySystems.Paris:InternationalEnergyAgency.

IEA. (2016d). Natural Gas Information 2016. Paris: International Energy Agency. Retrieved fromhttp://www.oecd-ilibrary.org/content/book/nat_gas-2016-en

IEA.(2016e,November).WorldEnergyOutlook.Paris:InternationalEnergyAgency.

IEA.(2017a).EnergyTechnologyPerspectives.Paris:InternationalEnergyAgency.

IEA. (2017b). Tracking Clean Energy Progress 2017. Retrieved from

117

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

http://www.iea.org/etp/tracking2017/internationalshipping/

IMF.(2011).Market-BasedInstrumentsforInternationalAviationandShippingasaSourceofClimateFinance.Noplace:InternationalMonetaryFundandWorldBank.

IMO.(2014).ThirdIMOGHGStudy2014.London:InternationalMaritimeOrganisation.Retrievedfromhttp://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/ThirdGreenhouseGasStudy/GHG3ExecutiveSummaryandReport.pdf

Incropera, F. P. (2015). Climate Change: A Wicked Problem: Complexity and Uncertainty at theIntersection of Science, Economics, Politics, and Human Behavior. New York: CambridgeUniversityPress,.

InternationalAluminiumInstitute.(2009).GlobalAluminiumRecycling:ACornerstoneofSustainableDevelopment.NoPlace: InternationalAluminiumInstitute.Retrievedfromhttp://www.world-aluminium.org/media/filer_public/2013/01/15/fl0000181.pdf

IPCC.(2005). IPCCSpecialReportonCarbonCaptureandStorage.Cambridge/NewYork:CambridgeUniversityPress.

IPCC.(2007).ClimateChange2007:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange.(B.Metz,O.Davidsond,P.Bosch,R.Dave,&L.Meyer,Eds.).CambridgeandNewYork:CambridgeUniversityPress. Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4_wg3_full_report.pdf

IPCC.(2012).RenewableEnergyintheContextofSustainableDevelopment.InO.Edenhofer,R.Pichs-Madruga,Y.Sokona,K.Seyboth,P.Matschoss,S.Kadner,…C.vonStechow(Eds.),IPCCSpecialReport on Renewable Energy Sources and Climate Change Mitigation (pp. 707–789).Cambridge/New York: Cambridge University Press. Retrieved fromhttp://www.cro3.org/cgi/doi/10.5860/CHOICE.49-6309

IPCC.(2013).SummaryforPolicymakers.InT.F.Stocker,D.Qin,G.K.Plattner,M.Tignor,S.K.Allen,J.Boschung,…P.M.Midgley(Eds.),ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorkingGroup I totheFifthAssessmentReportofthe IntergovernmentalPanelonClimateChange(pp.3–29).Cambridge,NewYork:CambridgeUniversityPress.

IPCC. (2014a). Chapter 7: Energy Systems. InClimate Change 2014:Mitigation of Climate Change.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange(pp.511–598).Cambridge,NewYork:CambridgeUniversityPress.

IPCC. (2014b). Chapter 9: Buildings. In Climate Change 2014: Mitigation of Climate Change.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange(pp.671–738).Cambridge,NewYork:CambridgeUniversityPress.

IPCC.(2014c).ClimateChange2014:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.(O.Edenhofer,R.Pichs-Madruga,Y.Sokona,E.Farahani,S.Kadner,K.Seyboth,…J.C.Minx,Eds.).Cambridge,NewYork:CambridgeUniversityPress.

IPCC.(2014d).SummaryforPolicymakers.InO.Edenhofer,R.Pichs-Madruga,SokonaY.,E.Farahani,S.Kadner,SeybothK.,…J.C.Minx(Eds.),ClimateChange2014:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange(pp.1–30).Cambridge,NewYork:CambridgeUniversityPress.

IPCC/TEAP. (2005).SafeguardingtheOzoneLayerandtheGlobalClimateSystem: IssuesRelatedtoHydrofluorocarbons and Perfluorocarbons. Bonn: UNFCCC/SBSTA. Retrieved fromhttps://www.ipcc.ch/pdf/special-reports/sroc/sroc_full.pdf

IRENA. (2016). The Power to Change: Solar and Wind Cost Reduction Potential to 2025. Bonn:International Renewable Energy Agency. Retrieved from

118

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

http://www.irena.org/DocumentDownloads/Publications/IRENA_Power_to_Change_2016.pdf

IRENA.(2017).StrandedAssetsandRenewables:howtheenergytrabsitionaffectsthevalueofenergyreserves,buildingsandcapictalstock.AbuDhabi:InternationalRenewableEnergyAgency.

Jordan,A.,Benson,D.,Wurzel,R.,&Zito,A.(2012).PolicyInstrumentsinPractice.InJ.S.Dryzek,R.B.Norgaard,&D.Schlosberg(Eds.),TheOxfordHandbookofClimateChangeandSociety.NewYork:OxfordUniversityPress.https://doi.org/10.1093/oxfordhb/9780199566600.003.0036

Jordan,A.J.,Huitema,D.,Hildén,M.,vanAsselt,H.,Rayner,T.J.,Schoenefeld,J.J.,…Boasson,E.L.(2015).Emergenceofpolycentricclimategovernanceanditsfutureprospects.NatureClimateChange,5(11),977–982.https://doi.org/10.1038/nclimate2725

Jordan, A., & Lenschow, A. (2010). Environmental policy integration: a state of the art review.EnvironmentalPolicyandGovernance,20(3),147–158.

Kanie,N.,&Biermann,F.(Eds.).(2017).GoverningthroughGoals:SustainableDevelopmentGoalsasGovernanceInnovation.Cambridge,MA:MITPress.

Kartha,S.(2016).Fossilfuelproductionina2°Cworld:Theequityimplicationsofadiminishingcarbonbudget. Somerville: Stockholm Environment Institute. Retrieved from https://www.sei-international.org/mediamanager/documents/Publications/Climate/SEI-DB-2016-Equity-fossil-fuel-production-rents.pdf

Kechichian,E.,Pantelias,A.,Reeves,A.,Henley,G.,&Liu,J.(2016).Agreenerpathtocompetitiveness :policies for climate action in industries and products. Washington, DC: World Bank Group.Retrievedfromhttp://documents.worldbank.org/curated/en/835691472028683380/A-greener-path-to-competitiveness-policies-for-climate-action-in-industries-and-products

Keohane,R.O.(1989).InternationalInstitutionsandStatePower.London:WestviewPress.

