cruise report s213 scientific data collected aboard ssv … · 2013. 5. 16. · cruise report s213...

60
CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California – La Paz, Baja California Sur – Puerto Vallarta, Mexico 11 October – 17 November, 2007 Jumbo flying squid (Dosidicus gigas ) hooked near Cerralvo Island. White portion of lure is 10cm in length. Photo by Chief Scientist Jeff Schell Sea Education Association Woods Hole, Massachusetts

Upload: others

Post on 01-Mar-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

CRUISE REPORT S213

Scientific data collected aboard SSV Robert C. Seamans

San Diego, California – La Paz, Baja California Sur – Puerto Vallarta, Mexico

11 October – 17 November, 2007

Jumbo flying squid (Dosidicus gigas) hooked near Cerralvo Island. White portion of lure is 10cm in length.

Photo by Chief Scientist Jeff Schell

Sea Education Association

Woods Hole, Massachusetts

Page 2: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

Contact Information: Dr. Jeffrey M. Schell Sea Education Association P.O. Box 6 Woods Hole, MA 02543 508-540-3954 (phone) 800-552-3633 (phone) 508-457-4673 (fax) www.sea.edu

This document should be cited as:

Schell, Jeffrey, M. 2008. Final report for S.E.A. cruise S213. Sea Education Association, Woods Hole, MA 02540. www.sea.edu.

To obtain unpublished data, contact the Chief Scientist or SEA data archivist:

Data Archivist Sea Education Association P.O. Box 6 Woods Hole, MA. 02543 Phone: 508.540.3954 Fax: 508.457.4673 E-mail: [email protected] Web: www.sea.edu

Page 3: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

1

Table of Contents Table 1

Ship’s Company 3

Data Description and Oceanographic Setting

4-5

Figure 1a-b

Cruise track and general hydrographic setting 6-7

Figure 2a-b Surface plots of a) temperature and salinity, b) density and fluorescence

8-9

Table 2

Summary of oceanographic sampling stations 10-13

Table 3 Surface Station data 14-15

Figure 3a-b Surface plots of a) nutrients and b) estimates of productivity

16-17

Table 4

CTD station data 18

Figure 4 T-S plots for select CTD stations 19

Figure 5a-b Dissolved oxygen and in situ chlorophyll-a fluorescence profiles for select CTD stations

20

Figure 6 Temperature, salinity and dissolved oxygen cross-section plots for entire cruise track

21

Table 5

Hydrocast station data 22-26

Figure 7 Surface current magnitude and direction for entire cruise track

27

Figure 8a-c Regional examples of surface and sub-surface current features along the cruise track

28-30

Figure 9 Echo amplitude and influence on ADCP sensitivity and measurement errors

31

Island Mass Effect Rationale and Sample Description

32

Figure 10 Sampling Plan for Catalina Island and Mass Effect Indices (MEIs)

33

Figure 11-a-d Catalina Island data: a) Surface Current vector plot, b-d) Hydrographic cross-section plots for island transects

34-37

Figure 12 Sampling Plan for Isla de Guadalupe and Mass Effect Indices (MEIs)

38

Figure 13-a-d Isla de Guadalupe data: a) Surface Current vector plot, b-d) Hydrographic cross-section plots for island transects

39-42

Page 4: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

2

Figure 14 Sampling Plan for Isla Socorro and Mass Effect Indices (MEIs)

44

Figure 15a-c Isla Socorro data: a) Surface Current vector plot, b-d) Hydrographic cross-section plots for island transects

45-46

Table 6 Shipek grab station data for island mass effect study

47

Table 7 Neuston tow station data 48-49

Table 8 Meter net station data 50

Table 9 Tucker trawl station data 51-52

Table 10 Squid jigging station data 53

Figure 16 Eastern Pacific oxygen minimum zone (OMZ) and rationale for Trophic Dynamic study

54

Figure 17 Zooplankton and Myctophid distribution in relation to OMZ

55

Table 11 Qualitative description of shipek grab station data

56

Table 12 Student research topics for cruise S213 57

References 58

Page 5: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

3

Table 1. S213 Ship’s crew and student participants Nautical Staff Jeremy Law Captain Jullie Jackson Chief Mate Nate Darling 2nd Mate Jay Amster 3rd Mate Dave Reynolds Engineer James Joslin Assistant Engineer Maggie McCullough Steward Scientific Staff Jeff Schell Chief Scientist Skye Morét 1st Scientist Austen Thomas 2nd Scientist Katie Hammond 3rd Scientist Scientific Observers Raymundo Avendaño CICIMAR professor Andres Levy CICIMAR professor Students Tasia Blough Roger Williams University Emily Cira Boston University Marjorie Crowley Villanova University Delia Daza Community College of Rhode Island K. Aspen Gavenus Bowdoin College Timothy Groves Colorado College Rebecca Inver Long Island University - Brooklyn Ellie Kane University of Pennsylvania D. Folasade Morvan University of Maryland Lucy Rozansky Colorado College Shiloh Schlung Boston University Isaac Schoepp Valparaiso University Katie Shaughnessy Northeastern University Adam Smith Florida Gulf Coast University Thomas Stout Colorado College Kristine Unkrich Whitman College

Page 6: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

4

Data Description This cruise report provides a record of data collected during S213 aboard the SSV Robert C.

Seamans from San Diego, California to Puerto Vallarta, Mexico (Figure 1a) with a stop at La Paz on the

southeastern shore of Baja California Sur. We collected samples or data with 123 individual deployments

from 79 discrete stations (Table 2) along our cruise track. In addition we continuously sampled water

depth, sub-bottom profiles and Acoustic Doppler Current Profiles (ADCP) along with flow-through sea

surface temperature, salinity and in vivo chlorophyll-a fluorescence.

This report summarizes physical, chemical and biological characteristics along our cruise track

and around surveyed island systems. The S213 cruise track traversed several oceanic regions that can be

distinguished by their sea surface temperature, salinity, density and fluorescence values (Figures 1b, 2a-

b). Discrete surface water characteristics (T, S, nutrients, productivity estimates) were sampled

periodically (36 stations) along the cruise track (Figure 3a-b, Table 3). Sub-surface water masses and

their chemical properties were also surveyed using a CTD and 12 bottle carousel (Tables 4 and 5).

