decarbonization and sustainable economics and innovation · effec:veness of clean energy...

74
Presentation: Prof. Dr. Manfred Fischedick Vice President Wuppertal Institute February 2017 Decarbonization and sustainable economic development and innovation

Upload: vuongnhi

Post on 08-Feb-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Presentation:

Prof. Dr. Manfred FischedickVice PresidentWuppertal Institute

February 2017

Decarbonization and sustainable economic development and innovation

Seite Wuppertal Institut

Worldwide decarbonization is technological possible and affordable but needs cross-country cooperation

2Februar 13, 2018

Seite Wuppertal Institut

How to realize a transformation of the energy system and what are the impacxts Results from a scenario meta analysis

3

deep decarbonizationpathways to

Supported by

in Germany

D E 20 15 Report

Wuppertal Institutefor Climate, Environment and Energy

deep decarbonizationpathways to

COLOMBIA

SLOVAKIA

2015 report

13 Februar 2018

Seite Wuppertal Institut

Emissions pathways for 16 DDPP case studies show a possible way to achieve major milestone to accomplish Paris Agreement

4Quelle:DDPP,2015

1 Reduction of CO2-emissions represents arithmetic mean of IPCC target to accomplish the 2° scenario (reduction of German CO2-emissionen - 85 % in comparison to 1990 level)

Is limiting global warming to 2°C achievable?

Pathways to deep decarbonization � 2015 executive summary 4

2Is limiting global warming to 2°C achievable?

Deep decarbonization of today’s highest emitting economies is technically achieva-ble and can accomodate expected economic and population growth. Each country team produced multiple technically feasible pathways that resulted in deep decarbonization of their economies. Across all scenarios, by the year 2050 energy-related CO2 emissions for the 16 DDPP countries were reduced to 9.8-11.9 Gt CO2,

or 48-57% below 2010 levels (Figure 1). These scenarios take into account expected popula-tion growth of 17% on average across the DDPP countries during the 2010-2050 period, and also accommodate aggregate GDP growth of 250% - an average rate of 3.1% per year – during the period. In the most ambitious set of scenarios, average per capita emissions in 2050 were re-duced to 2.1 t CO2/person across countries, while

2

205020452040203520302025202020152010

GtCO2

0

2

4

6

8

10

12

14

16

18

20

22

26

24UKCanada

France

Korea

Italy

Australia

Germany

Japan

Russia

South Africa

Mexico

Indonesia

Brazil

USA

India

Chinazz

zzzzzzzzzzzzzz

Figure 1. Emissions trajectories for energy CO2, 2010-2050, showing most ambitious reduction scenarios for all DDPP countries. 2050 aggregate emissions are 57% below 2010 levels.

-56%1

Februar 13, 2018

Seite Wuppertal Institut

There is no silver bullet for achieving a significant GHG mitigation path-way – however three strategies manifest as robust elements

Source: DDPP, 2015 513 Februar 2018

Seite Wuppertal Institut

GHG mitigation might lead to additional additional net energy system costs but with decreasing trend on the time scaleUSA case study determines net costs below 1% of GDP – if considering avoided costs (for damage and adaptation) balance will most likely be positive

Source: DPP 2015 613 Februar 2018

Is Deep Decarbonization Affordable?

33 Pathways to deep decarbonization � 2015 report

ly decarbonized scenario in 2050 is equivalent to about 1% of GDP in that year. The principal impact of deep decarbonization on the energy economy is not an overall increase in spending, but a fundamental shift in the direction of that spending. Instead of consumers and businesses continuing to expend vast sums on refined fossil fuels at the pump, spending is directed toward investment in low-carbon technologies on both the supply and demand sides of the energy system. Figure 25 shows the levelized cost im-pacts of these changes compared to a reference fossil fuel-based future (For more details, see US report �PDF ).

Another factor that reduces the net cost of deep decarbonization is greater energy ef-ficiency and conservation. This is illustrated by the case of household energy and transport costs in the Australian DDP, in which net energy

costs fall in absolute terms due to energy savings and lower operating costs. Energy costs fall even further as a share of average household income as GDP grows.

The decarbonization of the energy system decentralizes the standard energy system investment model. Deep decarbonization re-quires transformational, rather than marginal, changes in energy production and consumption systems. Th is, in turn, requires that capital would flow to low-carbon technologies—prin-cipally in the areas of decarbonized supply infrastructure (generation and fuel production) and end-use equipment (energy efficiency and fuel switching to decarbonized energy carriers). This is associated with a change in the nature of investors. Energy supply investment is currently concentrated in a limited number of fossil-fuel producing regions, under large state-owned

2050204820462044204220402038203620342032203020282026202420222020201820162014

Grand Total

Electricity

Diesel Fuels

Other Fuels

Pipeline Gas

Gasoline Fuels

Hydrogen

End-Use Equipment

Jet Fuel

2.0%

2.5%

1.0%

0.0%

1.0%

2.0%

1.5%

0.5%

0.5%

1.5%

3.0%

3.5%

2.5%

z

z

z

z

z

z

z

z

Figure 25. United States. Net energy system cost (% GDP)

Seite Wuppertal Institut

GHG mitigation might lead to additional additional net energy system costs but with decreasing trend on the time scaleDifference costs might be significantly lower with faster technology learning

Source: DPP 2015 713 Februar 2018

Seite Wuppertal Institut

Major conclusions of DDPP studyGlobal decarbonisation and energy system transition is possible - requires stronger international cooperation and public discourse

8

1.  It is still (!) possible to stay within the 2°C boundary2.  National decarbonization strategies and analyses are

necessary (back-casting approach, bottom up analyses) 3.  Discussion of possible implementation pathways within civil

society and politics crucial step4.  Useful benchmark in the course of the global project: 1,7 t

CO2 per capita (energy relevant CO2-emissions in 2050)5.  Transformation process is economically viable (~1% GDP) –

especially when considering additional benefits and avoided adjustment and damage costs

6.   Fast technological progress required – cross-country cooperation in the area of investigation and development as well as market launch can have a strong accelerating function

Source:DDPP201513 Februar 2018

Seite Wuppertal Institut

International Mission Innovation initiative drives national R&D A global approach to increase clean energy related R&D budget

Source:BMBF201613 Februar 2018

30.10.16 17:00Joint Statement – Mission Innovation

Seite 1 von 1http://mission-innovation.net/joint-statement/

Joint Launch StatementNovember 30, 2015, in Paris, France, issued on behalf of the Governments of Australia, Brazil, Canada, Chile, China, Denmark, France, Germany, India,Indonesia, Italy, Japan, Mexico, Norway, Republic of Korea, Saudi Arabia, Sweden, the United Kingdom of Great Britain and Northern Ireland, the UnitedArab Emirates, and the United States of America:

Accelerating widespread clean energy innovation is an indispensable part of an effective, long-term global response to our shared climatechallenge; necessary to provide affordable and reliable energy for everyone and to promote economic growth; and critical for energy security.While important progress has been made in cost reduction and deployment of clean energy technologies, the pace of innovation and the scale oftransformation and dissemination remains significantly short of what is needed.

For these reasons, participating countries have come together to launch Mission Innovation to reinvigorate and accelerate public and privateglobal clean energy innovation with the objective to make clean energy widely affordable. Additional countries will be encouraged to join in thefuture.

Double Governmental Investment in Clean Energy Innovation. Each participating country will seek to double its governmental and/or state-directed clean energy research and development investment over five years. New investments would be focused on transformational cleanenergy technology innovations that can be scalable to varying economic and energy market conditions that exist in participating countries and inthe broader world. Research and development projects would be designed and managed to attract private investors willing to advancecommercialization. While each participating country’s clean energy innovation portfolio is unique and reflects national priorities, all participatingcountries share the common goal to accelerate the pace of the clean energy revolution now underway in an appropriate way. This endeavorshould help facilitate affordable access to critical technologies.

Private Sector and Business Leadership. Business needs to play a vital role in the commercialization and cost-effectiveness of clean energybreakthroughs, and participating countries commit to work closely with the private sector as it increases its investment in the earlier-stage cleanenergy companies that emerge from government research and development programs. Participating countries especially commend thecontribution being made by a group of investors through the Breakthrough Energy Coalition. These investors from 10 countries and representingleadership from many key economic sectors are prepared to drive innovation from the laboratory to the market through the investment ofpatient capital at unprecedented levels into early-stage technology development into participating countries. This commitment, as stated in theCoalition’s principles, will be focused on investment opportunities sourced from the countries participating in Mission Innovation. Participatingcountries also look forward to working with additional private sector partners who are willing to share our common goal of increasing investmentfor clean energy innovation.

Implementation. Participating countries will implement Mission Innovation in a transparent, effective, and efficient manner. Strong linkageswith our investor partners and other key stakeholders are essential. Working with existing international institutions, participating countries willcooperate and collaborate to help governments, private investors, and technology innovators to make available data, technology expertise, andanalysis in order to promote commercialization and dissemination of clean energy technologies so they reach global market penetration. Participating countries will build and improve technology innovation roadmaps and other tools to help in our innovation efforts, to understandwhere research and development is already happening, and to identify gaps and opportunities for new kinds of innovation. Participatingcountries may also pursue joint research efforts through public-private partnerships as well as joint research among participating countries. Wewill also seek to enhance global clean energy innovation capacity, including through ongoing bilateral engagement with participating countries. The first implementation meeting for Mission Innovation will be held in early 2016.

Information Sharing. Each participating country commits to provide, on an annual basis, transparent, easily-accessible information on itsrespective clean energy research and development efforts to promote transparency, engage stakeholders broadly, spur identification ofcollaborative opportunities, and provide the private sector more actionable information to improve its ability to make investment decisions.

Download the Joint Launch Statement. (http://www.mission-innovation.net/wp-content/uploads/2015/11/Mission-Innovation-Joint-Launch-Statement.pdf)

Back to Top

2016 © Mission Innovation. All Rights Reserved. | Member Login (login/)

Centraltargets:•  Eachpar:cipa:ngcountrywillseektodoubleitsgovernmentaland/orstate-

directedcleanenergyresearchanddevelopmentinvestmentoverfiveyears.

•  Businessneedstoplayavitalroleinthecommercializa:onandcost-

effec:venessofcleanenergybreakthroughs,andpar:cipa:ngcountriescommittoworkcloselywiththeprivatesectorasitincreasesitsinvestmentin

theearlier-stagecleanenergycompaniesthatemergefromgovernmentresearchanddevelopmentprograms.

•  Par:cipa:ngcountrieswillimplementMissionInnova:oninatransparent,effec:ve,andefficientmanner.

Declara'onsignedbythegovernmentsofAustralia,Brazil,Canada,Chile,China,Denmark,France,Germany,India,Indonesia,Italy,Japan,Mexico,Norway,RepublicofKorea,SaudiArabia,Sweden,theUnitedKingdomofGreatBritainandNorthernIreland,theUnitedArabEmirates,andtheUnitedStatesofAmerica:

Seite Wuppertal Institut

National analysis (e.g. Germany) confirm affordability of ambitious GHG mitigation targets and innovation needs

10Februar 13, 2018

Seite Wuppertal Institut

German Energy Concept Central milestones and underlying sub-targets for Energiewende

11

§  Reduction of GHG emissions: 80-95% until 2050

§  Renewable energy share of gross final energy consumption:

60% until 2050§  Share of electricity production from renewables:

80% until 2050§  Reduction of energy demand compared to 2008:

- Gross final energy consumption 50% until 2050- Gross electricity demand 25% until 2050

§  Nuclear power phase outShutdown of all nuclear power plants until 2022

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1990

1994

1998

2002

2006

2010

2014

2018

2022

2026

2030

2034

2038

2042

2046

2050

Emis

sion

en in

taus

end

Tonn

en C

O2e

q

GHG

CO2

IPCC 2007 -80% by 2050

IPCC 2007 -95% by 2050

German government 2007/2009 Merkel/Gabriel: -40% to 2020 conditional)

Merkel/Röttgen: -40% to 2020 (without conditions)

German government 1995Kohl/Töpfer: -25% bis 2005

UN: Kyoto 1992EU: Manchester 1998 D: -21% by 2012

Ø Germanyhasalreadyachievedsignificantresults...Ø ...butthereiss:llanlonglongwaytogo!