Keohane,R.O.,&Levy,M.A.(Eds.).(1996).InstitutionsforEnvironmentalAid.PitfallsandPromises.Cambridge,MA:MITPress.

Keohane,R.O.,&Victor,D.G.(2011).TheRegimeComplexforClimate.PerspectivesonPolitics,9(1),7–23.https://doi.org/10.1017/S1537592710004068

Keohane,R.O.,&Victor,D.G.(2016).Cooperationanddiscordinglobalclimatepolicy.NatureClimateChange,6(6),570–575.https://doi.org/10.1038/nclimate2937

Khatun,K.(2012).ReformorReversal:ImplicationsoftheCommonAgriculturalPolicy(CAP)onLandUse,LandUseChange,andForestry(LULUCF)inDevelopingCountries.ConservationLetters,5(2),99–106.

Knox,N.(2015).BuildingsandClimateChange.NoPlace:USGreenBuildingsCouncil.Retrievedfromhttps://www.usgbc.org/articles/green-building-and-climate-change

Koplow,D.,&Charles,C.(2010).UntoldBillions:FossilFuelSubsidies,TheirImpactsandthePathtoReform:MappingtheCharacteristicsofProducerSubsidies–AReviewofPilotCountryStudies.Geneva: Global Subsidies Initiative (GSI) of the International Institute for SustainableDevelopment(IISD).Retrievedfromhttp://earthtrack.net/files/uploaded_files/mapping_ffs.pdf

Kummer,D.M.(1992).DeforestationinthePostwarPhilippines.London:UniversityofChicagoPress.

Lazard. (2016). Levelized Cost of Energy Analysis 10.0. No Place: Lazard. Retrieved fromhttps://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdf

Levin, K., Cashore, B., Bernstein, S., & Auld, G. (2012). Overcoming the tragedy of super wickedproblems:constrainingour futureselves toameliorateglobal climatechange.PolicySciences,45(2),123–152.

Levy,M.A.,Young,O.R.,&Zürn,M.(1995).TheStudyofInternationalRegimes.EuropeanJournalofInternationalRelations,1(1),267–330.

119

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Loorbach, D. A. (2010). Transition Management for Sustainable Development: A Prescriptive,Complexity-BasedGovernanceFramework.Governance,23(1),161–183.

Lucon,O.,Urge-Vorsatz,A.,Ahmed,Z.,Akbari,H.,Bertoldi,P.,Cabeza,L.F.,…Vilarino,M.V.(2014).Buildings.InO.Edenhofer,Pichs-MadrugaR.,SokonaY.,FarahaniE.,KadnerS.,SeybothK.,…J.C.Minx (Eds.), Climate Change 2014Mitigation of Climate Change. Contribution ofWorkingGroup III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, New York: Cambridge University Press. Retrieved fromhttp://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf

Ludwig,H.,&VanHouwelingen,J.(n.d.).GlobalAluminiumRecycling:ACornerstoneofSustainableDevelopment.NoPlace: InternationalAluminiumInstitute.Retrievedfromhttp://www.world-aluminium.org/media/filer_public/2013/01/15/fl0000181.pdf

Luterbacher, U., & Sprinz, D. F. (Eds.). (2001). International Relations and Global Climate Change.Cambridge,MA:MITPress.

Maclean,J.,Tan,J.,Tirpak,D.,Sonntag-O’Brien,V.,&Usher,E.(2008).PublicFinanceMechanismstoMobilize Investment in Climate Change Mitigation. Paris: United Nations EnvironmentProgramme (UNEP). Retrieved from http://fs-unep-centre.org/sites/default/files/media/uneppublicfinancereport.pdf

Madlener,R.,Robledo,C.,Muys,B.,&Freja,J.(2006).ASustainabilityFrameworkforEnhancingtheLong-TermSuccessofLulucfProjects.ClimaticChange,75(1–2),241–271.

Mander,S.,Walsh,C.,Gilbert,P.,Traut,M.,&Bows,A.(2012).DecarbonisingtheUKEnergySystemand the Implications for UK Shipping. Carbon Management, 3, 601–614.https://doi.org/10.4155/cmt.12.67

Manley,D.,Cust, J.,&Cecchinato,G. (2017).StrandedNations?TheClimatePolicy Implications forFossil Fuel-Rich Developing Countries (OxCarre Policy Paper No. 34). Oxford. Retrieved fromhttps://www.oxcarre.ox.ac.uk/images/stories/papers/PolicyPapers/oxcarrepp201634.pdf

Mather,A.,&Needle,C.(2000).TheRelationshipsofPopulationandForestTrends.TheGeographicalJournal,166(1),2–13.

Matikainen,S.,Campiglio,E.,&Zenghelis,D. (2017).Theclimate impactofquantitativeeasing.NoPlace:GranthamResearchInstituteonClimateChangeandtheEnvironment.

MatthewScott,vanHuizen,J.,&Jung,C.(2017).TheBankofEngland’sresponsetoclimatechange.Quarterly Bulletin 2017 Q2. London. Retrieved fromhttp://www.bankofengland.co.uk/Pages/reader/index.aspx?pub=qb17q2article2&page=1

McGlade,C.,&Etkins,P.(2015).TheGeographicalDistributionofFossilFuelsUnusedWhenLimitingGlobalWarmingto2DegreesC.Nature,517(7533),187–190.

Miles, E. L., Underdal, A., Andresen, S., Wettestad, J., Skjærseth, J. B., & Carlin, E. M. (2002).Environmental Regime Effectiveness: Confronting Theory with Evidence. Cambridge, MA andLondon:MITPress.

Milmann,O.,&Leavenworth, S. (2016).China’splan to cutmeat consumptionby50%cheeredbyclimate campaigners. The Guardian. Retrieved fromhttps://www.theguardian.com/world/2016/jun/20/chinas-meat-consumption-climate-change

Mission 2020. (2017). 2020: The Climate Turning Point. No Place: Mission 2020. Retrieved fromhttp://www.mission2020.global/2020TheClimateTurningPoint.pdf

Mitchell, R. B. (1994). Regime design matters: intentional oil pollution and treaty compliance.InternationalOrganization,48(3),425–458.https://doi.org/10.1017/S0020818300028253

Mitchell, R. B. (1998). Sources of Transparency: Information Systems in International Regimes.InternationalStudiesQuarterly,42(1),109–130.https://doi.org/10.1111/0020-8833.00071

120

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Mitchell, R. B., Clark, W. C., Cash, D. W., & Dickson, N. M. (Eds.). (2006). Global EnvironmentalAssessments:InformationandInfluence.Cambridge,MAandLondon:TheMITPress.