Regional differences in hydrography can be seen in T-S plots (Figure 4), vertical profiles of dissolved

oxygen and chlorophyll-a fluorescence (Figure 5a-b) and contour plots of temperature, salinity and

dissolved oxygen (Figure 6). Patterns of surface and sub-surface currents were complex. Large-scale,

slow recirculation intuited a posteriori from SST satellite images was masked by smaller scale circulation

associated with eddies and coastal filaments (Figures 7, and 8a-c). Resolution of weak current flow was

also hampered by considerable diel vertical migration of the planktonic community (Figure 9).

The expression (distribution of nutrients, estimates of primary productivity, and zooplankton) and

underlying mechanisms (terrestrial runoff, wind and current-driven upwelling) of island mass effect were

examined in detail around Catalina Island (Figure 10 and 11a-d), Isla Guadalupe (Figure 12 and 13a-d)

and Isla Socorro (Figure 14 and 15a-c). Regions with the greatest expression of island mass effect more

often corresponded with regions of terrestrial runoff (based on shelf sediments characteristics) and less so

with any forms of upwelling (Table 6). Qualitative description of shelf sediments are detailed later in the

report (Table 11).

The distribution of neuston net, meter net, and Tucker trawl stations and corresponding

zooplankton and micronekton measures along with numbers of select nekton species are presented

(Tables 7-9). Additional biological sampling for juvenile and adult jumbo squid (Dosidicus gigas) was

also conducted using various squid jigs, rod and reel and visual observation (Table 10). Influence of the

Page 7: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

5

oxygen minimum zone on regional and vertical distributions of collected organisms was examined; and

implications for regional trophic dynamics were explored (Figures 16 and 17).

Additional CTD, CHIRP, ADCP and biological data not reported here are available on request

through Sea Education Association (SEA) and the Chief Scientist. The information in this report is not

intended to represent final interpretation of the data and should not be excerpted or cited without written

permission from SEA.

As part of SEA’s educational program, undergraduates conducted independent oceanographic

research during the cruise. Project explored regionally, relevant topics in the disciplines of physical,

chemical, biological and geological oceanography (Table 12). Student research efforts culminated in a

written report and public presentation to the ship’s company. These papers are available on request from

SEA.

Oceanographic Setting

Atmospheric and oceanic conditions across the equatorial Pacific Ocean during the Fall 2007

reflected a transition from weak, but persistent El Nino conditions to developing La Nina conditions

(http://www.bom.gov.au/climate/enso/ ). August through November, Southern Oscillation Index (SOI)

values in 2006 (cruise S207) were: -15.9 / -5.1 / -15.3 / -1.4. For cruise S213, SOI values for the same

period were: 2.7 / 1.5 / 5.4 / 9.8. Hydrographic conditions during S213 were markedly different from

conditions experienced during S207. The S207 report is available upon request.

Jeff Schell Chief Scientist S213

Page 8: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

6

Figure 1a. Final cruise track for S213 based on hourly (local time) positions. Oceanic biomes recognized during S213 include Southern California Bight (SCB), Pacific Sub-arctic Water brought in by the California Current (CC), North Pacific Central Water (NPCW), Gulf of California (GC) and North Pacific Equatorial Water (NPEW). Extensive coastal surveys were conducted around Santa Catalina Island, Isla de Guadalupe and Isla de Socorro.

San Diego

La Paz

Puerto Vallarta

Catalina

SCB

CC

Guadalupe

NPCW

NPEW

GC

Socorro

NPCW

San Diego

La Paz

Puerto Vallarta

Catalina

SCB

CC

Guadalupe

NPCW

NPEW

GC

Socorro

NPCW

Page 9: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

7

Figure 1b. General hydrographic setting during S213. S213 cruise track (white line) overlays SST blended product (8-day composite, 0.1° resolution centered at 15 October 2007) from NOAA – Ocean Watch Live Access Server (http://las.pfeg.noaa.gov/oceanWatch/ ). Typical of western boundary currents the California Current exhibits weak, meandering circulation. However, subduction of this cold, less saline water beneath NPCW can be observed as far south as Isla de Guadalupe. Possibly due to the onset of La Niña NPEW water is confined south of the Baja peninsula. Significant influx of NPCW from the west creates complex circulation along coastal upwelling regions and has measurable effects on the SCB region. These described hydrographic conditions are in stark contrast to observed conditions in 2006 (see S207 Cruise Report) during a weak, but persistent El Niño.

San Diego

La Paz

Puerto Vallarta

Catalina

SCBCC

Guadalupe

NPCW

GC

Socorro

NPCW

NPEW

San Diego

La Paz

Puerto Vallarta

Catalina

SCBCC

Guadalupe

NPCW

GC

Socorro

NPCW

NPEW

Page 10: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

8

Figure 2a. Surface plots of temperature and salinity for S213. Recognized water masses were the California Current moving south, North Pacific Equatorial Water (NPEW) moving north, the Gulf of California Water circulating within the basin and a large transition region of mixed water masses with significant influences of North Pacific Central Water (NPCW) intruding from the west. Note the significant entrainment of NPCW in the general SCB recirculation leads to unusually high salinity in the region of the CC.

CC

NPCW

NPEW

GC

NPCW

CC

NPCW

NPEW

GC

NPCW

Page 11: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

9

Figure 2b. Surface plots of density and fluorescence for S213. Recognized water masses were the California Current moving south, North Pacific Equatorial Water (NPEW) moving north, the Gulf of California Water circulating within the basin and a large transition region of mixed water masses with significant influences of North Pacific Central Water (NPCW) intruding from the west. Note the low fluorescence values thorough out the central portion of the cruise track associated with NPCW.

CC

NPCW

NPEW

GC

NPCW

CC

NPCW

NPEW

GC

NPCW

Page 12: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

10

Table 2. Station summary of oceanographic sampling for S213.