Current emissions in 2015: 908 Mio. t CO2eq (ca. -27 % compared to 1990)

Achievingthegoalswhileguaranteeingcompe;;veness,takingsocialconcernsandsystemstabilityintoconsidera;on(sustainabilitytriangleasunderlyingprinciple)

German energy concept – launched in 2010 (adapted in 2011)

Seite Wuppertal Institut

-1,8 %/a-0,8 %/a

-0,5 %/a

- 6,0 %/a

Increase in 2012 and 2013 of ca. 1,2%/a

Clim

ate

prot

ectio

nac

tion

plan

Clim

ate

prot

ec-

tion

plan

205

0

2009: financial crisis

Energy supply sector as main driver due to low CO2-price

Decrease in 2014 of ca. 4%, slight increase of 2015 – 2017: small increase (0,5 – 1,2%/a)

12

Quantitative targets of energy system transition pathway Promising GHG reduction since 1990 but still significant gap between current status (trend) and mid- and long-term targets

Quelle:AGEnergiebilanzen2015Februar 13, 2018

> 3.6 %/a

Seite Wuppertal Institut13Februar 13, 2018

Quantitative targets of energy system transition pathway The gleam of hope – conservative industrial associations acknowledge GHG mitigation goal and even expect positives national economic impulses

Quelle:BDI2017

18. Januar 2018

POSITION | BUNDESVERBAND DER DEUTSCHEN INDUSTRIE e. V.

BDI-Handlungsempfehlungen zur Studie „Klimapfade für Deutschland“ 19.01.18 14:13BDI The Voice of German Industry

Seite 1 von 3https://english.bdi.eu/#/article/news/climate-protection-needs-massive-investment-drive-according-to-new-bdi-study/

Climate protection needs massiveinvestment drive according to new BDIstudy

An 80 percent reduction in greenhouse gas emissions by 2050 is techni-

cally and economically feasible. An essential step to achieving this is to

release energy-intensive businesses from the extra burdens imposed by

climate policy that have no international counterpart.

Climate protection needs a massive investment drive. An 80 percent reduction in green-house gas emissions by 2050 against 1990 is technically and economically feasible. Anessential step to achieving this is to release energy-intensive businesses from the extraburdens imposed by climate policy that have no international counterpart. In this case,Germany would be able to unilaterally reach the 80 percent goal without hurting theeconomy. Under these conditions, industrial enterprises would even benefit from ambi-tious climate targets, says the new study “Climate paths for Germany” commissionedby the BDI and presented at a climate congress in Berlin on Thursday.

Additional investment of around 1.5 trillion euros would be necessary to cut emissions80 percent by 2050, according to the study. This scenario is based on the best possibleimplementation and policy framework. The study further concludes that as things standa 95 percent reduction in emissions would come up against major barriers in terms ofacceptance and implementation and is therefore unrealistic. This level of reductionwould only be conceivable if all major economic regions undertook comparable climateprotection efforts. The future federal government should commission independent mon-itoring on this front. The level of extra investment required in this 95 percent reductionscenario would amount to around 2.3 trillion euros by 2050.

“Misguided policy remains the greatest risk for the implementation of climate protec-tion measures,” warned BDI President Dieter Kempf. “Investment, whether in housing,transportation, industry or agriculture, doesn’t happen just like that. The current courseof climate protection policy in Germany makes it likely that we will fall far short of thetargets set.” Climate protection measures that are beneficial from an overall economicperspective are not necessarily profitable at the business level. The study reveals a sig-nificant gap between the set climate targets and the funds available to achieve them.Without additional political efforts, a 61 percent reduction in greenhouse gas emissionsby 2050 is realistic. All investment decisions beyond this will only be made with addi-

Seite Wuppertal Institut14Februar 13, 2018

Quantitative targets of energy system transition pathwayThe gleam of hope – conservative industrial associations acknowledge GHG mitigation goal and even expect positives national economic impulses

1.  With a continuation of current efforts and foreseeable technological developments a reduction of 61% GHG is possible by 2050à a gap of 19-34% is left.

2.   80% GHG reduction is technically possible and economically viable à but this requires a significant strengthening of existing efforts, political reversals and an effective carbon leakage protection.

3.  95 % GHG reduction is the limit of foreseeable technical feasibility and social acceptance today à but this requires practically 0 emissions for large parts of German economy.

4.   „Game-Changer“ can potentially facilitate and mitigate climate goalsà Their operational readiness is currently not foreseeable and is therefore not assumed to achieve the goals.

Quelle:BDI2017

Seite Wuppertal Institut15Februar 13, 2018

Quantitative targets of energy system transition pathway The gleam of hope – conservative industrial associations acknowledge GHG mitigation goal and even expect positives national economic impulses

Quelle:BDI2017

5.  „From today's point of view, the cost-effective achievement of climate change paths would require a total of 1.5 to 2.3 trillion € additional investment by 2050à This corresponds to average annual additional investment of around 1.2% -1.8% of German gross domestic product (GDP) by 2050.

6.  In the case of optimal political implementation, macroeconomic effects of the considered climate pathways still can be neutral („black zero“) à protection of vulnerable industries is needed to minimize the risk of weakening industrial value creation (carbon leakage protection).

7.  Successful protection efforts require extensive renewal of all sectors of German economy à opening of new opportunities for Germany in a growing „climate protection“ market.

Seite Wuppertal Institut16Februar 13, 2018

Quantitative targets of energy system transition pathway The gleam of hope – conservative industrial associations acknowledge GHG mitigation goal and even expect positives national economic impulses

Quelle:BDI2017

8.  At the same time the transformation process will confront Germany with considerable challenges in terms of implementationà Pathways are economically cost-efficient and require „right decisions at the right time“.

9.  Successful climate protection in Germany could motivate imitators internationally – in case of negative economic impacts efforts could deter.

10. A successful achievement of the German climate goals and a positive international multiplier effect are therefore a political, social and economic act of strengthà A farsighted climate, industrial and social policy, based on competition, cost efficiency and distributing social costs fairly, is needed.

Seite Wuppertal Institut17Februar 13, 2018

Quantitative targets of energy system transition Necessary sector specific reduction of GHG emissions in 80% and 95% mitigation scenario in comparison to a reference case

Quelle:BDI2017

18. Januar 2018

POSITION | BUNDESVERBAND DER DEUTSCHEN INDUSTRIE e. V.

BDI-Handlungsempfehlungen zur Studie „Klimapfade für Deutschland“

BDI-Handlungsempfehlungen zur Studie „Klimapfade für Deutschland“

7

- Die Zielerreichung in Deutschland hängt insbesondere von globalen Entwicklungen ab, die nicht

national beeinflussbar sind. Wenn sich trotz eines Hinwirkens Deutschlands auf die Umsetzung eines vergleichbaren Ambitionsniveaus dieses nicht einstellt, sind 95 Prozent THG-Reduktion in Deutschland unrealistisch. Daher müsste dieses Ziel dann aufgegeben werden.

Quelle: BCG/BDI

Die Finanzierung der notwendigen, sehr hohen Investitionen ist Teil eines gesellschaftlichen Aushandlungsprozesses, der in einem partizipativen Ansatz Investitionen und mögliche Einsparungen in den Blick nimmt und auf die politische Tagesordnung gesetzt werden muss.

� Zu dem politischen Zielkorridor von 80 bis 95 Prozent THG-Reduktion existiert ein signifikantes Gap. Diese Lücke beträgt je nach Szenario 19 bis 34 Prozentpunkte. Das Schließen erfordert einen gesellschaftlichen Kraftakt ebenso wie politische und finanzielle Anstrengungen in Form von Flankierung sowie deutlich erhöhte Innovationen.

� 80 Prozent der emissionsmindernden Maßnahmen im 80-Prozent-Klimapfad haben direkte positive Vermeidungskosten, d. h. die Maßnahmen kosten mehr als sie einsparen. Selbst Maßnahmen, die negative volkswirtschaftliche Vermeidungskosten aufweisen, müssen immer dann flankiert werden, wenn sie eine niedrigere als die vom Entscheider erwartete, d. h. marktübliche und betriebswirtschaftlich notwendige, Verzinsung aufweisen. Praktisch alle Maßnahmen, die über den Referenzpfad von 61 Prozent Minderung hinausgehen, müssten daher in jedem Fall zusätzlich durch politische und finanzielle Instrumente angereizt werden.

� Die Umsetzung des 80-Prozent-Ziels wäre mit Mehrinvestitionen von in Summe 1,5 Bill. Euro verbunden. Dieser Wert kann bei nicht optimaler politischer Umsetzung sogar noch höher ausfallen. Den Mehrinvestitionen stehen potenzielle Energiekosteneinsparungen gegenüber, sodass die kumulierten Mehrkosten, z. B. im 80-Prozent-Klimapfad bei „Nationalen Alleingängen“ 470 Mrd. Euro betragen würden (abhängig von der Ölpreisentwicklung).

� Die 80- und 95-Prozent-Klimapfade haben unter den beschriebenen Voraussetzungen neutrale volkswirtschaftliche Effekte („schwarze Null“) – unter der Bedingung eines umfassenden

Seite Wuppertal Institut18Februar 13, 2018

Quantitative targets of energy system transition pathway Technology combination to achieve GHG emissions reduction for the 80% and 95% mitigation scenario

Quelle:BDI2017

18. Januar 2018

POSITION | BUNDESVERBAND DER DEUTSCHEN INDUSTRIE e. V.

BDI-Handlungsempfehlungen zur Studie „Klimapfade für Deutschland“

BDI-Handlungsempfehlungen zur Studie „Klimapfade für Deutschland“

10

2. Erforschung, Erprobung, Demonstration und Unterstützung aus heutiger Sicht langfristig systemrelevanter Zukunftstechnologien bis zur Marktreife1, auch im innovativen Zusammen-spiel eines zukünftigen Energiesystems. Das betrifft zum Beispiel Technologien, wie Power-to-Gas, Power-to-Liquid, Power-to-Chemicals, erste Einsatzfelder von Wasserstoff und CCU, sowie – bei entsprechender Klimaschutzambition – auch die CCS-Technologie.

3. Kontinuierliche Neuausrichtung der deutschen Forschungspolitik an internationalen Prioritäten. Denn neben dem Gelingen des Klimaschutzes kann eine Innovationsführerschaft in Deutschland zu einer besseren Chancenwahrnehmung weltweiter Marktpotenziale für deutsche Unternehmen beitragen.

4. Förderung der Entwicklung und industriellen Umsetzung neuer Produktionstechnologien zur CO2-armen und/oder lastflexiblen Herstellung energieintensiver Grundstoffe.

Technologieoffene Instrumente statt Verbote

Ambitionierte Klimaschutzziele sind nur dann effizient erreichbar, wenn technologieoffene Instrumente angewendet werden und keine Technologien a priori ausgeschlossen werden (z. B. Verbrennungs-motor, Kohleverstromung, Brennwertheizung, CCS/CCU).

Bereits Diskussionen über mögliche Verbote erzeugen Unsicherheit und wirken schädlich. Dies erhöht letztendlich die Kosten des Klimaschutzes und kompromittiert somit seine Umsetzung.

Quelle: BCG/BDI

1 Gemeint ist v. a. Grundlagen- und experimentelle Forschung. Vergleiche dazu: BDI-Position zur Energieforschung („Strukturelle Anforderungen der deutschen Industrie an das 7. Energieforschungsprogramm der Bundesregierung“) vom Juli 2017.