Mofor,L.,Nuttall,P.,&Newell,A.(2015).RenewableEnergyOptionsforShipping:TechnologyBrief.Bonn:InternationalRenewableEnergyAgency(IRENA).

Morseletto, P., Biermann, F., & Pattberg, P. (2016). Governing by targets: reductio ad unum andevolutionof the two-degree climate target. International EnvironmentalAgreements: Politics,LawandEconomics,17(5),655–676.https://doi.org/10.1007/s10784-016-9336-7

Morsy,S.(2016).GlobalEVSalesOutlookto2040.AdvancedTransport-ResearchNote.BloombergNewEnergyFinance.

Murdivarso,D.,Brockhaus,M.,Sunderlin,W.,&Verchot,L.(2012).SomeLessonsLearnedfromtheFirstGenerationofREDD+Activities.CurrentOpinioninEnvironmentalSustainability,4(6),678–685.

Murtishaw, S., & Sathaye, J. (2006). Quantifying the Effect of the Principal-Agent Problem on USResidential Use. No Place: ACEEE Summer Study on Energy Efficiency in Buildings.https://doi.org/LBNL-59773

Najib, M. (2007). India’s “Untouchable” Waste Collectors. Retrieved fromhttp://news.bbc.co.uk/2/hi/south_asia/7073187.stm

Neuhoff,K.,Acworth,W.,Ancygier,A.,Branger,F.,Christmas,I.,Haussner,M.,…Schopp,A.(2014).CarbonControlandCompetitivenessPost2020:TheSteelReport.NoPlace:ClimateStrategies.Retrieved from http://climatestrategies.org/wp-content/uploads/2014/10/20141014-Steel-report-Final-ms.pdf

North,D.(1991).Institutions.TheJournalofEconomicPerspectives,5(1),97–112.

Oberthür, S. (2000). The International Convention for the Regulation of Whaling: From Over-Exploitation toTotalProhibition.Yearbookof InternationalCo-OperationonEnvironmentandDevelopment1998/99,29–37.

Oberthür, S. (2009). Interplay management: Enhancing environmental policy integration amonginternationalinstitutions.InternationalEnvironmentalAgreements:Politics,LawandEconomics,9(4),371–391.

Oberthür, S. (2016). Regime-interplaymanagement. InK. Blome,A. Fischer-Lescano,H. Franzki,N.Markard,&S.Oeter(Eds.),ContestedRegimeCollisions:NormFragmentationinWorldSociety(pp.49–87).Cambridge:CambridgeUniversityPress.

Oberthür,S.,&Bodle,R.(2016).LegalFormandNatureoftheParisOutcome.ClimateLaw,6(1),40–57.https://doi.org/10.1163/18786561-00601003

Oberthür,S.,&Justyna,P.(2013).ManagingInstitutionalComplexityandFragmentation:TheNagoyaProtocolandtheGlobalGovernanceofGeneticResources.GlobalEnvironmentalPolitics,13(3),100–118.

Oberthür,S.,&SchramStokke,O.(2011).ManagingInstitutionalComplexity:RegimeInterplayandGlobalEnvironmentalChange.Cambridge,MA:MITPress.

OECD.(2015a).Climatefinancein2013-14andtheUSD100billiongoal.NoPlace:OrganisationforEconomicCo-operationandDevelopment(OECD)incollaborationwithClimatePolicyInitiative(CPI). Retrieved from http://www.keepeek.com/Digital-Asset-Management/oecd/environment/climate-finance-in-2013-14-and-the-usd-100-billion-goal_9789264249424-en#.Wc0KTBOCzdQ#page1

OECD.(2015b).OECDCompaniontotheInventoryofSupportMeasuresforFossilFuels2015.Paris:OrganisationforEconomicCo-operationandDevelopment(OECD)incollaborationwithClimatePolicyInitiative(CPI).

121

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

OECD. (2017). Investing in Climate, Investing in Growth. No Place: Organisation for Economic Co-operation and Development (OECD). Retrieved fromhttps://www.oecd.org/environment/cc/g20-climate/synthesis-investing-in-climate-investing-in-growth.pdf

OECD/FAO. (2016). Agricultural Outlook 2016-2025.OECD Publishing. Paris: OECD/FAO. Retrievedfrom http://www.keepeek.com/Digital-Asset-Management/oecd/agriculture-and-food/oecd-fao-agricultural-outlook-2016_agr_outlook-2016-en#.WUFPQlKB2i4%23page3

OECD/IEA.(2016).WorldEnergyInvestment.Paris:InternationalEnergyAgency.

OECD/IEAandIRENA.(2017).PerspectivesfortheEnergyTransition.NoPlace:OECD/IEAandIRENA.

Ogawa, H. (2010). Sustainable SolidWasteManagement in Developing Countries. Retrieved fromhttp://www.soc.titech.ac.jp/uem/waste/swm-fogawal.htm26/9/2012

Olivier,J.G.J.,Janssens-Maenhout,G.,Muntean,M.,&Peters,J.A.H.W.(2016).TrendsinGlobalCO2Emissions:2016Report.TheHague.

Orsini,A.,Morin,J.F.,&Young,O.R.(2013).Regimecomplexes:Abuzz,aboom,oraboostforglobalgovernance?GlobalGovernance:AReviewofMultilateralismand InternationalOrganizations,19(1),27–39.https://doi.org/10.5555/1075-2846-19.1.27

Ostrom,E.(2010).Beyondmarketsandstates:Polycentricgovernanceofcomplexeconomicsystems.AmericanEconomicReview,100(3),641–672.https://doi.org/10.1257/aer.100.3.641

Pacala,S.,&Socolow,R.(2004).StabilizationWedges:SolvingtheClimateProblemfortheNext50Years with Current Technologies. Science, 305(5686), 968–972.https://doi.org/10.1126/science.1100103

Palensky,P.,&Dietrich,D.(2011).DemandSideManagement:DemandResponse,IntelligentEnergySystems,andSmartLoads.IEEETransactionsonIndustrialInformatics,7(3),381–388.Retrievedfrom10.1109/TII.2011.2158841

Pantano,S.,May-Ostendorp,P.,&Dayem,K.(2016).DemandDC:AcceleratingtheAdoptionofDCintheHome.Retrievedfromhttp://clasp.ngo/~/media/Files/DemandDC/CLASPDemandDCWhitePaper-May2016.pdf

Parkinson, G. (2016). New Low for Wind Energy Costs: Morocco Tender Averages $US30/MWh.Retrieved January 18, 2016, from https://cleantechnica.com/2016/01/18/new-low-for-wind-energy-costs-morocco-tender-averages-us30mwh/

Parson,E.A.(2003).ProtectingtheOzoneLayer.ScienceandStrategy.NewYork:OxfordUniversityPress.