Station # (S213-)

Date (2007)

Time (local +8 GMT)

Log (nm) Lat (dec Deg N)

Lon (dec Deg W)

Location Station Type

001 12-Oct 2121 14 32.49 -117.29 Southern CA Bight SJ 002 13-Oct 0121 15 32.47 -117.29 Southern CA Bight NT 003 13-Oct 1148 52 33.00 -117.66 Catalina Island CTD 004 13-Oct 2133 62 33.01 -117.54 Southern CA Bight SJ 005 14-Oct 0848 103 33.35 -118.31 Catalina Island SG 006 14-Oct 0949 103 33.41 -118.38 Catalina Island MN 007 14-Oct 1158 104 33.40 -118.36 Catalina Island CTD 007 14-Oct 1134 104 33.40 -118.36 Catalina Island SG 008 14-Oct 1650 120 33.45 -118.32 Catalina Island CTD 008 14-Oct 1650 120 33.45 -118.32 Catalina Island HC 009 15-Oct 1026 161 33.58 -118.80 Catalina Island CTD 009 15-Oct 1026 161 33.58 -118.80 Catalina Island HC 010 15-Oct 1957 174 33.53 -118.67 Catalina Island CTD 010 15-Oct 1820 173 33.50 -118.69 Catalina Island MN 011 15-Oct 2131 177 33.48 -118.63 Catalina Island CTD 011 15-Oct 2208 177 33.47 -118.63 Catalina Island SG 012 15-Oct 2355 182 33.38 -118.57 Catalina Island CTD 012 15-Oct 2355 182 33.38 -118.57 Catalina Island HC 013 16-Oct 0347 182 33.39 -118.55 Catalina Island CTD 013 16-Oct 0225 186 33.39 -118.53 Catalina Island MN 014 16-Oct 0520 186 33.40 -118.51 Catalina Island CTD 014 16-Oct 0550 186 33.40 -118.51 Catalina Island SG 015 17-Oct 1010 332 31.10 -119.70 PSAW-California

Current CTD

015 17-Oct 1151 332 31.11 -119.66 PSAW-California Current

NT

016 17-Oct 2037 362 30.69 -120.06 PSAW-California Current

TT

017 18-Oct 0006 371 30.71 -120.11 PSAW-California Current

NT

018 18-Oct 1020 431 30.18 -121.07 PSAW-California Current

CTD

018 18-Oct 1020 431 30.18 -121.07 PSAW-California Current

HC

018 18-Oct 1020 431 30.18 -121.07 PSAW-California Current

SD

019 18-Oct 2014 469 29.74 -121.63 PSAW-California Current

CTD

019 18-Oct 0000 469 29.74 -121.63 PSAW-California Current

SJ

020 19-Oct 0021 480 29.69 -121.33 PSAW-California Current

NT

021 19-Oct 1123 530 29.59 -120.33 PSAW-California Current

NT

021 19-Oct 0923 518 29.59 -120.41 NPCW-Subtropical Transition

TT

022 19-Oct 1625 541 29.58 -119.72 NPCW-Subtropical Transition

TT

Page 13: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

11

Station # (S213-)

Date (2007)

Time (local +8 GMT)

Log (nm) Lat (dec Deg N)

Lon (dec Deg W)

Location Station Type

023 20-Oct 1749 619 28.83 -118.22 NPCW-Subtropical

Transition CTD

024 20-Oct 2103 624 28.76 -118.09 NPCW-Subtropical Transition

TT

025 21-Oct 0134 638 28.75 -117.97 NPCW-Subtropical Transition

NT

026 21-Oct 1007 671 28.88 -118.24 Isla de Guadalupe CTD 026 21-Oct 0930 671 28.88 -118.24 Isla de Guadalaupe SG 027 21-Oct 1045 672 28.87 -118.22 Isla de Guadalupe MN 028 21-Oct 1303 675 28.80 -118.25 Isla de Guadalupe CTD 028 21-Oct 1303 675 28.80 -118.25 Isla de Guadalupe HC 029 21-Oct 2146 680 28.84 -118.26 Isla de Guadalupe SJ 030 22-Oct 0405 698 28.93 -118.01 NPCW-Subtropical

Transition TT

031 22-Oct 1145 713 28.99 -118.22 Isla de Guadalupe CTD 031 22-Oct 1215 713 28.99 -118.22 Isla de Guadalaupe SG 032 22-Oct 1647 717 28.93 -118.17 Isla de Guadalupe CTD 032 22-Oct 1734 717 28.92 -118.17 Isla de Guadalupe MN 033 22-Oct 2154 725 28.85 -118.05 Isla de Guadalupe CTD 033 22-Oct 1647 725 28.85 -118.05 Isla de Guadalupe HC 034 23-Oct 0815 748 29.14 -118.28 Isla de Guadalupe CTD 034 23-Oct 0843 748 29.14 -118.29 Isla de Guadalaupe SG 034 23-Oct 0858 748 29.14 -118.29 Isla de Guadalaupe SG 035 23-Oct 1014 753 29.13 -118.18 Isla de Guadalupe CTD 035 23-Oct 1130 753 29.14 -118.19 Isla de Guadalupe MN 036 23-Oct 1405 763 29.10 -118.03 Isla de Guadalupe CTD 036 23-Oct 1405 763 29.10 -118.03 Isla de Guadalupe HC 037 24-Oct 0310 813 29.17 -118.25 Isla de Guadalupe SJ 038 24-Oct 2010 869 28.32 -117.37 NPCW-Subtropical

Transition CTD

039 25-Oct 0012 888 28.07 -117.14 NPCW-Subtropical Transition

NT

040 25-Oct 0843 950 27.28 -116.39 NPCW-Subtropical Transition

CTD

040 25-Oct 0805 950 27.28 -116.39 NPCW-Subtropical Transition

HC

040 25-Oct 0843 950 27.28 -116.39 NPCW-Subtropical Transition

PN

040 25-Oct 0850 950 27.28 -116.39 NPCW-Subtropical Transition

SD

041 25-Oct 2031 995 26.69 -115.69 NPCW-Subtropical Transition

CTD

041 25-Oct 0237 995 26.69 -115.69 NPCW-Subtropical transition

SJ

042 26-Oct 1038 1088 25.84 -114.08 NPCW-Subtropical Transition

NT

042 26-Oct 0833 1084 25.88 -114.15 NPEW-Tropical TT 043 26-Oct 1623 1121 25.36 -113.70 NPEW-Tropical TT 044 27-Oct 0843 1233 23.96 -112.42 NPEW-Tropical CTD 044 27-Oct 1051 1233 23.95 -112.41 NPEW-Tropical NT 045 27-Oct 2019 1262 23.35 -112.41 NPEW-Tropical TT