Seite Wuppertal Institut

Excusus - renewable energies sustainable economic development from global perspective

19Februar 13, 2018

Seite Wuppertal Institut20

Why focus on renewable energies and energy efficiency Selected driving forces for renewable energies

12

RENEWABLE ENERGIES: GUARANTORS OF A FUTURE-PROOF ENERGY SUPPLY

Security policy significance of renewable energies

Reduced vulnerabilityReduced import dependency

Diversification of energy carriers and producting countries

Creation of new possibilitiesfor development

Reduced consequences of climate change

RENEWABLE ENERGIES AND SECURITY

Phasing out of high-risk technologies (nuclear power)

Decentralisation of supply structures (transmission grids and

generation facilities)

Energy access for resource-poor countries (rural electrification)

Regionally more just distribution of the profits from the export of

energy resources

Mitigation of the adverse social and health effects in underdeveloped

countries

Increase security of supply with various options and locations

for energy generation

Defuse potential for conflict between countries that export

and import petrol

Germany is already very dependent on imports at present (nuclear 100 %/

mineral oil 97 % /natural gas 83 %).

Renewable energy reduces the emission of greenhouse gases

Extreme weather, a deterioration of fertile soil, and reduced accessibility to water aggravate regional resource conflicts – developing countries are

hit particulary hard

Source: IFEU after Wuppertal Institute and Adelphi Consult

The looming shortages in oil and natural gas are also reflected in the ‘reserves-to-production ratios’ (RPRs) for these energies (see the graph ‘Reserves-to-produc-tion ratios’). RPRs represent the time (in years) within which reserves will be completely exhausted if their current consumption rates remain constant. Conven-tional mineral oil has the lowest RPR of 42 years. In-cluding non-conventional mineral oils (heavy oil, oil sands, oil shale) increases its RPR to 58 years. Natural gas will last for about 63 years if the consumption rate remains constant, whereas our coal reserves will be available for a considerably longer period of time. Uranium, another finite energy source, will only last for about 30 years if it is used in light water reactors without spent nuclear fuel being reprocessed. At first, these figures might not seem alarming. However, this way of presenting the data neglects three aspects:

� Increasing prices and the resulting economic dis-ruption are anticipated long before our fossil en-ergy reserves run out – once supply can no longer meet demand. The point of maximum oil produc-tion (‘peak oil’) will soon be passed for mineral oil; and what is referred to as the ‘mid-depletion point’, at which half of our oil reserves will have been consumed, is set to be reached within the next five to 20 years if consumption continues at the current or even higher rates. By that time, at the latest, there are likely to be considerable price increases for crude oil. Natural gas alone cannot make up for the shortfall in supply, and extracting reserves of non-conventional oil is always more ex-pensive, as well as being significantly more detri-mental to the environment and the climate. How-ever, if humanity starts reducing its consumption of finite energy carriers now, we will protect our-selves against the dangers of dramatic price surges like those seen for mineral oil in the 1970s and at the end of 2008.

Februar 13, 2018

Seite Wuppertal Institut

Why focus on renewable energies and energy efficiency Rewewable energy technologies as major driver for employment – employment effects along the value chain

21

Figure 2 Solar PV value chain

Project Planning

Procurement Manufacturing Transport Installation Grid Connection

Operation and Maintenance

Decommis- sioning

Support Services

Consulting

Administrative Activities

Education

Policy Making

Financing

Research and Development

Source:IRENA2017Februar 13, 2018

Seite Wuppertal Institut

Why focus on renewable energies and energy efficiency Rewewable energy technologies as major driver for employment – employment effects along the value chain

22Source:IRENA2017

Figure 4 Distribution of human resources required along the value chain for the development of a 50 MW solar PV plant, by activity

Project planning

1 %Decommissioning

2 %

Operation and maintenance

56 %

Installation andgrid connection

17 %

Manufacturing andprocurement

Transport

22 %

2 %

person-days

TOTAL

229,055

Februar 13, 2018

Seite Wuppertal Institut

Why focus on renewable energies and energy efficiency Rewewable energy technologies as major driver for employment – employment effects along the value chain

23Source:IRENA2017

Constructionworkers

48 %Safety experts

19 %

Administrative and accountant personnel

1 %

Industrial, electrical and telecommunication engineers

15 %

Lawyers, experts inenergy regulationand management

1 %

Operators

8 % Technical personnel

8 %

person-daysper year

TOTAL

13,560

Figure 11 Distribution of human resources required to operate and maintain a 50 MW solar PV plant, by occupation

Februar 13, 2018

Seite Wuppertal Institut24Source: Standford 2017

Regional economic benefits and job creation as important driverStandford university expects significant positive job effects for a 100% renewable energy scenario (net balance: jobs created versus jobs lost)

Februar 13, 2018

Erneuerbare + Effizienz: Eine JobmaschineEin globales 100% Erneuerbare Szenario (Stanford University 2017)

10.11.2017 Prof. Dr. Peter Hennicke 22

Seite Wuppertal Institut© Fraunhofer ISE

2

Price Experience Curve of Solar Energy (c-Si Photovoltaics) - Driven by Innovation & Market Introduction! Preis über kumulierter Kapazität in GW

Learning Rate: Each time the cumulative c-Si PV production doubled, the price went down by 20 %

- by a factor of 10 in 25 years!

Solar Electricity Today: 8-10 ct/kWh in Germany, half in sun-rich countries!

Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: ISE 2014

Strong economic reasons to aim for an energy system transition Technological progress and substantial market penetration led to an immense decrease of costs (example: PV modules)

25

3.

MW250,000

200,000

150,000

100,000

50,000

02000 2005 2010 2015

Actual Solar PV Market

IEA Advanced ER 2012

IEA WEO 2011 (450ppm)

IEA WEO 2010 (450ppm)

IEA WEO 2010 (REF)

SG II 2004

SG I 2001SG III 2006

SG V 2008 (adv.)

SG VI 2010 (adv.)

SG IV 2007 (adv.)

IEA Advanced ER 2010

IEA WEO 2009 (REF)

IEA WEO 2007 (REF)

IEA WEO 2005 (REF)

IEA WEO 2002 (REF)

IEA WEO 2000 (REF)

Advanced ER 2010IEA WEO 2011 (REF)

G R E A T D E B A T E S : I N F O C U S

Figure 17: Solar photovoltaic projections versus real market developments

DEVELOPMENT OF THE RENEWABLE POWER MARKET OVER THE PAST DECADE

Since 2013 every second new build power plant has been based on renewable energy technologies. Table 4 shows the market development of renewables since 2004. The development of wind and solar photovoltaics since 2014 has been outstanding and has significantly changed the way utilities operate in countries like Germany, Denmark and the USA.

ANNUAL MARKET FOR RENEWABLES: PAST, PRESENT AND FUTUREEvery year a certain number of new power plants are connected to the grid worldwide. Since 2013 more renewable power plants were installed than coal and gas power plants combined. The global generation mix is slowly changing in favour of renewables. The situation differs across countries, however; as industrialised countries retire old fossil and nuclear capacities, most developing countries continue to build first generation power plants. The future power generation share of renewables will depend on the annual market and to what extent old conventional capacities are retired. Figure 18 shows the development of all power plant technologies between 2000 and 2015.

Source: REN 21 – Global Status Report 2004 – 2016

45

Februar 13, 2018

2017

Lessthan2.5ct/kWh(2017auc;ons)

Seite Wuppertal Institut26

Strong economic reasons to aim for an energy system transitionRenewable energies are already a competetive option in many world regions - results from recently conducted auctions

Februar 13, 2018

Grüner Strom aus PV und WindRekordpreise in 2017

Source: Bloomberg New Energy Finance; Images Siemens; Wikimedia Commons; Masdar

Country:Bidder:Signed:Construction:Price:

MoroccoEnel Green Power20162018US$ 3.0 c/kWh

Solar PV Onshore wind Offshore wind

Country:Bidder:Signed:Construction: Price:

United Arab EmiratesMarubeni and Jinko Solar20172019US$ 2.42 c/kWh

Country:Bidder:Signed:Construction:Merchant Price:

GermanyDONG/EnBW20162024US$ 4.9 c/kWh

10.11.2017 Prof. Dr. Peter Hennicke 27

Seite Wuppertal Institut27

Strong economic reasons to aim for an energy system transition Renewable energies are already a competetive option in many world regions

27

A ceiling of $106/MWh had been set on the solar electricity  price. However, when the project developers started reverse bidding, the average price of electricity (for the 1048 MW worth of projects which will see the light of day, pun intended) came down to $89/MWh. That’s very low, lower than what fossil fuels or nuclear can offer.Februar 13, 2018

Seite Wuppertal Institut28

Strong economic reasons to aim for an energy system transition Renewable energies are already a competetive option in many world regions

Februar 13, 2018

Seite Wuppertal Institut

Source: Agora/ Prognos 2014

Strong economic reasons to aim for an energy system transition Comparison of costs of new nuclear power plants with PV and wind shows that there is no better alternative (levelized costs of electricity)

29Februar 13, 2018

Seite Wuppertal Institut30Source: Hokestra 2017, Data from IEA 2017

Strong economic reasons to aim for an energy system transitionMaket deployment of renewable energies has been signifcantly underestimated by IEA World Energy Outlooks 18.10.17 23:09IEA: Systematische Fehlprognosen - klimaretter.info

Seite 2 von 5http://www.klimaretter.info/energie/hintergrund/23799-iea-systematische-fehlprognosen

(http://bilder.klimaretter.info/filestore/1/9/8/0/3_c316a6bbd604b7b/19803_15ef96330b8700e.jpg?v=2017-10-16+14%3A04%3A23)Jährlicher Zubau an Solaranlagen weltweit: IEA-Prognosen seit 2002 und tatsächlicheEntwicklung ("PV History") in Tausend Megawatt. (Grafik: Auke Hoekstra, Daten: IEA, PVMA)

Die IEA veröffentlicht jedes Jahr eine Vorhersage zur Entwicklung derEnergiebranche. Dieser "World Energy Outlook" (WEO) unterschätzt jedes Mal(http://www.klimaretter.info/energie/nachricht/22271-iea-erneuerbare-und-gas-wachsen) das Wachstum der Erneuerbaren. Wer eine verlässlicheVorhersage sucht, sollte es hiermit versuchen: Nächstes Jahr wird die IEA ihrePrognose für die Erneuerbaren wieder nach oben korrigieren, so wie sie dies seit2004 tut.

Besonders eindrücklich zeigt dies Auke Hoekstra(https://twitter.com/aukehoekstra) von der Technischen Universität Eindhovenin der obigen Grafik. Dort sieht man, dass die IEA ständig davon ausgeht, derZubau an Solaranlagen habe einen Höhepunkt erreicht und bleibe für die

AnnualinstalledcapacityinPVsystems

Februar 13, 2018

Seite Wuppertal Institut

Selected socio-economic impacts of the German Energiewende

31Februar 13, 2018

Seite Wuppertal Institut32

Increase of renewable energies as main element of Energiewende Growing share of renewable energies in electricity mix over the last decades

Quelle:BMWi2016Februar 13, 2018

PART I : RENEWABLE ENERGY IN GERMANY 9

Downwards trend in the expansion of photovoltaics capacity halted

Following a three-year decline in the expansion of photo-voltaics, 2016 saw this trend reversed. In this year, 1,524 megawatts of capacity was newly installed, up just slightly

on the preceding year (2015: 1,450 megawatts). This did, however, lie considerably below the target corridor of 2,400 to 2,600 megawatts. This meant that by the end of 2016, photovoltaics installations across Germany had a combined total capacity of 40,874 megawatts. Despite the increase in capacity, the amount of electricity generated by these

Hydropower 10.9

Biogenic fraction of waste 3.1

Biogenic solid fuels2 5.8

Wind energy onshore 35.2

Biogenic liquid fuels 0.2

Biogas1 16.9

Sewage gas 0.8

Landfill gas 0.2

Geothermal energy 0.1

Photovoltaic 20.2

Wind energy offshore 6.5 

Biomass total 27.0

Wind energy total 41.8

Total:188.2 billion

kWh

Figure 4: Renewables-based electricity generation in 2016share in percent

1 Incl. biomethane2 Incl. sewage sludge

Source: Federal Ministry for Economic Affairs and Energy based on data from AGEE-Stat and other sources, see Figure 6, some figures provisional

200

150

100

50

Figure 5: Electricity generation from renewable energy sourcesin billion kWh

Hydropower Biomass1 Wind energy Photovoltaics

1 Incl. solid and liquid biomass, biogas incl. biomethane, sewage gas and landfill gas incl. sewage sludge and the biogenic share of wasteGeothermal power plants are not shown here because of the very small share involved.