Parton,W.J.,DelGrosso,S.J.,Marx,E.,&Swan,A.L.(2011).Agriculture’sRoleinCuttingGreenhouseGas Emissions. Issues in Science and Technology, 27(4). Retrieved from http://issues.org/27-4/p_parton/

PeakOil.com. (2014).Only5%of theWorld’sPopulationHaveEverBeenonanAirplane.Retrievedfrom http://peakoil.com/consumption/only-5-of-the-worlds-population-have-ever-been-on-an-airplane

Pearce,D.(2001).TheEconomicValueofForestEcosystems.EcosystemHealth,7(4),284–296.

Peeters.(2016).AreTechnologyMythsStallingAviationClimatePolicy?TransportationResearchPartD,44,30–42.

Pereirinha,P.G.,&Trovão,J.P.(2016).ElectricPropulsionVehiclesStandardization:WhereAreWe?Electrical Engineering, 1(3), 186–191. Retrieved from http://www.aedie.org/papers/16116-pereirinha.pdf

Perlitz,U.(2008).WorldChemicalsMarket:AsiaGainingGround.NoPlace:DeutscheBankResearch

122

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

publications.

Pilz,H.,Brandt,B.,Fehringer,R.,&Fehringer,R.(2010).TheImpactofPlasticPackagingonLifeCycleEnergyConsumptionandGreenhouseGasEmissionsinEurope.Vienna:Denkstatt.

Psaraftis,H.N.,&Kontovas,C.A.(2013).SpeedModelsforEnergy-efficientMaritimeTransportation:ATaxonomyandSurvey.TransportationResearchC,26,331–351.

Purohit,&Höglund-Isaksson. (2017).Global emissionsof fluorinatedgreenhouse gases2005–2050with abatement potentials and costs. Atmospheric Chemistry and Physics, 17, 2795–2816.https://doi.org/17,2795-2816.

Putti, Venkata, R., Tsan, M., Mehta, S., & Kammila, S. (2015). The State of the Global Clean andImproved Cooking Sector. Washington DC: Energy Sector Management Assistance Program,Global Alliance for Clean Cookstoves, The World Bank. Retrieved fromhttps://openknowledge.worldbank.org/bitstream/handle/10986/21878/96499.pdf

RAN,Banktrack,S.,&OCI.(2017).BankingonClimateChange:FossilFuelFinanceReportCard2017.No Place: Rainforest Action Network (RAN), BankTrack, the Sierra Club, and Oil ChangeInternational. Retrieved fromhttp://priceofoil.org/content/uploads/2017/06/Banking_On_Climate_Change_2017.pdf

Rao,N.D.,&Ummel,K.(2017).WhiteGoodsforWhitePeople?DriversofElectricApplianceGrowthin Emerging Economies. Energy Research & Social Science, 27, 106–116.https://doi.org/10.1016/j.erss.2017.03.005

Raustiala,K.,&Victor,D.G.(2004).TheRegimeComplexforPlantGeneticResources.InternationalOrganization,32(58),147–154.

REN21. (2016). Renewables 2016 - Global Status Report. Paris: REN21 – Renewable Energy PolicyNetwork for the 21st Century. Retrieved from http://www.ren21.net/status-of-renewables/global-status-report/

REN21. (2017). Renewables 2017 Global Status Report. Paris: REN21 – Renewable Energy PolicyNetwork for the 21st Century. Retrieved from http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf

Reuters. (2016). Leading Global Coal Miner Peabody Files for Bankruptcy. Retrieved fromhttp://www.reuters.com/article/us-peabody-energy-bankruptcy-idUSKCN0XA0E7

Richards,M.,Gluck,S.,&Wollenberg,E.(2015).Agriculture’sContributiontoNationalEmissions.InfoNote.Retrievedfromhttps://cgspace.cgiar.org/rest/bitstreams/61660/retrieve

Rigby,et.al.(2014).Recentandfuturetrendsinsyntheticgreenhousegasradiativeforcing.GeophysResLett.https://doi.org/41(7):2623–2630

Roberts,D.(2016,April).Thepoliticalhurdlesfacingacarbontax—andhowtoovercomethem.Vox.Retrievedfromhttps://www.vox.com/2016/4/26/11470804/carbon-tax-political-constraints

Rockefeller Brothers Fund. (2017). Divestment Statement. Retrieved fromhttps://www.rbf.org/sites/default/files/rbf-divestment_statement-2017-03-mar.pdf

Roger, C., Hale, T., & Andonova, L. (2017). The Comparative Politics of Transnational ClimateGovernance. International Interactions, 43(1), 1–25.https://doi.org/10.1080/03050629.2017.1252248

Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More Evolution than Revolution: TransitionManagement in Public Policy. Foresight, 3(1), 15–31.https://doi.org/10.1108/14636680110803003

Rushe,D.(2017,May31).ShareholdersforceExxonMobiltocomecleanoncostofclimatechange.The Guardian. Retrieved fromhttps://www.theguardian.com/business/2017/may/31/exxonmobil-climate-change-cost-

123

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

shareholders

Rust, S. (2016, February 1). France aims high with first-ever investor climate-reporting law. IPE.Retrieved from https://www.ipe.com/countries/france/france-aims-high-with-first-ever-investor-climate-reporting-law/10011722.fullarticle

Sachs,W.(2015).PlanetDialecticsExplorationsinEnvironmentandDevelopment(2nded.).London:ZedBooks.Retrievedfromhttp://www.myilibrary.com?id=746112

Samadi,S.,Grone,M.-C.,Schneidewind,U.,Luhmann,H.-J.,Venjakob,J.,&Best,B.(2016).Sufficiencyin Energy Scenario Studies: Taking the Potential Benefits of Lifestyle Changes into Account.Technological Forecasting and Social Change. Retrieved fromhttp://www.sciencedirect.com/science/article/pii/S0040162516303006

Sanderink, L., Widerberg, O., Kristensen, K., & Pattberg, P. (2017). Mapping the InstitutionalArchitectureoftheClimate-EnergyNexus.Amsterdam:IVMInstituteforEnvironmentalStudies.