Page 14: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

12

Station # (S213-)

Date (2007)

Time (local +8 GMT)

Log (nm) Lat (dec Deg N)

Lon (dec Deg W)

Location Station Type

046 28-Oct 0000 1169 23.26 -112.37 NPEW-Tropical NT 047 28-Oct 0427 1280 23.02 -112.38 NPEW-Tropical TT 048 28-Oct 1410 1311 22.90 -111.84 NPEW-Tropical CTD 048 28-Oct 1433 1311 22.90 -111.84 NPEW-Tropical PN 049 29-Oct 0004 1334 22.94 -111.34 NPEW-Tropical NT 049 29-Oct 0047 1335 22.94 -111.32 NPEW-Tropical SJ 050 29-Oct 2116 1411 23.06 -109.88 Bay of Cabo San Lucas SG 050 29-Oct 2116 1411 22.89 -109.88 Bay of Cabo San Lucas SJ 051 30-Oct 0038 1414 22.84 -109.85 NPEW-Tropical NT 052 30-Oct 1037 1440 22.72 -109.66 NPEW-Tropical CTD 052 30-Oct 1220 1430 22.70 -109.66 NPEW-Tropical NT 053 31-Oct 0017 1501 23.62 -109.36 Gulf of California CTD 053 31-Oct 0006 1501 23.62 -109.36 NPEW-Tropical SJ 054 31-Oct 0846 1550 24.40 -109.68 Gulf of California CTD 054 31-Oct 0945 1550 24.40 -109.67 Gulf of California NT 055 05-Nov 2003 1709 24.39 -110.12 Gulf of California NT 055 05-Nov 2120 1709 24.39 -110.11 Gulf of California SJ 056 06-Nov 1213 1780 23.61 -109.39 Gulf of California NT 057 06-Nov 2240 1805 23.23 -109.31 Gulf of California NT 058 07-Nov 0513 1848 22.53 -109.60 NPEW-Tropical MN 059 07-Nov 1026 1876 22.06 -109.75 NPEW-Tropical CTD 059 07-Nov 1026 1876 22.06 -109.75 NPEW-Tropical HC 059 07-Nov 1026 1876 22.06 -109.75 NPEW-Tropical SD 060 07-Nov 2024 1881 21.85 -109.83 NPEW-Tropical TT 061 08-Nov 0112 1907 21.44 -110.01 NPEW-Tropical NT 062 08-Nov 0426 1925 21.15 -110.17 NPEW-Tropical TT 063 08-Nov 1653 1961 20.54 -110.60 NPEW-Tropical NT 064 08-Nov 2212 1970 20.37 -110.72 NPEW-Tropical CTD 064 08-Nov 2131 1970 20.37 -110.72 NPEW-Tropical SJ 065 09-Nov 0815 2009 19.65 -110.67 NPEW-Tropical TT 066 10-Nov 1013 2051 18.85 -110.80 NPEW-Isla Socorro CTD 066 10-Nov 0906 2051 18.86 -110.82 NPEW-Isla Socorro MN 067 10-Nov 1321 2054 18.83 -110.76 NPEW-Isla Socorro CTD 067 10-Nov 1321 2054 18.83 -110.76 NPEW-Isla Socorro HC 068 10-Nov 1908 2062 18.79 -110.90 NPEW- Isla Socorro CTD 068 10-Nov 1816 2062 18.79 -110.91 Isla Socorro SG 069 11-Nov 0022 2069 18.73 -111.00 NPEW-Isla Socorro CTD 069 10-Nov 2314 2069 18.73 -110.65 Isla Socorro SG 070 11-Nov 0501 2072 18.69 -111.06 NPEW-Isla Socorro CTD 070 11-Nov 0354 2072 18.68 -111.08 NPEW-Isla Socorro MN 071 11-Nov 0811 2077 18.62 -111.13 NPEW-Isla Socorro CTD 071 11-Nov 0811 2077 18.62 -111.13 NPEW-Isla Socorro HC 072 12-Nov 0954 2165 18.97 -109.63 NPEW-Tropical TT 073 14-Nov 0507 2385 20.46 -106.67 NPEW-Tropical MN 074 14-Nov 0930 2394 20.41 -106.49 NPEW-Tropical CTD/

Styro 075 14-Nov 2131 2432 20.26 -105.77 NPEW-Tropical MN 076 15-Nov 2105 2516 20.55 -105.67 NPEW-Tropical MN

Page 15: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

13

Station # (S213-)

Date (2007)

Time (local +8 GMT)

Log (nm) Lat (dec Deg N)

Lon (dec Deg W)

Location Station Type

077 15-Nov 0454 2429 20.63 -105.53 NPEW-Tropical MN 078 15-Nov 0000 2533 20.70 -105.58 Isla la Marieta SG 079 17-Nov 0538 2548 20.63 -105.36 NPEW-Bahia de

Banderas NT

Duplicate station numbers refer to different oceanographic equipment that was either deployed concurrently in the same location or was deployed sequentially in the same general location once the vessel was hove to. The General Location for stations has been categorized by position relative to nearest island (Santa Catalina, Guadalupe, Socorro ), or oceanic biome (Southern California Bight, California Current, North Pacific Central Water, Gulf of California and North Pacific Equatorial Water). Abbreviations for type of oceanographic equipment deployed: HC – 12 niskin bottle hydrocast, NT – neuston tow, PN – phytoplankton net, MN – meter net (either 1 or 2 m diameter), CTD – conductivity, temperature and depth profiler, HC – hydrocast with 12 Niskin bottles, SD – secchi disc, SG – shipek grab, SJ – squid jigging, Styro – styrofoam-cup cast, and TT – Tucker trawl.

Page 16: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

14

Table 3. Surface Station summary for S213.