Source: Federal Ministry for Economic Affairs and Energy based on data from AGEE-Stat and other sources, see Figure 6, some figures provisional

1990 2000 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

18.9

250

02005

62.571.6

88.3 93.2 94.9104.4

123.1

142.4151.3

161.4

187.4 188.2

36.0

Substantial increase in 2017 (+28,7%) – renewable energies covered 33 % of electricity generation in the country (nuclear energy is responsible for only 14.1 %)

216,9

Seite Wuppertal Institut

Although substantial increase in volatile electricity generation system and grid stability and reliability could be secured System Average Interruption Duration (SAID) Index is even shrinking

33

© Fraunhofer ISE

7

Grid stability with growing amounts of fluctuating RE: Grid in Germany today more stable than in 2006!

Quelle: BMWi 2015

1„SystemAverageInterrup:onDura:onIndex“(SAIDI)describesthecumula:veannualaverageblackout:meforcustomers(forperiodslongerthanthreeminutes).Currentlysystemstabilitylevelincomparisontoothercountriesisextremelyhigh.

SystemAverageInterrup;onDura;onIndex1

Shareofrenewableenergiesinelectricitymix

Februar 13, 2018

Seite Wuppertal Institut

PART I : RENEWABLE ENERGY IN GERMANY20

were avoided. This shows that roughly two-thirds of the greenhouse gas emissions that were avoided in gross elec-tricity generation from renewables accrue to Germany, and around one-third are accounted for by a shift in gener-ation in neighbouring countries [20].

sions of the individual greenhouse gases and air pollutants were derived by the Federal Environment Agency roughly on the basis of its figures for total greenhouse gas emissions, and also taking into account the findings of the research project ‘BioEm’ [22] and other expertise, as well as various assumptions and analogous conclusions.

Overall, it can be estimated that due to the general use of the regional NUTS2 values for biomass cultivation and the way in which the use of methanol in biodiesel production has been calculated thusfar, together with the requirements for substituting carbon dioxide emissions from fossils through those from biogenic fuels, the figures for the reduction in emissions based on the use of biofuels can be assumed to be optimistic.

The sharp increase in the use of energy crops in Germany went hand-in-hand with both direct and indirect changes in land use, which caused carbon dioxide emissions to rise. (Under the sustainability ordinances that have been put in place, direct changes in land use for the purposes of pro-ducing biofuels and bioliquids have been banned since

Note: For a detailed explanation of the basic methodology used to calculate the emission balances for renewable energy sources, please see the Federal Environment Agency publication Emissionsbilanz erneuerbarer Energieträger – Bestimmung der vermiedenen Emissionen 2016 (in German) [21].

12020 40

Figure 25: Net balance of the greenhouse gas emissions avoided through the use of renewable energy sources in 2016

in million t CO2 equivalent

Electricity 119.3 million t

Heat 34.5 million t

Transport1 6.3 million t

Biomass Hydropower Windenergy Photovoltaics Solarthermal Geothermal

60 80 100

1 biofuels in the transport sector

26.9 15.3 53.6 23.40.09

31.0 2.01.5

6.3Total

avoided GHG:160.1 million tCO2 equivalent

1.5 million t/1.0 %2 million t/1.3 %

15.3 million t/9.6 %

64.2 million t/40.1 %

53.6 million t/33.5 %

23.4 million t/14.6 %

1400

The emissions balance for the use of biomass also depends on the nature and provenance of the raw materials [22]. If the raw materials are not waste or biogenic waste, the calculations must take account of changes in land use resulting from the agricultural cultivation of energy crops. Due to a lack of data, it was not however possible to take account of indirect displacement effects.

For the first time following the introduction of the green-house gas quota, the calculation of emissions from biofuels is based on self-assessment and estimates of the level of greenhouse gas emissions (incl. the raw materials base), as published by the Federal Office for Agriculture and Food in its annual Evaluation and Progress Report on the Biofuel/Biomass Electricity Sustainability Ordinance [23]. The emis-

Sources: Federal Environment Agency, [21] based on the sources quoted therein, provisional figures

34

Socio-economic impacts of Energiewende Increasing share of renewable energies substantially avoided GHG emissions

Quelle:BMWi2017

In 2016 more than 160 Mio. t of CO2 could be avoided (ca. 13 % of total GHG emissions 1990 level)

Februar 13, 2018

Seite Wuppertal InstitutSource:BMUB2017

Socio-economic impacts of Energiewende Substantial economic impulses by investments in renewable energy technologies in 2016

35Februar 13, 2018

PART I : RENEWABLE ENERGY IN GERMANY26

right down to just under 11% by the year 2016. This cor-responds to an investment volume of €1.6 billion.

Investment in the other fields (electricity and heat from biomass, hydropower, solar and geothermal heat) totalled €3.4 billion in 2016, or around 23% of total investment. Investments in installations based on the use of heat from biomass, solar thermal energy and hydropower fell slightly

compared to the preceding year, while electricity generation from biomass and geothermal energy (incl. ambient heat) increased somewhat.

Price falls for renewable energy installations, especially photovoltaics installations, have meant that new instal-lations generally cost less (in real terms) than in the preced-ing year. This means that the desired expansion has been attained at lower investment costs than in the past.

Hydropower Wind energy Photovoltaics Solar thermal Geoth. energy, Biomass Biomass Total onshore offshore Energy ambient heat electricity heat

(Billion €)

2000 0.5 1.9 - 0.3 0.4 0.1 0.5 0.9 4.7

2005 0.2 2.5 - 4.8 0.6 0.4 1.9 1.5 12.0

2006 0.2 3.2 - 4.0 1.0 0.9 2.3 2.3 14.0

2007 0.3 2.5 0.03 5.3 0.8 0.9 2.3 1.5 13.6

2008 0.4 2.5 0.2 8.0 1.7 1.3 2.0 1.8 17.7

2009 0.5 2.8 0.5 13.6 1.5 1.2 2.0 1.6 23.6

2010 0.4 2.1 0.5 19.6 1.0 1.0 2.2 1.2 27.9

2011 0.3 2.9 0.6 15.9 1.1 1.1 3.1 1.3 26.2

2012 0.2 3.6 2.4 12.0 1.0 1.1 0.8 1.5 22.5

2013 0.1 4.5 4.3 3.4 0.9 1.1 0.7 1.5 16.5

2014 0.08 7.1 3.9 1.5 0.8 1.1 0.7 1.4 16.4

2015 0.06 5.4 3.7 1.6 0.8 1.0 0.2 1.3 14.0

2016 0.03 6.8 3.3 1.6 0.7 1.2 0.3 1.2 15.1

Figure 31: Investment in the building of renewable energy installations

Figure 32: Investment in the building of renewable energy installations in 2016

Wind energy onshore 45 %/6.8 billion €

Biomass electricity 2 %/0.3 billion €

Biomass heat 8 %/1.2 billion €

Solar thermal energy 5 %/0.7 billion €Geoth. energy ambient heat 8 %/1.2 billion €

Hydropower 0 %/0.03 billion €

Photovoltaics 11 %/1.6 billion €

Wind energy offshore 22 %/3.3 billion €

Most of the investment represented here was used for building new installations, with a smaller share being used for expanding or upgrading existing installations, for example for re-activating old hydroelectric power stations. The chart includes not only investment made by utilities, but also investment from industry, the commercial sector, trade and private households.

Total investment:15.1 billion €

Source: calculations made by the Centre for Solar Energy and Hydrogen Research (ZSW); rounded figures

Source: calculations made by the Centre for Solar Energy and Hydrogen Research (ZSW); rounded figures

Seite Wuppertal InstitutSource:BMUB2017

Socio-economic impacts of Energiewende Substantial economic impulses by operation of renewable energy technologies in 2016

36Februar 13, 2018

PART I : RENEWABLE ENERGY IN GERMANY28

Figure 34: Economic impulses from the operation of renewable energy installations in 2016

Biomass heat 20 %/3.1 billion €

Photovoltaics 9 %/1.5 billion €

Wind energy onshore 12 %/1.9 billion €

Source: calculations made by the Centre for Solar Energy and Hydrogen Research (ZSW); rounded figures

Biomass fuels 17 %/2.6 billion €

Biomass electricity 29 %/4.6 billion €

Hydropower 1 %/0.2 billion €

Geoth. energy, ambient heat 7 %/1.2 billion €

Solar thermal energy 2 %/0.3 billion €

Wind energy offshore 2 %/0.4 billion €

Promotion of renewable energy in the heating sector

Renewable Energies Heat Act

The purpose of this Act, which entered into force on 1 Jan-uary 2009 and has since been repeatedly amended, is to enable the energy supply to develop in a sustainable man-ner, whilst still maintaining a reasonable economic approach and acting in the interest of mitigating climate change, conserving fossil resources and reducing depen-dency on energy imports, and to ensure that the technol-ogies for generating electricity from renewable energy sources continue to be further developed. The Act is intended to help raise the share of renewable energy in energy consumption for heating and cooling to 14% by 2020.

The Renewable Energies Heat Act takes a two-fold approach: in Section 3, it addresses the obligation to use a certain proportion of renewable energy in the supply of heat to new buildings. Section 13, on the other hand, which provides for financial assistance (via the Market Incentive Programme) for measures to promote the use of renewable energy in the heat market, is mainly targeted at existing buildings.

In line with Section 18 of the Act, the Federal Government reports every four years on experience with the Act and submits proposals on its further development. The second Progress Report was published in November 2015. The developments so far show that the instruments of the Renewable Energies Heat Act are effective.

Energy saving requirements for buildings are not only set out in the Renewable Energies Heat Act (EEWärmeG), but also in the Energy Conservation Act (EnEV) and the Energy Savings Ordinance (EnEV). The Energy Conservation Act and the Renewable Energies Heat Act are to be brought together in a new act on energy in buildings, which is to put a uniform set of rules in place in which energy effi-ciency and the use of renewable energy in the building sec-tor are integrated. These uniform rules will make it easier for energy saving requirements in buildings to be applied and implemented in practice. Under the EU Building Direc-tive, a regulation setting out the nearly-zero energy stand-ard is to be developed for new non-residential, public-sector buildings used by the authorities by the end of 2018 and for private new buildings by the end of 2020. This is to take into account the economic efficiency of effecting such requirements.

The Federal Ministry for Economic Affairs and Energy and the Federal Ministry for the Environment, Nature Conser-vation, Building and Nuclear Safety have presented a draft Building Energy Act that embraces this new vision for energy saving law. Work on the bill is continuing [29].

The Market Incentive Programme

The Market Incentive Programme is intended to support the attainment of the goals of the Renewable Energies Heat Act by promoting sales of technologies which use renew-able energy. The Programme is subject to ongoing evaluation by experts [30] in order to assess the impact of the funding. The Programme was revised in 2015, and the new ‘Guide-lines Promoting Measures for use of Renewable Energy in the Heating Market’ [31] have been in force since 1 April 2015.

Total:15.6 billion €

Seite Wuppertal InstitutSource:BMUB2015

Socio-economic impacts of Energiewende Renewable energy technologies as major driver for employment in Germany

13

sächliche Entwicklung hatte. Es kann jedoch davon ausgegangen werden, dass der Anstieg der Be-schäftigung in Abbildung 4 vermutlich überzeichnet ist.

0

50

100

150

200

250

300

350

400

450

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Tsd.

Bes

chäf

tigte

Wasserkraft Wind an Land Wind auf See

Photovoltaik Solarthermie Solarthermische Kraftwerke

tiefe Geothermie oberflächennahe Geothermie, Umweltwärme Biogas

flüssige Biomasse stationär Biomasse Heiz-/Kraftwerke Biomasse Kleinanlagen

Biomasse stationär gesamt Biokraftstoffe öffentlich geförderte Forschung/Verwaltung

161

194

236

277

322340

367382

400

371355

Abbildung 4: Entwicklung der Beschäftigung in der Brache der erneuerbaren Energien in Deutschland.