Saunders,A.(2015).Preview:TheTop100GlobalCementCompaniesandGlobalPerCapitaCapacityTrends.Retrievedfromhttp://www.globalcement.com/magazine/articles/964-preview-the-top-100-global-cement-companies-and-global-per-capita-capacity-trends

Scarlat,N.,Motola,V.,Dallemand,J.F.,Monforti-Ferrario,F.,&Mofor,L.(2015).EvaluationofenergypotentialofMunicipalSolidWastefromAfricanurbanareas.RenewableandSustainableEnergyReviews,50,1269–1286.https://doi.org/http://dx.doi.org/10.1016/j.rser.2015.05.067

Schmid,E.,Knopf,B.,&Pechan,A.(2016).PuttinganEnergySystemTransformationintoPractice:TheCase of the German Energiewende. Energy Research& Social Science,11(January), 263–275.Retrievedfrom10.1016/j.erss.2015.11.002

Schneidewind,U.,Fischedick,M.,Lucas,R.,Muller,M.,Reutter,O.,Schule,R.,…Wanner,M.(2015).Städte in Schwung bringen. Ökologisches Wirtschaften - Fachzeitschrift, 30(2), 20.https://doi.org/10.14512/OEW300220

Schot,J.,&Laur,K.(2016).DeepTransitions:Emergence,Acceleration,StabilizationandDirectionality(SPRU Working Paper No. 2016–15). Brighton. Retrieved fromhttps://papers.ssrn.com/abstract=2834854

Schwarze,R.,Niles, J.,&Olander, J. (2002).UnderstandingandManaging Leakage in Forest-basedGreenhouse-Gas-Mitigation Projects. Philosophical Transactions of the Royal Society A:Mathematical,PhysicalandEngineeringSciences,360(1797),1685–1703.

Scoones,I.,Leach,M.,&Newell,P.(Eds.).(2015).ThePoliticsofGreenTransformations.NewYork:Routledge.

Searchinger,T.(2013).TheGreatBalancingAct.Washington,DC:WorldResourcesInstitute.Retrievedfromhttp://www.worldresourcesreport.org

Searchinger, T., & Heimlich, R. (2015). Avoiding Bioenergy Competition for Food Crops and Land.Washington, DC: World Resources Institute. Retrieved fromhttp://www.worldresourcesreport.org

SEI.(2015).TheSEIInitiativeonFossilFuelsandClimateChange.Stockholm:StockholmEnvironmentInstitute.

Seidel,S.,Ye,J.,AndersenStephen,O.,&Hillbrand,A.(2016).Not-In-KindAlternativestoHighGlobalWarming HFCS. Arlington, VA: Center for Climate and Energy Solutions. Retrieved fromhttps://www.c2es.org/docUploads/not-in-kind-alternatives-high-global-warming-hfcs.pdf

Seto,K.C.,Dhakal,S.,Bigio,A.,Blanco,H.,Delgado,G.C.,Dewar,D.,…Ramaswami,A.(2014).HumanSettlements,InfrastructureandSpatialPlanning.InClimateChange2014:MitigationofClimateChange. Contribution of Working Group III to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E.

124

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Farahani,S.Kadner,K.Seyboth,A.Adler,.Cambridge,NewYork:CambridgeUniversityPress.

Seto, K. C., Lin, Y.,&Deng, X. (2014). Land-UseCompetitionbetween FoodProduction andUrbanExpansioninChina.InK.C.Seto&A.Reenberg(Eds.),RethinkingGlobalLandUseinanUrbanEra(pp.71–85).Cambridge,MA:TheMITPress.

Shearer,C.,Ghio,N.,Myllyvirta,L.,Yu,A.,&Nace,T.(2017).BoomandBust2017-TrackingtheGlobalCoal Plant Pipeline. Retrieved from http://endcoal.org/wp-content/uploads/2017/03/BoomBust2017-English-Final.pdf

Simmons,B.A.,&Martin,L.L.(2002).InternationalOrganizationsandInstitutions.InW.Carlsnaesetal. (Ed.), The Handbook of International Relations (2nd ed., pp. 195–96). London: SagePublications.

SLoCaT.(2015).ContributionofTransportCommitmentstoGlobalGoalsonSustainableDevelopment.Bangkok. Retrieved fromhttp://www.slocat.net/sites/default/files/u13/2015_transport_commitments_report_2.pdf

Smil,V.(2013).MakingtheModernWorld,MaterialsandDematerialization.Chichester:Wiley.

Smith,J.,&Urpaleinen.(2017).RemovingFuelSubsidies:HowCanInternationalOrganizationsSupportNationalPolicyReforms?InternationalEnvironmentalAgreements:Politics,Law,andEconomics,17(3),327–340.https://doi.org/10.1007/s10784-017-9358-9

Smith, P., Bustamante,M., Ahammad,H., Clark,H., Dong, E. A., Elsiddig,H.,… Tubiello, F. (2014).Agriculture,Forestry,andOtherLandUse(AFOLU).NewYork,Cambridge:CambridgeUniversityPress.