Station Date Time (local +8

GMT)

Log Temp (deg C)

Salinity (psu)

PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Flour-escence

LatDEC LonDEC

SS-001 12-Oct 1427 3 16.5 33.60 0.289 0.862 2.680 19 32.59 -117.23 SS-002 13-Oct 0136 15 19.3 33.60 0.340 0.104 4 32.47 -117.29 SS-003 14-Oct 1208 104 19.6 33.70 0.629 0.145 4 33.40 -118.36 S213-008-HC #13 14-Oct 1710 120 19.2 33.70 0.369 0.101 4 33.45 -118.31 S213-009-HC #13 15-Oct 1026 161 18.4 33.70 0.193 0.171 5 33.58 -118.80 SS-004 15-Oct 2139 177 18.0 33.60 0.850 0.251 6 33.48 -118.63 S213-012-HC #13 15-Oct 2355 182 18.8 33.70 0.607 0.595 0.120 5 33.38 -118.57 SS-005 16-Oct 0602 186 18.5 33.70 0.380 1.121 0.122 5 33.40 -118.51 SS-006 17-Oct 2356 284 18.3 33.60 0.215 0.832 0.211 6 31.83 -119.20 SS-007 17-Oct 1010 332 19.5 33.50 0.172 0.090 4 31.10 -119.68 S213-018-HC #13 18-Oct 1027 431 19.5 33.50 0.522 0.000 0.081 4 30.18 -121.07 SS-008 19-Oct 0040 481 19.0 33.20 0.380 0.081 6 29.68 -121.32 SS-009 20-Oct 0804 595 19.9 33.60 0.754 0.222 0.060 3 29.00 -118.70 SS-010 21-Oct 1007 571 32.4 32.40 0.232 0.237 0.078 3 29.88 -118.24 S213-028-HC #13 21-Oct 1303 675 19.6 32.70 0.249 0.045 3 28.80 -118.25 SS-011 22-Oct 1156 713 19.7 32.60 1.571 0.047 3 28.99 -118.22 SS-012 23-Oct 0906 748 19.8 32.60 0.907 0.252 0.089 4 29.14 -118.29 S213-036-HC #13 23-Oct 1416 763 20.1 32.50 0.561 0.061 3 29.10 -118.03 SS-013 25-Oct 0020 888 20.2 29.70 0.244 0.055 4 28.06 -117.14 S213-040-HC #13 25-Oct 0843 950 20.6 33.00 0.652 3.066 0.100 3 27.28 -116.39 SS-014 26-Oct 2130 1152 23.0 33.10 0.833 0.336 0.077 4 25.06 -113.38 SS-015 28-Oct 0004 1270 25.6 33.80 0.936 0.084 3 23.26 -112.37 SS-016 29-Oct 0029 1334 26.3 33.70 0.556 0.061 3 22.94 -111.32 SS-017 30-Oct 0051 1414 28.2 35.10 0.487 0.145 4 22.85 -109.84 SS-018 31-Oct 1000 1550 27.1 35.20 0.377 0.125 4 24.40 -109.66 SS-019 5-Nov 0853 1668 27.1 35.30 0.592 1.025 0.746 10 24.24 -110.34 SS-020 5-Nov 2019 1709 27.3 35.10 0.520 0.123 5 24.39 -110.12 SS-021 6-Nov 0000 1780 26.9 35.10 0.576 0.524 0.140 5 23.61 -109.38 S213-059-HC #13 7-Nov 1026 1876 26.7 34.70 0.233 0.076 4 22.06 -109.75 SS-022 7-Nov 2311 1805 27.5 34.60 0.343 0.088 4 23.06 -109.75 SS-023 8-Nov 0120 1907 27.6 35.00 0.459 0.000 0.085 5 21.44 -110.01

Page 17: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

15

Station Date Time (local +8

GMT)

Log Temp (deg C)

Salinity (psu)

PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Flour-escence

LatDEC LonDEC

SS-024 8-Nov 1704 1962 27.8 34.40 0.078 0.088 4 20.54 -110.61 S213-067-HC #13 10-Nov 1328 2054 27.3 34.60 0.299 0.039 3 18.83 -110.76 SS-025 10-Nov 1918 2062 27.2 34.60 0.321 0.020 0.073 4 18.79 -110.89 SS-026 11-Nov 0030 2069 26.9 34.60 0.238 0.078 4 18.73 -111.00 S213-071-HC #13 11-Nov 0847 2077 26.7 34.60 0.194 0.060 4 18.61 -111.13

Surface water samples were collected using a clean, seawater flow-thru system (intake ~ 1-3m depth) with in-line temperature, salinity and in vivo chlorophyll-a, fluorescence sensors. Discrete water samples were collected for phosphate (PO4) analysis, measured by colorimetric analysis with an Ocean Optics Chem2000 digital spectrophotometer, and extracted chlorophyll-a (Chl-a) concentrations, measured with a Turner Designs Model 10-AU Fluorometer following methods outlined in Parsons, Maita and Lalli (1984; A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press). Chlorophyll-a samples were filtered through 0.45 µm filters. A blank space indicates that no sample was collected for that analysis. Sample concentrations below detectable limits are indicated as “BD”.

Page 18: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

16

Figure 3a. Surface plots of phosphate and nitrate from discrete Surface Stations for S213. Recognized water masses as described in Figure 2. Parameter measurements as described in Table 3. Note the different patterns of nutrient distribution showing phosphate concentrations highest in NPCW, whereas nitrate concentrations are highest near shore. Source of surface nutrients may account for these differences. Coastal run-off may supply a disproportionate amount of nitrogen to surface waters allowing phosphate concentrations to be drawn down by increased productivity. In contrast, periodic upwelling processes at offshore locations may be nitrate limited due to a shallow oxygen minimum zone. Low oxygen conditions can limit nitrification processes.

CC

NPCW

NPEW

GC

NPCW

CC

NPCW

NPEW

GC

NPCW

Page 19: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

17

Figure 3b. Surface plots of extracted chlorophyll-a and in vivo fluorescence from discrete Surface Stations for S213. Recognized water masses as described in Figure 2. Parameter measurements as described in Table 3. Note the low estimates of surface water productivity associated with NPCW and NPEW and higher estimates associated with coastal regions. Surprisingly, these estimates of productivity do not follow patterns of surface nutrients. One explanation is that NPCW waters are nitrogen limited, allowing phosphate concentrations to accumulate in surface waters.