AUSBLICK AUF 2015

Eine Einschätzung darüber, wie sich die EE-Beschäftigung 2015 entwickeln wird, ist in seiner Gesamt-heit zum jetzigen Zeitpunkt nicht möglich. Es gibt jedoch einzelne Sparten, in denen erste Vermutun-gen angestellt werden können.

Der Ausbau der Windenergie an Land wird in Deutschland 2015 aller Voraussicht nach niedriger aus-fallen als 2014. Im ersten Halbjahr wurden mit 1.185 MW Brutto etwa 31% weniger Windenergiean-lagen installiert als noch im Vorjahreszeitraum [Windguard 15c]. Ob ein möglicher Rückgang des In-landsgeschäfts durch das Auslandsgeschäft aufgefangen werden kann, kann zu diesem Zeitpunkt noch nicht gesagt werden. Bislang sind jedoch keine negativen Meldungen aus der Branche zu hören.

Die deutsche Windindustrie auf See, die einige schlechte Jahre hinter sich hat, scheint 2015 eine Trendwende zu erleben. Der Ausbau schreitet weiterhin sehr erfolgreich voran [WindGuard 15d] wobei sich momentan einige Windparks in der Entwicklung befinden, bei denen deutsche Unter-nehmen zum Zuge kommen. Eine weitere Meldung sei darüber hinaus an dieser Stelle erwähnt. Sie-mens hat angekündigt in Cuxhaven eine neue Produktionsstätte für die Herstellung von Maschinen-häusern zu errichten, die bereits 2017 anlaufen und 1.000 Personen beschäftigen soll [Siemens 15].

37Februar 13, 2018

Seite Wuppertal InstitutSource:BMUB2015

Socio-economic impacts of Energiewende Renewable energy technologies as major driver for employment in Germany

38Februar 13, 2018September 2016Seite 9

Entwicklung der Bruttobeschäftigung durch erneuerbare Energien in Deutschland

3.500

1.800

9.500

25.100

56.800

63.900

4.500

10.300

8.100

49.200

119.500

85.700

7.300

16.400

12.900

113.900

127.500

121.800

8.300

17.300

13.100

68.500

126.400

137.800

8.000

17.200

11.800

49.300

119.900

149.200

7.700

17.300

6.700

42.200

113.200

142.900

öffentlich geförderteForschung/Verwaltung

Geothermie

Wasserkraft

Solarenergie

Biomasse

Windenergie

2015: rd. 330.000 Arbeitsplätze*

2014: rd. 355.400 Arbeitsplätze*

2013: rd. 371.400 Arbeitsplätze*

2012: rd. 399.800 Arbeitsplätze

2007: rd. 277.300 Arbeitsplätze

2004: rd. 160.600 Arbeitsplätze

* Fortschreibung auf Basis von 2012

Seite Wuppertal Institut

Green technology market and related strategies in Germany Related employment effects not only relevant for new companies, but also new opportunities for traditional companies in new fields

Windenergyturbines

Transformer

Mikroan;corrosive

coa;ng

Bearingsfortower-undblades

Screwsfor;ghtentowerandrotor

connec;ons

Insuranceproducts

Highsophis;catedadhesivesand

sealants

Gearboxesandgrains

Tradi;onalcompaniespar;cipatewithspecificknowledgeinnew(renewableenergy)markets

39Februar 13, 2018

Seite Wuppertal Institut

Innovation effects of the German Energiewende and further necessary innovation impulses and smart approaches

40Februar 13, 2018

Seite Wuppertal Institut41

Rewewable energy technologies as major driver for innovation

FACTSHEET – RENEWABLES IN GERMANY 2

ECONOMIC BENEFITS:

Renewables – an investment hub:

The German economy profits from the advent and rise of renewable energies. Investment in new installations of renewable

energy plants increased to 18.8 billion Euro in 2014. Turnover from operating renewable energy plants amounted to 14.1 billion Euro in 2014.

Investment in new renewable energy installations according to sector since the year 2000:

2000 2005 2012 2013 2014

Wind energy 1.9 bn. Euro 2.5 bn. Euro 3.9 bn. Euro 6.6 bn. Euro 12.3 bn. Euro

Solar energy (PV and solar thermal) 0.8 bn. Euro 5.5 bn. Euro 12.2 bn. Euro 5.1 bn. Euro 3.1 bn. Euro

Biomass 1.1 bn. Euro 3.3 bn. Euro 2.9 bn. Euro 2.6 bn. Euro 2.4 bn. Euro

Hydro 0.7 bn. Euro 0.2 bn. Euro 0.3 bn. Euro 0.3 bn. Euro 0.1 bn. Euro

Geothermal and environmental heat 0.1 bn. Euro 0.3 bn. Euro 1.1 bn. Euro 1.1 bn. Euro 1.0 bn. Euro

Total 4.6 bn. Euro 11.9 bn. Euro 20.3 bn. Euro 15.7 bn. Euro 18.8 bn. Euro

Source: BMU/BMWi

Renewables – a cradle of innovation:

The rise of renewable energies fosters innovation. New patents are indicative of this development. The number of patents for renewables in Germany has steeply increased. In 2013, their number plateaued on a high level.

Number of patent applications in the area of renewable energies registered at the German Patent and Trade Mark Office:

2005 2010 2011 2012 2013

Solar 165 775 975 1.033 918

Wind 164 575 726 915 796

Hydro, Tidal 26 97 139 106 106

Biogas, Geothermal, others 44 116 164 152 132

Total 399 1.563 2.004 2.206 1.952

Source: DPMA

RENEWABLES - MORE AFFORDABLE THAN EVER:

Renewable energy technologies from Germany have shown that they are not just a clean, but also a cost-efficient solution for today’s energy needs:

x Wind power at very good onshore locations already has lower costs than new hard coal or combined cycle gas turbines power plants.

x Feed-in tariffs for new photovoltaic installations have come down by more than 70 % within the last 5 years. The boom of solar power in Germany contributed to making PV attractive in other developed and in developing countries.

x Other renewable energy technologies such as biomass, hydro and geothermal energy can ideally complement supplies from fluctuating sources.

x According to several studies, amongst them from IRENA and Fraunhofer ISE, there is ample potential for further cost reductions for a whole range of renewable energy technologies.

FACTSHEET – RENEWABLES IN GERMANY 2

ECONOMIC BENEFITS:

Renewables – an investment hub:

The German economy profits from the advent and rise of renewable energies. Investment in new installations of renewable

energy plants increased to 18.8 billion Euro in 2014. Turnover from operating renewable energy plants amounted to 14.1 billion Euro in 2014.

Investment in new renewable energy installations according to sector since the year 2000:

2000 2005 2012 2013 2014

Wind energy 1.9 bn. Euro 2.5 bn. Euro 3.9 bn. Euro 6.6 bn. Euro 12.3 bn. Euro

Solar energy (PV and solar thermal) 0.8 bn. Euro 5.5 bn. Euro 12.2 bn. Euro 5.1 bn. Euro 3.1 bn. Euro

Biomass 1.1 bn. Euro 3.3 bn. Euro 2.9 bn. Euro 2.6 bn. Euro 2.4 bn. Euro

Hydro 0.7 bn. Euro 0.2 bn. Euro 0.3 bn. Euro 0.3 bn. Euro 0.1 bn. Euro

Geothermal and environmental heat 0.1 bn. Euro 0.3 bn. Euro 1.1 bn. Euro 1.1 bn. Euro 1.0 bn. Euro

Total 4.6 bn. Euro 11.9 bn. Euro 20.3 bn. Euro 15.7 bn. Euro 18.8 bn. Euro

Source: BMU/BMWi

Renewables – a cradle of innovation:

The rise of renewable energies fosters innovation. New patents are indicative of this development. The number of patents for renewables in Germany has steeply increased. In 2013, their number plateaued on a high level.

Number of patent applications in the area of renewable energies registered at the German Patent and Trade Mark Office:

2005 2010 2011 2012 2013

Solar 165 775 975 1.033 918

Wind 164 575 726 915 796

Hydro, Tidal 26 97 139 106 106

Biogas, Geothermal, others 44 116 164 152 132

Total 399 1.563 2.004 2.206 1.952

Source: DPMA

RENEWABLES - MORE AFFORDABLE THAN EVER:

Renewable energy technologies from Germany have shown that they are not just a clean, but also a cost-efficient solution for today’s energy needs:

x Wind power at very good onshore locations already has lower costs than new hard coal or combined cycle gas turbines power plants.

x Feed-in tariffs for new photovoltaic installations have come down by more than 70 % within the last 5 years. The boom of solar power in Germany contributed to making PV attractive in other developed and in developing countries.

x Other renewable energy technologies such as biomass, hydro and geothermal energy can ideally complement supplies from fluctuating sources.

x According to several studies, amongst them from IRENA and Fraunhofer ISE, there is ample potential for further cost reductions for a whole range of renewable energy technologies.

Februar 13, 2018

Seite Wuppertal Institut

DIW Berlin: Politikberatung kompakt 93

6 Main current policy instruments applied and their effectiveness

61

Figure 6-5 Patent Applications in the fields of energy efficiency and renewable energies at the European Patent Office (2000, 2005 and 2010)

Source: DIW Econ based on data from the European Patent Office (EPO 2014).

DE 00

DE 05

DE 10

FR 00 FR 05

FR 10 JP 00

JP 05

JP 10

US 00

US 05

US 10

UK 00 UK 05

UK 10

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

Num

ber o

f Pat

ent A

pplic

atio

ns fo

r Ren

ewab

le

Ene

rgie

s

Number of Patent Applications for Energy Efficiency Technologies

Rewewable energy technologies as major driver for innovation

42Februar 13, 2018

Seite Wuppertal Institut

Expenditures for energy related R&D significantly increased over the last years (particularly for renewable energy and energy efficiency)

43

RESEARCH AND DEVELOPMENT FOR THE ENERGY TRANSITION8

Wind energy – continuing to gain momentum

Over 50 percent more electricity was generated from wind energy in 2015 than in the previous year. According to ini-tial forecasts made by the IWR (the International Economic Forum for Renewable Energies), a total of 86.8 gigawatt hours of electricity was fed into the grid. By way of com-parison: this figure reached just 57.4 gigawatt hours in 2014. Research funding from the BMWi in the area of wind energy supports this expansion with targeted funding measures to make turbines more efficient and reliable and to reduce costs. The aim is to replace smaller turbines with more powerful ones and thus contribute to reducing instal-lation costs. In order to develop ever larger wind turbines, which are at the same time more robust, efficient and durable, it is necessary to test the components comprehen-sively. At the nacelle testing laboratory DyNaLab operated by the Fraunhofer Institute for Wind Energy and Energy System Technology IWES in Bremerhaven, complete nacelles with a power output of up to 8 megawatts have been tested since autumn 2015. Whether lightning strikes, short-circuits or gale-force winds: All adverse conditions that wind tur-bines are exposed to in nature can be simulated at this glob-ally unique testing facility. The BMWi funded this project with around 19 million euros. In the area of wind energy, the BMWi approved funding for a total of 103 new research projects with a funding volume of around 85.4 million euros in 2015 (previous year: 63 projects with around 38.5 million euros). Ongoing projects received around 53 million euros in 2015.

The solar sector basks in new world records

Electricity from the sun’s energy can be generated using two fundamentally different methods: Photovoltaics utilise the physical characteristics of semiconductors to generate electricity; solar thermal power plants in contrast, use the heat generated by the sun’s rays to drive the power plant process. The BMWi funds research projects for both tech nol -ogies.

The German market continued to be difficult for the photo-voltaic industry in 2015. In contrast, global photovoltaic business developed positively – the German plant industry achieved a global market share of 50 percent in the first nine months of the year. This positive development is set to continue. The BMWi is contributing to this development with its research funding, with the aim of further reducing the cost of generating electricity from photovoltaics. One method to achieve this is to secure a higher yield through higher levels of efficiency. Successful examples of inno-vative and high yield solar cell concepts are the newly devel oped PERC technology and TOPCon solar cells. These two technologies enabled Germany to set new efficiency world records in 2015.