Smith,P.,Haberl,H.,Popp,A.,Erb,K.,Lauk,C.,Harper,R.,…Rose,S.(2013).HowMuchLand-basedGreenhouse Gas Mitigation Can Be Achieved Without Compromising Food Security andEnvironmental Goals? Global Change Biology, 19(8), 2285–2302.https://doi.org/10.1111/gcb.12160

Smith,P.,Martino,D.,Cai,Z.,Gwary,D.,Janzen,H.,Kumar,P.,…Smith,J. (2008).GreenhouseGasMitigationinAgriculture.PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences,363(1492),789–813.https://doi.org/10.1098/rstb.2007.2184

Smith, T. (2015). Two Crucial Omissions That Could Jeopardise Paris Climate Deal. Retrieved fromhttps://theconversation.com/two-crucial-omissions-that-could-jeopardise-paris-climate-deal-52341

Smith,T.W.P.,Traut,M.,Bows-Larkin,A.,Anderson,K.,McGlade,C.,&Wrobel,P.(2015).CO2Targets,Trajectories and Trends for International Shipping. Retrieved fromhttps://www.research.manchester.ac.uk/portal/files/31961273/FULL_TEXT.PDF

Snidal,D.(1985).Coordinationversusprisoners’dilemma:implicationsforinternationalcooperationand regimes. American Political Science Review, 79(4), 923–942.https://doi.org/10.2307/1956241

Springmann,M., Godfray, H., Rayner,M., & Scarborough, P. (2016). Analysis and valuation of thehealthandclimatechangecobenefitsofdietarychange.ProceedingsoftheNationalAcademyofSciences, 113(15), 4146–4151. Retrieved fromhttp://www.pnas.org/content/113/15/4146.abstract

SRU. (2005). Umwelt und Straßenverkehr. Hohe Mobilität - Umweltverträglicher Verkehr(Sondergutachten).Berlin:SachverständigenratfürUmweltfragen.

Stadelmann,M.,Roberts,J.T.,&Michaelowa,A.(2011).AccountingofPrivateClimateFinance-TypesofFinance,DataGapsandthe100BillionDollarQuestion.Cambridge:ClimateStrategies.

Stavins, R., Zou, J., Brewer, T., Conte Grand, M., den Elzen, M., Finus, M., …Winkler, H. (2014).InternationalCooperation:AgreementsandInstruments.InClimateChange2014:Mitigationof

125

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Climate Change. Contribution of Working Group III to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change (pp. 1001–1082). Cambridge and New York,Cambridge,UnitedKingdomandNewYork,NY,USA:CambridgeUniversityPress.Retrievedfromhttps://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter13.pdf

Steduto,P.,Faurès, J.,Hoogeveen, J.,Winpenny, J.,&Burke, J. (2012).CopingwithWaterScarcity.Rome:FoodandAgricultureOrganizationoftheUnitedNations.

Sterk, W., & Hermwille, L. (2013). Does the Climate Regime Need New Types of MitigationCommitments?CarbonandClimateLawReview,7(4),270–282.

Sterner,T.,&Coria,J.(2013).Policyinstrumentsforenvironmentalandnaturalresourcemanagement(2nded.).NewYork:RFFPress.https://doi.org/10.4324/9781315780894

Stiehler, A. (2017). Longer Term Investments: Waste Management and Recycling. No Place: UBSSwitzerlandAG.

Stokke, O. S. (2012). Disaggregating International Regimes. A New Approach to Evaluation andComparison.Cambridge,MA:MITPress.

Stumpf, R. (2017, July). U.K. to Ban Internal Combustion Engine Vehicles by 2040. Is the ICE agebeginning to thaw in Europe? The Drive. Retrieved fromhttp://www.thedrive.com/news/12859/u-k-to-ban-internal-combustion-engines-by-2040

Tagliapietra,S.(2017).ThePoliticalEconomyofMiddleEastandNorthAfricaOilExportersinTimesofGlobalDecarbonisation.Brussels:Breugel.

TCFD.(2016).PhaseIReportoftheTaskForceonClimate-RelatedFinancialDisclosures.NoPlace:TaskForce on Climate-Related Financial Disclosures. Retrieved from https://www.fsb-tcfd.org/wp-content/uploads/2016/03/Phase_I_Report_v15.pdf

TCFD.(2017).RecommendationsoftheTaskForceonClimate-RelatedFinancialDisclosures.NoPlace:Task Force on Climate-Related Financial Disclosures. Retrieved from https://www.fsb-tcfd.org/wp-content/uploads/2017/06/FINAL-TCFD-Report-062817.pdf

TEAP.(2016).ReportoftheTechnologyandEconomicAssessmentPanel,VolumeI,DecisionXXVII/4,TaskForceUpdateReport,FurtherInformationonAlternativestoOzone-DepletingSubstances.Nairobi, Kenya: United Nations Environment Programme (UNEP). Retrieved fromhttp://conf.montreal-protocol.org/meeting/mop/mop-28/presession/Background DocumentsareavailableinEnglishonly/TEAP_TFXXVII-4_Report_September2016.pdf

The Economist. (2013). The Global Cement Industry - Ready-Mixed Fortunes. Retrieved fromhttp://www.economist.com/news/business/21579844-worlds-cement-giants-look-setrecoverybut-will-it-be-durable-ready-mixed-fortunes

TheGuardian.(2017,February1).DeutscheBankpullsoutofcoalprojectstomeetParisclimatepledge.Retrievedfromhttps://www.theguardian.com/business/2017/feb/01/deutsche-bank-pulls-out-of-coal-projects-to-meet-paris-climate-pledge

TheStorting.(2015).TheStortinghasmadetheunanimousdecisiontopulltheGovernmentPensionFundGlobal(GPFG)outofcoal.Retrievedfromhttps://www.stortinget.no/en/In-English/About-the-Storting/News-archive/Front-page-news/2014-2015/hj9/

TheWorldBank.(2016).$81BillionMobilizedin2015toTackleClimateChange–JointMDBReport.Retrieved from http://www.worldbank.org/en/news/press-release/2016/08/09/81-billion-mobilized-in-2015-to-tackle-climate-change---joint-mdb-report

The World Counts. (2014). Deforestation Facts and Statistics. Retrieved fromhttp://www.theworldcounts.com/stories/deforestation-facts-and-statistics

Thema, J., Thomas, S., Kopatz, M., Spitzner, M., & Ekardt, F. (2017). Energiesuffizienzpolitik mitSchwerpunktaufdemStromverbrauchderHaushalte.Wuppertal:WuppertalInstitutfurKlima,

126

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

Umwelt, Energie. Retrieved fromhttps://epub.wupperinst.org/frontdoor/index/index/docId/6670

Tickell,O.(2008).Kyoto2:HowtoManagetheGlobalGreenhouse.LondonandNewYork:ZedBooks.

Treves, T., Pineschi, L., Tanzi, A., Pitea, C., Chiara Ragni, & Jacur, F. R. (2009). Non-ComplianceProceduresandMechanismsandtheEffectivenessofInternationalEnvironmentalAgreements.TheHague:T.M.C.AsserPress.