CC

NPCW

NPEW

GC

NPCW

CC

NPCW

NPEW

GC

NPCW

Page 20: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

18

Table 4. CTD station data for S213. Station #

(S213) Date

(2007) Local Time (+8 GMT)

Cast Depth (m)

Locale Sensors

003 13-Oct 1148 291 Catalina Island DO, Fluor 007 14-Oct 1158 50 Catalina Island DO, Fluor 008 14-Oct 1650 775 Catalina Island DO, Fluor 009 15-Oct 1026 550 Catalina Island DO, Fluor 010 15-Oct 1957 346 Catalina Island DO, Fluor 011 15-Oct 2131 120 Catalina Island DO, Fluor 012 15-Oct 2355 502 Catalina Island DO, Fluor 013 16-Oct 0347 451 Catalina Island DO, Fluor 014 16-Oct 0520 125 Catalina Island DO, Fluor 015 17-Oct 1010 1073 PSAW- California Current DO, Fluor 018 18-Oct 1020 1046 PSAW- California Current DO, Fluor 019 18-Oct 2014 1032 PSAW- California Current DO, Fluor 023 20-Oct 1749 848 NPCW-Subtropical Transition DO, Fluor 026 21-Oct 1007 80 Isla de Guadalupe DO, Fluor 028 21-Oct 1303 758 Isla de Guadalupe DO, Fluor 031 22-Oct 1145 104 Isla de Guadalupe DO, Fluor 032 22-Oct 1647 344 Isla de Guadalupe DO, Fluor 033 22-Oct 2154 968 Isla de Guadalupe DO, Fluor 034 23-Oct 0815 99 Isla de Guadalupe DO, Fluor 035 23-Oct 1014 237 Isla de Guadalupe DO, Fluor 036 23-Oct 1405 968 Isla de Guadalupe DO, Fluor 038 24-Oct 2010 997 NPCW-Subtropical Transition DO, Fluor 040 25-Oct 0843 1041 NPCW-Subtropical Transition DO, Fluor 041 25-Oct 2031 996 NPCW-Subtropical Transition DO, Fluor 044 27-Oct 0843 998 NPEW-Tropical DO, Fluor 048 28-Oct 1410 997 NPEW-Tropical DO, Fluor 052 30-Oct 1037 998 NPEW-Tropical DO, Fluor 053 31-Oct 0017 695 Gulf of California DO, Fluor 054 31-Oct 0846 450 Gulf of California DO, Fluor 059 07-Nov 1026 985 NPEW-Tropical DO, Fluor 064 08-Nov 2212 984 NPEW-Tropical DO, Fluor 066 10-Nov 1013 969 NPEW-Isla Socorro DO, Fluor 067 10-Nov 1321 989 NPEW-Isla Socorro DO, Fluor 068 10-Nov 1908 187 NPEW- Isla Socorro DO, Fluor 069 11-Nov 0022 358 NPEW-Isla Socorro DO, Fluor 070 11-Nov 0501 994 NPEW-Isla Socorro DO, Fluor 071 11-Nov 0811 943 NPEW-Isla Socorro DO, Fluor 074 14-Nov 0930 2860 NPEW- Tropical Styrocast!

Page 21: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

19

Figure 4. T-S profiles from select CTD casts for S213. Oceanographic regions identified: Blue (CC) – California Current [cold and less saline], Green (SCB) – Southern California Bight /Catalina Island, and note similarity with Red (NPCW) – North Pacific Central Water, Orange (NPEW) – transition to North Pacific Equatorial Water [warming and increasing salinity], and Black (GC) – Gulf of California Water [warm and high salinity].

Page 22: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

20

Figure 5 a and b. Dissolved oxygen and in situ chlorophyll-a fluorescence profiles from select CTD casts for S213. Oceanographic regions identified: Colors and abbreviations as in Figure 4. Vertical scales differ in each graph. Note the shallow oxygen minimum zone of NPEW and GC water and low values of the deep fluorescence maximum layer in NPCW.

Page 23: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

21

Figure 6. Temperature, salinity and dissolved oxygen cross-section plots for S213. Distance (km) along x-axis follows the cruise track from San Diego, CA, USA to Puerto Vallarta, MX. Oceanographic features identified: abbreviations as in Figure 4. Note the narrow, surface aspect of the CC, but more significant expression as a cold, less saline layer subducted beneath NPCW. Data interpolation by VG Gridding in ODV, 10 x-scale and 70 y-scale.

CC NPCW NPEWGC

Catalina Guadalupe Socorro

NPEWCC NPCW NPEWGC

Catalina Guadalupe Socorro

NPEW

Page 24: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

22

Table 5. Hydrocast station data for S213.

Station # (S213-) Bottle # Depth (m)

Temp (oC)

Salinity (ppt)

Density (kg/m3)

O2 (ml/l) PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Station: 008 2 496 6.63 34.32 26.94 0.39 3.374 Catalina Island 3 397 7.31 34.30 26.83 0.66 4 298 7.98 34.26 26.70 1.10 2.863 5 249 8.57 34.25 26.61 1.27 0.006 6 199 9.07 34.21 26.49 1.69 2.461 0.007 7 149 9.28 33.95 26.26 3.02 0.007 8 99 10.14 33.83 26.01 3.44 1.780 0.018 9 75 10.63 33.66 25.80 3.81 0.048 10 50 12.31 33.53 25.39 4.71 1.383 0.447 11 25 17.63 33.63 24.32 5.61 0.222 12 10 18.66 33.71 24.12 5.15 0.187 0.117 13 0 19.10 33.70 0.369 0.101 Station: 009 2 496 6.45 34.32 26.96 0.37 3.039 Catalina Island 3 398 7.23 34.29 26.83 0.66 4 298 7.95 34.25 26.70 1.14 2.438 6 199 8.94 34.16 26.47 1.87 2.489 0.007 7 149 9.32 34.07 26.34 2.28 0.014 8 99 10.14 33.79 25.99 3.25 1.678 0.043 9 75 10.79 33.69 25.79 4.00 0.071 10 50 11.94 33.59 25.51 4.51 1.429 0.181 11 25 14.77 33.52 24.88 5.69 0.348 12 11 17.57 33.68 24.37 5.45 0.000 0.241 13 0 18.40 33.70 0.193 0.171 Station: 012 2 479 6.85 34.31 26.90 0.47 3.685 Catalina Island 3 397 7.28 34.27 26.81 0.75 4 298 7.79 34.20 26.68 1.22 5 248 8.46 34.23 26.61 1.33 0.005 6 199 8.95 34.17 26.48 1.76 2.268 0.010 7 149 9.36 34.01 26.29 2.58 0.009 8 100 9.98 33.81 26.03 3.30 2.336 0.014