In the area of solar thermal power plants, Germany also primarily focuses on the export market. Solar thermal power plants require a climate with high direct irradiance as found in Southern Europe, North Africa or the USA. Research funding aims to help reduce the cost of this tech-nology in order to make it competitive with other renew-

Volume of funding for ongoing projects

2015

2014

2013

2012

2011

0 50 100 150 200 250 300 350 400in million euros

Wind energy

Photovoltaics

Solar thermal power plants

Deep geothermal energy

Hydropower and ocean energy

Power plant technology and CCS technologies

Fuel cells and hydrogen

Storage systems

Grids

Energy efficiency in buildings and cities

Energy efficiency in the industry, commerce, trade and services sector

Electromobility

Overarching issues and systems analysis

Source:BMWi2016Februar 13, 2018

Seite Wuppertal Institut

Expenditures for energy related R&D significantly increased over the last years (particularly for renewable energy and energy efficiency)

44Source:BMWi2016

Innovation Through ResearchThe energy transition – a great piece of work

Renewable Energies and Energy Efficiency:Projects and Results of Research Funding in 2015

RESEARCH AND DEVELOPMENT FOR THE ENERGY TRANSITION10

The energy system of the future: Flexibility in the feed-in, storage and distribution of electricity

Electricity and heat generated from the wind or sun are dependent on the strength of the wind or the level of solar radiation. Flexibility is required, especially in the feed-in, storage and distribution of the generated energy. The BMWi supports research projects that create the required technical and system-related conditions. The most important issues include questions such as how can the electricity grids at all voltage levels be converted and expanded in order to, for example, transport electricity generated from wind energy in Northern Germany for use in Southern Germany. The various storage technologies for heat and electricity

also need to be developed further. The BMWi has thus funded the development of the world’s largest electrolysis plant – Energiepark Mainz – which has been using sur plus electricity from wind turbines for the production of hydro-gen that is then fed into the gas grid since the summer of 2015. Overall, the BMWi approved around 120.7 million euros of funding for new research projects in the area of grids and storage systems in 2015.

In order to exploit synergies and define funding themes, the German Federal Government has created a number of different initiatives. The “Energy Storage Funding Initia-tive”, jointly supported by the Federal Ministry for Economic Affairs and Energy and the Federal Ministry of Education and Research (BMBF), has grouped more than 280 research

Wind energy

Photovoltaics

Solar thermal power plants

Deep geothermal energy

Hydropower and ocean energy

Hydropower and ocean energy

Fuel cells and hydrogen

85.39 Mio. €/16 %

78.64 Mio. €/14 %

3.76 Mio. €/1 %

17.33 Mio. €/3 %

2.33 Mio. €/0 %

53.97 Mio. €/10 %

25.35 Mio. €/5 %42.79 Mio. €/8 %

77.92 Mio. €/14 %

58.48 Mio. €/11 %

17.40 Mio. €/3%

Volume of funding for newly approved projects in 2015

Storage systems

Grids

Energy efficiency in buildings and cities

Energy efficiency in the industry, commerce, trade and services sector

Electromobility

Overarching issues and systems analysis

73.48 Mio. €/13 %

11.17 Mio. €/2%

Februar 13, 2018

Seite Wuppertal Institut

New research networks help to deal with more complex R&D tasks and higher-level energy system analysis

45Source:BMWi2016

Energiewende Plattform Forschung und Innovation

Energie in Gebäuden

und Quartieren (Start 4.10.14,

9 AG) Fors

chun

gs-

Net

zwer

ke

Ener

gie

Energie-system-analyse (Auftakt- konferenz 7.12.15)

Energie Stromnetze

und Speicher

(Start 12.05.15)

Erneuerbare Energien

(Gründung im Frühjahr 2016)

COORETEC (seit 2004)

weitere bei

Bedarf

Innovationsprozess als Ergebnis aus Forschung und Entwicklung

HGF-Dialog-plattform

Forschungs- programme

der HGF-Zentren

• EnOB • EnEff:Stadt • EnEff:Wärme

eischl. thermische Speicher

• Niedertemp. Solarthermie

Forschungsinitiativen:

Aspekte der DIGITALISIERUNG werden wg. des Querschnittscharakters in allen Forschungsnetzwerken pragmatisch im Rahmen einzelner Arbeitsgruppen betrachtet und im fachlichen Kontext bearbeitet.

• Sektorübergreifen-

de Modellierung • Szenarioanalysen • Komplexitäts-

reduktion • Vergleichbarkeit &

Transparenz • Daten &

Datenbanken • Interdisziplinarität

Themenfelder:

u.a. • Lastmanagem.

/Smart Grid • Netzsicherheit • Flexibilisierung

v. Netzen

Themenfelder:

Februar 13, 2018

Seite Wuppertal Institut

Networks and clusters bringing together science and industry Cooperation across energy-intensive branches and together with academia aims for innovation dynamic and triggering new markets (CleanTechNRW)

Source:CleanTechNRW201113 Februar 2018

Seite Wuppertal Institut

Cooperative innovation approaches (clusters) Clean Tech NRW comprises partner from academia, industrial companies and SMEs

47Source:CleanTechNRW201113 Februar 2018

Seite Wuppertal Institut

Natural gas grid, power plants

POLYMER- BUILDING

BLOCK

BENZOL- PRODUCTION

METHANATION

blast furnance

CH4

C6H6

wastegases

Wasteheat

Cooperative innovation approaches (clusters) Industrial symbiosis triggered by Energiewende and cluster building Example: Re-use of CO2 from the steel industry as chemical feedstock

4813 Februar 2018

Demonstration Project:Carbon2Chem from Thyssen Krupp Steel et al started in 2015

Seite Wuppertal Institut49

DIGITALANDSMARTNEWTECHNOLOGIES

NEWBUSINESSMODELS

•  Aggrega:onofdecentralizedproduc:on(virtualpowerplant)

•  Aggrega:onofsupply(poolmanagement)anddemand

(demandsidemanagement)

•  Independentelectricityexchangepladorms(blockchainasfuture

op:on)

•  Smartcontractsandservices

•  …

Innovation challenge Example of new technologies and digitalisation that can help to cover the challenges and to create new business opportunities

Februar 13, 2018

Seite Wuppertal Institut50Februar 13, 2018

Innovation challenge Example of new technologies and digitalisation that can help to cover the challenges and to create new business opportunities

09.02.18, 14*16E.ON SolarCloud – Ihr virtueller Stromspeicher.

Seite 4 von 10https://www.eon-solar.de/eon-solarcloud

E.ON SolarCloud100 % Sonnenenergie0 % Batterie zu Hause

Entdecken Sie jetzt unseren virtuellen Speicher,der komplett ohne Batterie auskommt. Mit derE.ON SolarCloud sparen Sie sich die kostspieligeInvestition in eine Speicherbatterie und können100 % Ihres Solarstroms für sich nutzen.

hfps://www.eon-solar.de/eon-solarcloud

09.02.18, 14*20E.ON SolarCloud – Ihr virtueller Stromspeicher.

Seite 1 von 10https://www.eon-solar.de/eon-solarcloud

E.ON SolarCloud:Nutzen Sie jetzt einfach100 % eigenenSolarstrom.

Schon ab 21,99 €

3 % Arbeit97 % Entspannung

100 %Sonnenenergie

Direkt zumAngebot

Genießen Sie jetzt Ihre 100 % Freiheit

E.ON SolarCloud Aura ProdukteStartseite • FAQ • Solarrechner starten

09.02.18, 14*24Stromspeicher für das Haus | sonnen

Seite 6 von 20https://www.sonnenbatterie.de/de/sonnenbatterie/stromspeicher-fuer-das-haus

Photovoltaikanlage, den Sie gerade nicht benötigen und stellt ihn später

wieder zur Verfügung. Am Abend und in der Nacht können Sie dann die

gespeicherte Energie vom Tag nutzen. So entsteht echte Unabhängigkeit

in Ihrem zu Hause und Ihre Stromkosten sinken sichtbar.

09.02.18, 14*24Stromspeicher für das Haus | sonnen

Seite 1 von 20https://www.sonnenbatterie.de/de/sonnenbatterie/stromspeicher-fuer-das-haus

Die sonnenBatterie -Stromspeicher für das Haus

AT AUS DE EN IT UK USA

Bei Fragen zu unseren Produkten: 0800 929 33 40

sonnenBatterie sonnenStrom Über sonnen

Wissen Kontakt

Cloudsolu:onsfromE.ON(incumbent)andSonnen(Start

up)kickoffthenewareaof100%solarcoveragefor

privatebuildings

Seite Wuppertal Institut

Innovation challengeFuture energy system is characterized by high complexity leading to new job requirements

Economist Engineer Physicist

Economist Physicist

So\wareDeveloper

Telecom-munica;onExpert

Engineer

Mathema;cian

???

???

Chemist

Tradi;onalenergysystems(centralizedandstablesystems)

Webdesigner

Future(smart)energysystems(decentralizedandfluctua:ngsystems)

???

51Februar 13, 2018

Seite Wuppertal Institut

….what is further needed - innovation impulses for the future

52Februar 13, 2018

Seite Wuppertal Institut

Research Project TF-Energiewende“Technologies for the Energy Transition: Status and Perspectives, Innovation and Market Potential – a Comparative Multi-Criteria Technology Analysis and Assessment”

Further development of research priorities – preparatory steps for the next German Energy Research Program

Innovation Through ResearchThe energy transition – a great piece of work

Renewable Energies and Energy Efficiency:Projects and Results of Research Funding in 2015

Seite Wuppertal Institut

Assessmentof6technologysectorswith25technologyfields

1.  Renewableenergy2.  Conven:onalpowerplants3.  Infrastructure(grids,storage)4.  Technologiesforsectorcoupling(PtX)5.  Energyandresourceefficientbuildings

6.  Energyandresourceefficientindustry

–  Assessmentofdigitaliza:onande-mobilitywithdirectlinkstothe

energysector(carsandhybridtrucks)

–  12assessmentcriteria

–  Comparisonoftechnologicalchallengeslinkedtotheenergytransi:on

withthecurrentstateandperspec:vesofR&D,aswellas

iden:fica:onofinnova:ongaps

–  Nopre-selec:onorrankingwithintheproject–neutralassessment

–  Resul;ngsugges;onsforR&Dandbasicknowledgeforafurtherdevelopmentofthefederalenergyresearchprogram

Further development of research priorities – preparatory steps for the next German Energy Research ProgramSystematic technology assessment

Seite Wuppertal Institut

Detailed technology assessment Steps performed for each technology field

3.Relevanceofpublicfunding

4.Detailedassessmentofthetechnologyfield

Summaryfundingrelevance

1.Descrip:onoftechnologyfield

2.StateofR&DinGermany

II:Climatepoli:cs&energyindustry

Criteriaset(3–6)

GroupsII-IVinanalogytothe3goalsofenergyresearchpolicyinthecurrent6thenergyresearchprogramofthefederalgovernment

III:Posi:oningofGermancompanies

Criteriaset(7–8)

IV:Technologyopenness&systemsaspects

Criteriaset(9–12)

I:Fundingrelevance

Criteriaset(1–2)

5.R&Dsugges:onsforthepublicsector

Seite Wuppertal Institut

Detailed technology assessment Set of criteria applied to each technology field

13.09.2017 56

IFundingrelevance  Criterion1:Lead:me

  Criterion2:R&Drisks(technological,economic,resources)

IIClimatepoli;csandenergyindustry  Criterion3:Marketpoten:al

  Criterion4:Contribu:ontoclimategoalsandotheremissionreduc:ongoals

  Criterion5:Contribu:ontoenergyandresourceefficiency

  Criterion6:Costefficiency

IIIPosi;oningofGermancompanies  Criterion7:Domes:cvalueadded

  Criterion8:StatusquoandtrendsofR&Dininterna:onalcomparison

IVTechnologyopenness&systemsaspects  Criterion9:Societalacceptance  Criterion10:Entrepreneurialandtechnologicalpathdependency,responsecap.  Criterion11:Dependencyoninfrastructure  Criterion12:Systemscompa:bility

Seite Wuppertal Institut

Detailed technology assessmentCriteria set

57

Step1:Relevanceofpublicfunding

Criterion1:Lead:me Criterion2:R&Drisks(technological,economic,resources)

Step2:Detailedassessmentofthetechnologyfield

Summaryofthefundingrelevance

Criterion3:Marketpoten:al

Criterion4:Contribu:ontoclimategoalsandotheremissionreduc:ongoals

min-maxGermany/interna:onal

Respec:velyrela:vetoreferencedevelopment

Criterion5:Contribu:ontoenergyandresourceefficiency

Criterion6:costefficiency

Criterion10:Entrepreneurialandtechnologicalpathdependencyandresponsecapacity

Criterion11:Dependencyoninfrastructure

Criterion7:Domes:cvalueadded

Criterion12:Systemscompa:bility

IV:Technologyopenness&systemaspects

III:Posi:oningofGermancompaniesII:Climatepolicy&energyindustry

I:Fundingrelevance

Criterion9:Societalacceptance

Criterion8:StatusquoandtrendsofR&Dininterna:onalcomparison

Seite Wuppertal Institut

Decarbonization requires identification and step by step implementation of breakthrough technologies and structural changes

58Februar 13, 2018

Seite Wuppertal Institut59

GHG mitigation in transport - the next step in the mobility sector means probably digitalisation and autonomous drivingDifferent levels of autonomous driving – step by step approach

Quelle:VDA201513 Februar 2018

Agora Verkehrswende | Driverless vehicles are ideal for shared use.