Tullo, A. (2016). C&EN’s Global, Sales are Down in the LowOil Price Environment, But Profits areSoaring. Chemical and Engineering News, 94(30), 32–37. Retrieved fromhttp://cen.acs.org/articles/94/i30/CENs-Global-Top-50.html

Tyabji,N.,&Nelson,W.(2012).MitigatingEmissionsfromAluminium.TheGNCSFactsheets.ColumbiaClimateCentre.

U.S.GeologicalSurvey.(2015).MineralCommoditySummaries2015:U.S.GeologicalSurvey.Retrievedfromhttp://dx.doi.org/10.3133/70140094

UK Department of Energy and Climate Change. (2012). Land Use, Land Use Change and Forestry(LULUCF):GHG InventorysummaryFactsheet.London:UKDepartmentofEnergyandClimateChange. Retrieved fromhttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/48417/1222-ghg-inventory-summary-factsheet-lulucf.PDF

UKDepartmentofEnergyandClimateChange. (2013). InitialAgreementReachedonNewNuclearPowerStationatHinkley.London:UKDepartmentofEnergyandClimateChange.Retrievedfromhttps://www.gov.uk/government/news/initial-agreement-reached-on-new-nuclear-power-station-at-hinkley

UN Climate Summit 2014. (2014). Investors commit to decarbonize $100 billion in investments.Retrieved from http://www.un.org/climatechange/summit/2014/09/investors-commit-decarbonize-100-billion-investments/

UNDESA.(2015).WorldPopulationProjectedtoReach9.7Billionby2050.NewYork.Retrievedfromhttp://www.un.org/en/development/desa/news/population/2015-report.html

UNEP. (2002). Production and Consumption of Ozone Depleting Substances under the MontrealProtocol, 1986-2000. Nairobi: Ozone Secretariat, UNEP. Retrieved fromhttp://ozone.unep.org/pdfs/15-year-data-report.pdf

UNEP. (2010). Waste and Climate Change: Global Trends and Strategy Framework. Osaka/Shiga:United Nations Environmental Programme Division of Technology, Industry and EconomicsInternational Environmental Technology Centre. Retrieved fromhttp://www.unep.or.jp/ietc/Publications/spc/Waste&ClimateChange/Waste&ClimateChange.pdf

UNEP.(2015).GlobalWasteManagementOutlookSummaryforDecision-Makers.Vienna.Retrievedfromhttps://www.iswa.org/fileadmin/galleries/Publications/ISWA_Reports/GWMO_summary_web.pdf

UNEP. (2016). En.lighten: Efficient lighting for developing and emerging countries. Paris: UnitedNationsEnvironmentProgramme.Retrievedfromhttp://www.enlighten-initiative.org/.

UNFCCC.(2007). InvestmentandFinancialFlowstoAddressClimateChange (1sted.).Bonn:UnitedNationsFrameworkConventiononClimateChange.

UNFCCC.(2013).TimeSeries-GHGdatafromUNFCCCAnnexI.NoPlace:UnitedNationsFrameworkConvention on Climate Change. Retrieved fromhttp://unfccc.int/ghg_data/ghg_data_unfccc/items/4146.php

127

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

UNFCCC.(2016).SummaryandrecommendationsbytheStandingCommitteeonFinanceonthe2016biennialassessmentandoverviewoffinanceflows.Bonn:UnitedNationsFrameworkConventionon Climate Change. Retrieved fromhttp://unfccc.int/files/cooperation_and_support/financial_mechanism/standing_committee/application/pdf/2016_ba_summary_and_recommendations.pdf

UNFCCC. (2017). Land Use, Land-Use Change and Forestry (LULUCF). Retrieved fromhttps://unfccc.int/land_use_and_climate_change/lulucf/items/1084.php

UnitedNations.(2014).Worldurbanizationprospects:the2014revision.NewYork:UNDepartmentofEconomicandSocialAffairs,PopulationDivision.

UnitedNationsHumanSettlementsProgramme.(2013).PlanningandDesignforSustainableUrbanMobility. Global Report on Human Settlements 2013. New York: United Nations HumanSettlementsProgramme.

Unruh,G.C.(2000).UnderstandingCarbonLock-In.EnergyPolicy,28(12),817–830.

Urge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C., & Petrichenko, K. (2015). Heating andCoolingEnergyTrendsandDriversinBuildings.RenewableandSustainableEnergyReviews,41,85–98.Retrievedfromhttp://www.sciencedirect.com/science/article/pii/S1364032114007151

Urge-Vorsatz,D.,Eyre,N.,Graham,P.,Harvey,D.,Hertwich,E.,Jiang,Y.,…Novikova,A.(2012).Chapter10-EnergyEnd-Use:Building.InGlobalEnergyAssessment-TowardaSustainableFuture(pp.649–760). Cambridge, New York : Cambridge University Press. Retrieved fromhttp://www.iiasa.ac.at/web/home/research/Flagship-Projects/Global-Energy-Assessment/GEA_Chapter10_buildings_hires.pdf

USDepartmentofCommerce.(2016).GlobalSteelReportJuly2016.WashingtonDC:U.S.Departmentof Commerce, International Trade Administration. Retrieved fromhttp://trade.gov/steel/pdfs/07192016global-monitor-report.pdf

VanAsselt,H.,&Kulovesi,K.(2017).SeizingtheOpportunity:TacklingFossilFuelSubsidiesundertheUNFCCC.InternationalEnvironmentalAgreements:Politics,LawandEconomics,17(3),357–370.https://doi.org/https://doi.org/10.1007/s10784-017-9357-x

Velders, G. J. M., Fahey, D. W., Daniel, J. S., Andersen, S. O., & McFarland, M. (2015). Futureatmospheric abundances and climate forcings from scenarios of global and regional HFCsemissions. Atmospheric Environment, 123(Part A), 200–209. Retrieved fromhttp://www.sciencedirect.com/science/journal/13522310?sdc=1

Vidal, J. (2016, October 19). Shipping “progressives” call for industry carbon emission cuts. TheGuardian. Retrieved from https://www.theguardian.com/environment/2016/oct/19/shipping-progressives-call-for-industry-carbon-emission-cuts

vonGermis,C.(2017,September11).DassinddieE-Auto-PlänevonVW.FrankfurterAllegmeine.NoPlace.Retrievedfromhttp://www.faz.net/aktuell/wirtschaft/unternehmen/ziele-von-matthias-mueller-selbstkritische-worte-von-vw-chef-zum-beginn-der-iaa-15193863.html

Walsh,C.,Mander,S.,&Larkin,A.(2017).ChartingaLowCarbonFutureforShipping:AUKPerspective.MarinePolicy,82,32–40.