Page 25: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

23

Station # (S213-) Bottle # Depth (m)

Temp (oC)

Salinity (ppt)

Density (kg/m3)

O2 (ml/l) PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Station: 012 cont 9 75 10.72 33.68 25.80 3.77 0.048 Catalina Island 10 50 11.53 33.57 25.57 4.77 1.786 0.181 11 25 17.63 33.63 24.32 0.601 12 10 18.66 33.71 24.12 0.635 0.162 13 0 18.80 33.70 0.607 0.595 0.120 Station: 018 2 989 3.89 34.49 27.40 0.58 134.271 PSAW – California Current

3 870 4.24 34.45 27.33 0.42 4.366

4 742 4.67 34.40 27.25 0.30 4.910 135.415 Secchi depth = 25m 7 397 6.27 34.12 26.83 0.99 4.218 100.031 0.002 8 298 7.31 34.05 26.63 1.94 2.739 0.003 9 198 8.91 33.96 26.32 3.40 2.557 60.147 0.005 10 99 11.39 33.42 25.48 4.71 1.361 0.041 11 49 16.35 33.46 24.49 6.00 0.283 0.359 0.216 12 23 19.07 33.48 23.84 5.20 0.283 0.076 13 0 19.50 33.50 0.522 0.000 0.081 Station: 028 5 692 5.43 34.41 27.17 0.22 0.002 Isla de Guadalupe 6 592 6.00 34.38 27.07 0.24 4.139 0.001 7 497 6.71 34.33 26.94 0.39 0.003 8 246 9.26 34.25 26.50 1.77 1.548 0.006 9 121 10.89 33.68 25.77 4.48 0.036 10 70 13.82 33.30 24.91 5.66 0.482 0.213 11 47 18.50 33.64 24.11 5.23 0.108 12 24 18.97 33.58 23.94 5.23 0.295 0.065 13 0 19.60 32.70 0.249 0.045 Station: 033 2 945 4.29 34.48 27.35 0.43 4.536 Isla de Guadalupe 3 892 4.49 34.47 27.32 0.37 4 792 4.85 34.44 27.26 0.29 4.451 5 693 5.44 34.44 27.19 0.22 0.003 6 595 6.01 34.41 27.09 0.21 4.899 0.003 7 495 6.64 34.36 26.97 0.37 0.001 8 247 9.05 34.27 26.54 2.00 3.050 0.006

Page 26: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

24

Station # (S213-) Bottle # Depth (m)

Temp (oC)

Salinity (ppt)

Density (kg/m3)

O2 (ml/l) PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Station: 033 cont 10 73 13.10 33.41 25.14 5.39 0.788 0.134 Isla de Guadalupe 11 49 14.97 33.35 24.71 5.87 0.223 12 24 18.83 33.65 24.04 5.25 0.471 0.148 13 0 0.003 Station: 036 1 954 4.36 34.48 27.34 0.41 Isla de Guadalupe 2 953 4.36 34.48 27.34 0.41 3.340 3 900 4.55 34.47 27.31 0.37 4 798 4.97 34.44 27.25 0.29 3.357 5 698 5.39 34.43 27.18 0.23 0.000 6 599 5.83 34.37 27.08 0.25 3.629 0.001 7 501 6.46 34.31 26.96 0.39 0.004 8 249 9.17 34.27 26.52 1.54 2.381 0.003 9 124 11.15 33.72 25.75 4.75 0.034 10 74 13.54 33.39 25.04 5.56 0.919 0.164 11 50 15.39 33.31 24.59 5.87 0.099 12 24 18.97 33.56 23.93 5.24 0.533 0.050 13 0 0.561 0.061 Station: 040 1 999 4.09 34.51 27.39 0.49 4.286 98.887 NPCW - STT 2 899 4.45 34.49 27.34 0.37 3.992 3 799 4.81 34.46 27.28 0.30 4.241 90.880 Secchi depth = 35m 4 749 4.96 34.45 27.25 0.28 3.771 5 625 5.67 34.41 27.13 0.21 3.198 85.999 6 499 6.77 34.41 26.99 0.20 3.289 7 399 7.69 34.41 26.86 0.28 3.204 70.061 0.003 8 299 8.62 34.35 26.67 0.80 3.090 0.004 9 198 9.35 34.22 26.45 1.70 2.943 46.878 0.008 10 99 10.85 33.76 25.84 2.94 2.155 0.039 11 49 14.35 33.54 24.99 5.30 1.366 6.071 0.503 12 24 19.80 33.79 23.89 5.12 0.567 0.103 13 0 20.60 33.00 0.652 3.066 0.100

Page 27: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

25

Station # (S213-) Bottle # Depth (m)

Temp (oC)

Salinity (ppt)

Density (kg/m3)

O2 (ml/l) PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Station: 059 2 892 4.90 34.52 27.32 0.18 3.247 NPEW - Tropical 3 793 5.26 34.50 27.26 0.14 2.545 37.336 4 744 5.56 34.50 27.22 0.11 3.076 Secchi depth = 36m 5 620 6.40 34.51 27.13 0.07 2.744 29.910 6 496 7.52 34.52 26.98 0.07 2.987 7 397 8.83 34.56 26.81 0.09 2.915 16.165 0.007 8 297 10.30 34.66 26.64 0.09 2.578 0.010 9 197 12.20 34.74 26.35 0.17 2.440 22.283 0.007 10 98 16.41 34.84 25.53 1.36 2.661 0.024 11 50 20.09 34.13 24.08 5.45 0.498 3.348 0.258 12 24 25.25 34.57 22.94 4.59 0.200 0.077 13 0 26.70 34.70 0.233 0.000 0.076 Station: 067 1 967 4.60 34.54 27.36 0.23 2.993 NPEW - Isla Socorro 2 893 4.90 34.53 27.32 0.16 3 793 5.40 34.52 27.26 0.09 2.932 4 694 6.04 34.53 27.18 0.07 5 595 6.79 34.53 27.09 0.06 2.794 6 496 7.67 34.55 26.97 0.06 7 247 11.14 34.71 26.53 0.10 2.467 0.008 8 123 13.12 34.68 26.12 0.45 9 73 15.57 34.12 25.17 2.97 1.355 0.153 10 48 17.96 34.16 24.64 5.06 11 23 26.00 34.64 22.77 4.50 0.249 0.100 12 10 26.79 34.65 22.52 4.46 13 0 27.20 34.60 0.299 0.039 Station: 071 1 919 4.84 34.54 27.33 0.17 3.208 NPEW - Isla Socorro 2 892 4.93 34.53 27.32 0.16 3 793 5.42 34.52 27.26 0.10 2.976 4 694 5.96 34.51 27.18 0.09 5 595 6.74 34.52 27.08 0.07 2.589 6 496 7.67 34.54 26.97 0.06 7 247 11.05 34.70 26.54 0.07 2.528 0.014