37

market in 2018, attention has mainly turned to safety, reliability, liability and ethics.88 The German government has already taken note of these developments. Draft bills recently introduced by the German parliament to reform the Vienna Convention and Germany’s road traffic laws spell out technical regulations for driverless vehicles and define the scope of driver responsibility.89

88 See Driverless Car Market Watch (2016). Tesla’s driverless model will appear in 2018; Volkswagen’s, in 2019; Daimler’s, in 2020; Honda’s, in 2020; Nissan’s, in 2020; and BMW’s, in 2021.

89 See BMVI (2015).

So far, there’s been little discussion about how fully automated cars will affect vehicle use, mobility behaviour and, by extension, the environment. But these issues are decisive in whether driverless vehicles will help render the transport transformation a success – or not.

Thanks to automation, driverless cars are expected to operate more efficiently, travel closer to other cars, and make traffic more fluid.90 While this could reduce fuel and energy consumption, other more disruptive effects

90 See BMVI (2015), p. 10.

Authors’ figure based on VDA (2015), p. 15; *Usage scenarios are based on road types, speed domains and environmental conditions

Levels of vehicle automation Figure 5.2

Driver Degree of automation

Driver executes longitudinal and lateral guidance.

Driver executes longitudinal or lateral guidance.

Driver must mon-itor the system on a continuous basis.

Driver does not need to monitor the system on a continuous basis, but must be able to intervene if necessary.

No driver neces-sary in specific usage scenario.

No driver is necessary from start point to destination.

No control system intervention.

Control system takes over the other function.

Control system executes longitu-dinal and lateral guidance in a specific usage scenario*.

Control system can manage all situations in a specific usage scenario.*

Control system can manage all road types, speeds, and environmental conditions.

Control system executes longitu-dinal and lateral guidance in a specific usage scenario.* It recognizes limits to the system and prompts the driver to take over when nec-essary, with suf-ficient advance notice.

LEVEL 0DRIVER ONLY

LEVEL 5FULL

AUTOMATION

LEVEL 1DRIVER

ASSISTANCE

LEVEL 2PARTIAL

AUTOMATION

LEVEL 3CONDITIONAL AUTOMATION

LEVEL 4HIGH

AUTOMATION

Seite Wuppertal Institut60

GHG mitigation in transport - the next step in the mobility sector means probably digitalisation and autonomous drivingOverview on already existing pilot in Germany and Europe

Quelle:varioussourcesandWI201713 Februar 2018

Alternative Ökonomien Mobilität

Wuppertal Institut – Mai 2017 89

aber das Lenkrad mit mindestens einer Hand halten (BMW AG 2017). Und beim automati-sierten Park-Assistenten „Remote Park-Pilot“ von Mercedes-Benz kann der Fahrer ausstei-gen und das Fahrzeug per Smartphone eigenständig einparken lassen – der Fahrer darf dafür einen Radius von 3 Metern um das Fahrzeug herum aber nicht verlassen (Daimler AG 2017a).

Tabelle 11: Steckbriefe der bereits heute autonom fahrenden H-Bahn in Dortmund, der U-Bahn in Nürnberg und der autonomen Güterfahrzeuge im Containerterminal Ham-burger Hafen

Foto: Dortmunder H-Bahn (2008), Quelle: Marku1988 auf https://de.wikipedia.org/36

Foto: U-Bahn Nürnberg (2008), Quelle: Michael Heimerl auf https://commons.wikimedia.org37

Foto: Fahrerlose AGVs im Hamburger Containerhafen (2008); Quelle: Heje auf https://de.wikipedia.org38

H-Bahn in Dortmund U-Bahn in Nürnberg Automatic Guided Vehicles (AGVs) im Containerterminal Hamburger Hafen

Vollautomatisch gesteuerte Großkabinenbahn

Inbetriebnahme: 2. Mai 1984 (gilt als erste Anlage ihrer Art)

Systembeobachtung und Fahr-gastbetreuung vom Leitstand

Täglich mehr als 5.000 Fahrgäs-te

Streckennetz: ca. 3 Kilometer

Pro Stunde 36 Fahrten, minima-le Zugfolge 40 Sekunden

Inbetriebnahme: 2008 (Linie U3)

Erste vollautomatische U-Bahnlinie Deutschlands

Automatische Kupplungen, An-/Entkuppeln per Knopfdruck

Zugfolgezeiten: 100 Sekunden (Hauptverkehrszeit) oder 150 Sekunden (Mischbetrieb)

Streckennetz: 32 Kilometer

Automatic Guided Vehicles (AGVs) führen den Containertransport im Hafen durch

Die Be- und Entladung der AGVs erfolgt mit autonomen Kränen

AGVs fahren seit 2002 autonom und seit 2011 mit Ökostrom; der Batteriewechsel erfolgt selbständig

Die CO2-Emissionen des Terminals sind dadurch laut Betreiber um 60 Prozent gesunken

Quellen: Webseite der H-Bahn-Gesellschaft Dortmund mbH (www.h-bahn.info/de, Zugriff 2.2.2017); Schwaibold (2015); Hamburger Hafen und Logistik Aktiengesellschaft o.J.

36 Quelle: Marku1988 (2008) auf Wikimedia, https://de.wikipedia.org/wiki/Datei:Dortmund-H-Bahn_Trasse1.jpg, Zugriff 22.2.2017; Lizenz: CC BY 3.0 37 Quelle: Michael Heimerl (2008) auf Wikimedia, https://commons.wikimedia.org/wiki/File:U-Bahn_Nürnberg_Strecke_SG-JA.jpg, Zugriff 22.2.2017; Lizenz: CC BY-SA 3.0 38 Quelle: Heje (2008): Drei AGV vor einigen DRMG; auf Wikipedia, https://de.wikipedia.org/wiki/Containerterminal_Altenwerder#/media/File:Hamburg-CTA-AGV-2008.JPG, Zugriff 22.2.2017; Lizenz: CC BY 3.0!

Alternative Ökonomien Mobilität

Wuppertal Institut – Mai 2017 92

Tabelle 12: Steckbriefe zu Pilotprojekten mit hochautomatisierten Fahrzeugen im Per-sonenverkehr

Foto: Autonomer Kleinbus im Test in Cottbus (2015), Quelle: Rama auf http://www.lausitz-branchen.de/39

Foto: Beispiel für einen hochautomati-sierten Mini-Bus im Test in South Perth, Australien (2016)40, Quelle: Gnangarra auf https://commons.wikimedia.org

Foto: Regulärer Mercedes-Benz Bus in München (2012); Quelle: High Contrast auf https://commons.wikimedia.org41

SmartShuttle in Sitten (Schweiz)

Mini-Bus „Olli“ in Berlin und Bad Birnbach

Mercedes-Benz Bus

• Testbetrieb seit Juni 2016 für zwei Jahre durch Sonderbewilligung

• Initiatoren: PostAuto, MobilityLab Sion-Valais bestehend aus Stadt Sitten, Kanton Wallis, HeS-So, EPFL, Schweizerische Post

• Zwei vollautomatisiert fahren-de, kostenlose elektrische Kleinbusse für 11 Personen

• Keine Brems- und Gaspedale

• Überwachung durch Begleitperson, Notfallknopf im Fahrzeug

• Rundstrecke, ca. 1,5 km in der Fußgängerzone (Altstadt)

• Geschwindigkeit 20 km/h

• Elektrischer Roboter-Kleinbus des amerikanischen Start-ups Local Motors

• Probebetrieb der Deutschen Bahn seit November 2016 auf dem halböffentlichen Euref-Campus; ab 2017 im bayeri-schen Kurort Bad Birnbach

• (Noch) keine Genehmigung für den Testbetrieb im Berliner Straßenraum

• Simulation eines autonomen Buslinienbetriebs

• Ausstattung mit 30 Sensoren, Kameras, Lasern

• In Berlin: Anschluss an Strom aus einer Photovoltaikanlage

• Teilautomatisiert fahrender Bus

• Erste Testfahrt im Juli 2016 in Amsterdam auf 20 km Teststrecke, Bus Rapid Transport (BRT)

• Maximal 70 km/h

• 14 Kameras überwachen ein Umfeld von 200 Metern

• Fahrer sitzt im Fahrstand, um notfalls eingreifen zu können

• Erkennt und kommuniziert mit Ampeln, quert Ampelkreuzun-gen

• Erkennt Hindernisse und bremst selbständig

• Erwartete Vorteile: Erhöhung von Komfort und Effizienz durch gleichmäßigeres Fahren

Quellen: Mercedes-Benz (2016); Neumann (2016); Webseite des Projekts „SmartShuttle“, https://app.postauto.ch/de/smartshuttle-projekt (Zugriff 9.2.2017)

39 Quelle: Rama (2015) auf http://www.lausitz-branchen.de/branchenbuch/2015/12/18/cottbus-autonome-taxi-flotten-im-test/, Zugriff 22.2.2017; Lizenz: CC BY-SA 2.0 fr 40 Quelle: Gnangarra auf Wikimedia, https://commons.wikimedia.org/wiki/File:Bus_220916_gnangarra-1007.JPG, Zugriff 22.2.2017; Lizenz: CC-BY-2.5-AU 41 Quelle: High Contrast (2012): Mercedes-Benz Citaro Bus in München-Pasing; auf Wikimedia, https://commons.wikimedia.org/wiki/File:Mercedes-Benz_Citaro_Bus_in_Munich-Pasing.jpg, Zugriff 22.2.2017; Lizenz: CC BY 3.0 DE!