WBCSD.(2010).Vision2050.TheNewAgendaforBusiness.Geneva:WBCSD.

WBGU.(2016).HumanityontheMove.UnlockingtheTransformativePowerofCities.Berlin:WBGU.

Weber,C.,&Matthews,H.(2008).Food-MilesandtheRelativeClimateImpactsofFoodChoicesintheUnitedStates.EnvironmentalScience&Technology,42(10),3508–3513.

WEF.(2011).AProfitableandResourceEfficientFuture:CatalysingRetrofitFinanceandInvestinginCommercial Real Estate. Geneva: World Economic Forum. Retrieved fromhttp://www3.weforum.org/docs/WEF_IU_CatalysingRetrofitFinanceInvestingCommercialRealEs

128

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

tate_Report_2011.pdf

WEF.(2016).TowardstheCircularEconomy:AcceleratingtheScale-upAcrossGlobalSupplyChains.Geneva: World Economic Forum. Retrieved fromhttp://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf

Whitley,S.,&vanderBurg,L.(2015).FossilFuelSubsidyReform:FromRhetorictoReality.London,Washington, DC: The Global Commission on the Economy and Climate. Retrieved fromhttp://newclimateeconomy.report/misc/working-papers

WHO. (2008). Global and Regional Food Consumption Patterns and Trends. Retrieved fromhttp://www.who.int/nutrition/topics/3_foodconsumption/en/index4.html

Widerberg,O.,&Stripple,J.(2016).Theexpandingfieldofcooperativeinitiativesfordecarbonization:a review of five databases.Wiley Interdisciplinary Reviews: Climate Change, 7(4), 486–500.https://doi.org/10.1002/wcc.396

WIEGO.(2013).WastePickers:TheRighttobeRecognisedasWorkers.NoPlace:WomeninInformalEmployment: Globalizing and Organizing (WIEGO). Retrieved fromhttp://www.wiego.org/sites/wiego.org/files/resources/files/WIEGO-Waste-Pickers-Position-Paper.pdf

Wollenberg,E.,Richards,M.,Smith,P.,Havlik,P.,Obersteiner,M.,Tubiello,F.,…Campbell,B.(2016).Reducing Emissions fromAgriculture toMeet the 2°C Target.Global Change Biology,22(12),3859–3864.

WorldBank.(2015).HFOIPR–ChallengesandOpportunities,presentationbytheWorldBankMontrealProtocolOperations,The27thMeetingofthePartiestotheMontrealProtocol.Dubai.Retrievedfromhttp://conf.montreal-protocol.org/meeting/mop/mop-27/pubs/ObserverPublications/WBIPSideEvent-LandscapeofHFOPatentsWBfinal.pdf

WorldBank&Ecofys.(2017).CarbonPricingWatch.NoPlace:WorldBank&Ecofys.Retrievedfromhttps://www.ecofys.com/files/files/world-bank-ecofys-carbon-pricing-watch-2017.pdf

World Energy Council. (2016).World Energy Resources:Waste to Energy.No Place:World EnergyCouncil. Retrieved from https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Waste_to_Energy_2016.pdf

WorldSteelAssociation.(2016).WorldSteelinFigures2016.Brussels,Beijing:WorldSteelAssociation.

WorldSteelAssociation.(2017).PressRelease:WorldCrudeSteelOutputIncreasesby0.8%in2016.No Place: World Steel Association. Retrieved fromhttps://www.worldsteel.org/en/dam/jcr:81295079-b8c8-4933-b426-0ce3a31b2cad/2016+World+Crude+Steel+Production+Press+Release.pdf

WRI.(2012).CAITClimateDataExplorer,HistoricalEmissionsfromWaste.RetrievedSeptember21,2017, from http://cait.wri.org/historical/Country GHGEmissions?indicator[]=Waste&year[]=2012&sortDir=desc&chartType=bars

WTO. (2017a). International Trade Statistics 2015. Retrieved fromhttps://www.wto.org/english/res_e/statis_e/wts2016_e/wts16_chap9_e.htm

WTO. (2017b). International Trade Statistics 2015 - Merchandise Trade. Retrieved fromhttps://www.wto.org/english/res_e/statis_e/its2015_e/its15_merch_trade_product_e.htm

Wurzel, R., Zito, A., & Jordan, A. J. (2013). Environmental Governance in Europe: A ComparativeAnalysis of the Use of New Environmental Policy Instruments. Cheltenham: Edward Elgar.https://doi.org/10.1108/meq.2013.08324eaa.009

Young,O.R.(1980).InternationalRegimes:ProblemsofConceptFormation.WorldPolitics,323,331–356.

Young,O.R.(1982).Resourceregimes :Naturalresourcesandsocialinstitutions.Berkeley:University

129

COP21RIPPLES–DX.X–Title-VX.X-[DraftorFinal]-Date

ofCaliforniaPress.

Young,O.R.(1986).InternationalRegimes:TowardsaNewTheoryofInstitutions.WorldPolitics,39,104–122.

Young,O.R.(1989).Thepowerofinstitutions:whyinternationalregimesmatter.InO.R.Young(Ed.),Internationalcooperation:Buildingregimesfornaturalresourcesandtheenvironment(pp.58–80).Ithaca,NY:CornellUniversityPress.

Young, O. R. (Ed.). (1999). The effectiveness of international environmental regimes: Causalconnectionsandbehavioralmechanisms.Cambridge,MA:MITPress.

Young,O.R.,&Levy,M.A.(1999).TheEffectivenessofInternationalEnvironmentalRegimes.InO.R.Young(Ed.),TheEffectivenessofInternationalEnvironmentalRegimes:CausalConnectionsandBehaviouralMechanisms(pp.1–32).Cambridge,MA:MITPress.

Zhang, D., Huang, G., Xu, Y., & Gong, Q. (2015). Waste-to-energy in China: Key challenges andopportunities.Energies,8(12),14182–14196.https://doi.org/10.3390/en81212422

Zheng, L., Song, J., Li, C., Gao, Y., Geng, P., Qu, B., & Lin, L. (2014). Preferential Policies PromoteMunicipalSolidWaste(MSW)toEnergyinChina:CurrentStatusandProspects.RenewableandSustainableEnergyReview,36,135–148.