Alternative Ökonomien Mobilität

Wuppertal Institut – Mai 2017 93

Tabelle 13: Steckbriefen zu Pilotprojekten mit hochautomatisierten Fahrzeugen in der Logistik und im Güterverkehr

Foto: Liefer-Roboter von Starship (2017), Quelle: www.gruenderszene.de42

Foto: Liefer-Drohne für Essen im Einsatz in Portugal (Dezem-ber 2016), Quelle: Eduardofa-mendes auf https://en.wikipedia.org43

Foto: Mercedes-Benz Future Truck 2025 auf der Bundesautobahn A14 bei Magdeburg (2014), Quelle: Michael KR auf https://en.wikipedia.org44

Roboter-Paketdienste Deutsche Post: Paketzustellung per Drohne

Autonome Lkw: Mercedes-Benz Future Truck 2025 und European Truck Platoon-ing Challenge

• Hermes und Mediamarkt testen Lieferroboter in den Stadtteilen Grafenberg (Düsseldorf) und Ottensen (Hamburg) in 2016

• Lieferung vor die Haustür, Öffnung des verschlosse-nen Fachs per SMS-Code

• Navigation per GPS, Kameras, Sensoren

• Überwachung durch Be-gleitperson und Kontroll-zentrale Geschwindigkeit bis 6 km/h, Lieferradius 3-5 Kilometer

• 3-monatiger Test in 2016 (Januar-März) in Reit im Winkl

• Paketempfang und -sendung über automatisierten Skyport

• Belieferung einer Alm in 1.200 Meter Höher

• Zustellung eiliger Medikamente innerhalb von 8 Minuten gegenüber 30 Minuten mit dem Auto

• Auf der IAA Nutzfahrzeuge im September 2014 stellte Daimler den ersten autonom fahrenden Laster vor

• Testfahrten seit 2014 auf der A14 bei Magdeburg

• Beteiligung an der niederländischen Initiative „European Truck Platooning Challenge 2016“ mit 6 Lkw-Herstellern

• Elektronische Kopplung von je 2-3 Sattelschleppern hintereinander

• Erwartete Vorteile: Weniger Energie- und Flächenverbrauch durch dichtes Fahren im Windschatten, Reduzierung von Leerfahrten, geringere Kosten, bis zu 10 Prozent weniger Kraftstoff und CO2-Emissionen; weniger Unfälle

Quellen: DHL (2016e), Hermes (2016), METRO GROUP (2016), Webseite der European Truck Platooning Chal-lenge (2016), https://www.eutruckplatooning.com/default.aspx (Zugriff 9.2.2017),

42 Quelle: Dahlmann (2017): Meep, meep – hier kommt der Lieferroboter. Artikel vom 23.01.2017 auf Grün-derszene. http://www.gruenderszene.de/allgemein/daimler-starship-technologies-lieferroboter, Zugriff 22.2.2017; Lizenz: CC BY-ND 43 Quelle: Eduardofamendes auf Wikimedia, https://en.wikipedia.org/wiki/Delivery_drone#/media/File:Connect_Robotics_Delivery_Drone.jpg, Zugriff 22.2.2017; Lizenz: CC BY-SA 4.0 44 Quelle: Michael KR (2014): Daimler 2014 Mercedes Autonomes Fahren Magdeburg; auf Wikimedia, https://commons.wikimedia.org/wiki/File:Daimler_2014_Mercedes_Autonomes_Fahren_Magdeburg_5430.jpg, Zugriff 22.2.2017; Lizenz: CC BY-SA 4.0!

Seite Wuppertal Institut

GHG mitigation in industry - to go beyond current technologies and structures, three areas must be incorporated

61Source:ECF2018

Processtechnologiesandbreakthrough•  Broadshi\toelectricityforenergyandforhydrogenproduc:on(e.g.,ore

reduc:on)• New,non-fossilfeedstocks(CO2,bio)• Novelmaterials(e.g.,cement)andsubs:tu:on

Circularityanddemandside• High-qualitymaterialsrecycling(plas:cs,steel,aluminium)tosubs:tuteforvirgin

produc:on•  Increasedmaterialsproduc;vityofkeyvaluechains(transport,buildings,packaging,etc.)throughsharing,longevity,lightweigh:ng,etc.

Carbonnega;vetechnologies•  Carboncaptureandstorage(CCS)oru:lisa:on(CCU)ofindustrialCO2

•  ProcesschangestofacilitateCCS(e.g,.Hisarnasteel)

•  Infrastructurefortransportandstorage

13 Februar 2018

Seite Wuppertal Institut

GHG mitigation in industry - Innovation needed from a linear towards a circular economy

62

Defini;onCircularEconomyfromtheCEAP„Thetransi:ontoamorecirculareconomy,wherethevalueofproducts,materialsandresourcesismaintainedintheeconomyforaslongaspossible,andthegenera:onofwasteminimized(...)“

CircularEconomy

Lineareconomy

13 Februar 2018

Seite Wuppertal Institut

GHG mitigation in industry - a chance for Win-Win-Win approachThe Circular Economy provides three different types of dividends

Innovation and reduced material and energy costs can generate competitive advantages for companies and regions

Reducedconsump:onofresourcesandrecycledwasteinproduc:onreducetheenvironmentalimpactlocally

Asaresultofintegratedproductcycles,itispossibletoreducenega:veenvironmentalimpactsonthepopula:onanddecoupleeconomicgrowthfromtheuseofresources

Economic Dividend

Ecological Dividend

Social Dividend

6313 Februar 2018

Seite Wuppertal Institut

Innovation challengeHow to overcome and cross the valley of death – new support schemes for big cross sector projects needed

–  “ValleyofDeath”betweenresearchfundingandeconomicuse

–  Ques:onaboutfundingpossibili:esandsensibleamountoffundingbeyondR&Dprojects

» Marketcondi:ons

influencethefundingrequirements

»  Fundingasataskofindustryandpublichand

»  Limitedmeans

64

-  Needofanapproachfordecisionsupportconcerningthefundingof»  applica:on-oriented(pilotanddemo)researchmeasures

»  aswellasfurthermeasures(modelprojects,fieldtests)

source:WuppertalIns:tute

maturityofinnova:on

ValleyofDeath

3–4years 12years :me

usualdura:onofprojectfunding

Februar 13, 2018

Seite Wuppertal Institut

Kopernikus Projects for the Energy TransitionIdentification of long-term gaps for achieving energy transition goals and (joined) definition of appropriate R&D program (Kopernikus Projects)

Implementation: Four consortia assembling 230 participating institutions – focus on basic scienceProject start: 2nd quarter 2016Project term: 10 yearsFunding: Federal Ministry of Education and Research-  € 120m in the first 3 years-  € 280m for the following project stages

Inter- and transdisciplinary setting

Systemicintegra:on:

Transformingandinterlinking

energysupply

Adjustmentofindustrial

processesto

vola:leenergysupply

Flexibleuseofrenewable

resources:Power-to-X

Newgridstructures

1 2 3 4

Quelle:ACATECH201613 Februar 2018 65

Seite Wuppertal Institut

Decarbonization requires non-technological research as well (e.g. systematic transition research)

66Februar 13, 2018

Seite Wuppertal Institut

§  Innovation Challenge-  System innovation combine technological innovations with appropriate and

smart infrastructures as well as social innovation-  Successful technologies require an appropriate institutional, cultural, political

and social environment (“embedded technologies”)

67

Innovation challenges From technological to societal challenges

Infrastructures

TechnologicalInnova;ons

SocialInnova;ons

•  Buildinginfrastructures•  Energyinfrastructures•  Industryinfrastructures

•  Trafficinfrastructures•  Supplyanddisposalinfrastructures

•  ITinfrastructures•  ...

•  Technologicalproductandprocessinnova;ons

•  Newsocialprac;ces,u;liza;onpafernsandbusinessmodels

•  Neworganiza;onalandpar;cipatorymodels

•  Newins;tu;ons/regula;ons•  Newstructuresofmeaning

SystemInnova;ons

Februar 13, 2018

Seite Wuppertal Institut

Energy Transition Requires Better Understanding of Systems and Transformation Processes Investigation of transformation processes and their driving forces

•  Transformation processes are frequently driven through crises and scarcity situations

•  Transformation processes occur rapidly when existing structures reach their limits, present behavioural patterns stop working and established business models are declining (society is otherwise characterized by risk and change reluctance)

•  Transformation processes are successful, when -  they have a clear objective and the (additional) benefit can be

transferred-  sufficient technological possibilities exist and are embedded in social

and cultural contexts (embedded technologies) -  demonstration projects can be used to show how the processes can be

implemented (crystallization nunclei) and that a high level of partaking is possible

•  Transformation processes require the active change of socio-technical regimes through (niche) innovations

68

Seite Wuppertal Institut

System-Knowledge(Understanding socio-technical

systems in their natural environment)

Target-Knowledge(Defining socio-ecological

targets for a sustainable world)

Designing energy transition requires knowledge about goals, system behaviour and transformations (incl. past experience)Agent Based Modelling could help to improve system understanding

Transformation-Knowledge

(Enabling complex societal transitions)

Understandingthe System

EnablingTransitions

Transitions to what?Defining Targets

Policies

ClimateResources

Land-use

Transition-Cycle

Multilevel

Experiments

Climate

Reso-urcesLand

use

Well-fare

Globaljustice

Economy

Developing Sustainability

visions, concrete concepts and

transition agendas

Problem -

Assessm

ent V

ision -

Development Experiments

Lear

ning

Mobilizing actors and executing projects and experiments

Problem assess- ment, establish- ment and further development of

the transition arena

Evaluating, monitoring

and learning for large-scale

diffusion

& Up-scaling

SocietyTechnologyInfra-

structure

69

Seite Wuppertal Institut

Multi-Level Perspective helps to successfully determine appropriate niche innovations considering overall landscape and internal drivers

70Source: nach Geels 2005

Seite Wuppertal Institut

Outlook – innovation breakthrough and market deployment might go much faster in reality than expected

71Februar 13, 2018

Seite Wuppertal Institut

Major options for the reduction of transport related GHG emissions E-Mobility is not really a new approach – first electric vehicle roll out at the beginning of the 20th century

7213 Februar 2018 Source: Der Spiegel 2012

||

Elektromobilität

Quelle: DER SPIEGEL (11.6.2012), Fahrer posieren 1906 in Elektroautos der New Yorker Edison Company in Manhattan.Die leisen Elektroflitzer lösten in New York einen Boom aus – 1912, verließen 34.000 Fahrzeuge die Fabriken.

Trend▪ Die Renaissance (und Revanche) der Elektro-Autos▪ Fallende Batteriekosten und Umweltauflagen (Diesel-Gate) sorgen für

einen neuen Boom … wie vor 100 Jahren

Andreas Ulbig 1012/12/2017 ||

Elektromobilität

Quelle: DER SPIEGEL (11.6.2012), Fahrer posieren 1906 in Elektroautos der New Yorker Edison Company in Manhattan.Die leisen Elektroflitzer lösten in New York einen Boom aus – 1912, verließen 34.000 Fahrzeuge die Fabriken.

Trend▪ Die Renaissance (und Revanche) der Elektro-Autos▪ Fallende Batteriekosten und Umweltauflagen (Diesel-Gate) sorgen für

einen neuen Boom … wie vor 100 Jahren

Andreas Ulbig 1012/12/2017

||

Elektromobilität

Quelle: DER SPIEGEL (11.6.2012), Die Batterien dieser Elektroautos laden 1909 an einer Ladestation in New York.Nur wenige Jahre später zuckelten bereits 60.000 Elektroautos durch die USA, Ladestationen gab es etwa genauso viele.

Andreas Ulbig 1112/12/2017

||

Elektromobilität

Quelle: DER SPIEGEL (11.6.2012), Die Batterien dieser Elektroautos laden 1909 an einer Ladestation in New York.Nur wenige Jahre später zuckelten bereits 60.000 Elektroautos durch die USA, Ladestationen gab es etwa genauso viele.

Andreas Ulbig 1112/12/2017

Seite Wuppertal Institut

Major options for the reduction of transport related GHG emissions E-Mobility is not really a new approach – market deployment might go rather quickly under certain favourite conditions

7313 Februar 2018 Source: Der Spiegel 2012

||

Elektromobilität – Paradebeispiel fürGeschwindigkeit technologischen Wandels

Andreas Ulbig 1212/12/2017

||

Elektromobilität – Paradebeispiel fürGeschwindigkeit technologischen Wandels

Andreas Ulbig 1212/12/2017Potential favourite conditions: shrinking cost of batteries, air quality obligations (e.g. NOx) – integrative solutions necessary combining climate protection, air quality improvement and better quality of living in cities etc.

1900:Whereisthecar? 1913:Whereisthehorse?

Thankyouforyourafen;on!