Page 28: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

26

Station # (S213-) Bottle # Depth (m)

Temp (oC)

Salinity (ppt)

Density (kg/m3)

O2 (ml/l) PO4 (µM)

NO3 (µM)

Chl-a (µg/l)

Station: 071 cont 8 123 13.06 34.70 26.15 0.35 NPEW - Isla Socorro 9 74 15.19 34.31 25.40 1.99 1.267 0.092 10 48 17.87 34.16 24.66 4.41 11 24 24.24 34.47 23.17 5.08 0.233 0.090 12 10 26.38 34.61 22.62 4.54 13 26.70 34.60 0.194 0.060

Water samples were collected in 2.5 liter Niskin bottles deployed on a self-contained carousel system with a SBE-019Plus CTD sensor (Seabird Instruments, Inc.). Dissolved oxygen (O2) concentrations were determined using an in situ sensor (Seabird Instruments Inc.). Phosphate (PO4), and nitrate (NO3) levels were measured by colorimetric analysis with an Ocean Optics Chem2000 digital spectrophotometer. Chlorophyll-a (Chl-a) concentrations were determined with a Turner Designs Model 10-AU Fluorometer following methods outlined in Parsons, Maita and Lalli (1984; A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press). Chlorophyll-a samples were filtered through 0.45 µm filters. A blank space indicates that no sample was collected for that analysis. Sample concentrations below detectable limits are indicated as “BD”.

Page 29: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

27

Figure 7. Current magnitude and direction surface plots for S213. Currents were measured using a hull-mounted ADCP – acoustic doppler current profiler (75 kHz, RDI Ocean Surveyor) with a surface offset of 18m. Surface circulation along the cruise track was not characterized by a predominate current; instead, flow was generally weak (= 500 mm/s or ~1.0 knot) and complex, being composed of mesoscale eddies, recirculations and coastal filaments. Cross-section magnitude and direction plots from Regions A and B will highlight these features. On a more localized scale, stronger currents were evident around islands and will be highlighted in subsequent figures.

A

B

A

B

Page 30: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

28

Figure 8a. Current magnitude and direction (N-S) surface and cross-section plots for Region A (see Figure 7). Currents with a minimum magnitude of 250mm/s or a 0.5 knot are shown. Numerous eddies of varying dimension (width and depth) can be observed offshore Punta Eugenia.

Page 31: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

29

Figure 8b. Current magnitude and direction (E-W) surface and cross-section plots for Region B (see Figure 7). Currents with a minimum magnitude of 250mm/s or a 0.5 knot are shown. Numerous eddies of varying dimension (width and depth) can be observed. Note, periodically the ADCP recorded a false bottom, indicated by disproportionately strong and highly, irregular current magnitudes. These regions are indicated by a grey-shaded overlay. These false bottoms were coincident with low echo amplitudes associated with vertical migration of plankton (see Figure 9).

Page 32: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

30

Figure 8c. Current magnitude and direction (N-S) surface and cross-section plots for Region B (see Figure 7). Currents with a minimum magnitude of 250mm/s or a 0.5 knot are shown. Numerous eddies of varying dimension (width and depth) can be observed. Note, periodically the ADCP recorded a false bottom, indicated by disproportionately strong and highly, irregular current magnitudes. These regions are indicated by a grey-shaded overlay. These false bottoms were coincident with low echo amplitudes associated with plankton migrations (see Figure 9).

Page 33: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

31

Figure 9. Echo amplitude and current magnitude cross-section plots for Region B (see Figure 8c). In this east-west transect through NPEW diel patterns of plankton vertical migration were clearly evident. Interestingly, the corresponding dearth of suspended particles below 200m led to errant readings by the ADCP; which may at first appear to register as false –bottom readings.

False Bottom readingsFalse Bottom readings

Page 34: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

32

Island Mass Effect Study – Rationale and Sample Description Island mass effect is an increase in productivity near an island in comparison to the

surrounding oceanic region (Dandanneau and Charpy 1985). This increased productivity hypothetically promotes increased abundance of secondary consumers (zooplankton) which in turn support higher trophic levels and fisheries resources (Hernandez-Leon 1991). The chemical processes that support the development of a mass effect are linked to the physical processes of upwelling (Wolanski and Hamner 1988); as well as local effects of terrestrial runoff (Martinez and Maamaatuaiahutapu 2004, Messie et al 2006).

Upwelling around islands can be driven by prevailing winds and ekman transport of surface waters offshore. An alternate, though not mutually exclusive process of upwelling can occur when prevailing surface currents impinge upon an island from one direction and form eddies and localized upwelling in the wake of said island. Whether wind-driven or current driven upwelling processes manifest themselves around an island both are a function of local bathymetry, prevailing wind and current patterns and the characteristics of deep water being brought to the surface (Wolanski and Hamner 1988). A comparison of the geologic, physical, chemical and biological setting of Santa Catalina, Guadalupe and Socorro islands provides an unparalleled opportunity to understand the geologic setting and oceanographic processes that determine the occurrence and expression of island mass effects. Such an understanding can inform fisheries resource management by identifying the location and seasonality (wind-driven or current driven) of a mass effect and the extent to which a local food web is enhanced. Sampling collection was designed to reveal the following:

• Location and expression of island mass effect o Surface Stations (nutrients, fluorescence, extracted chlorophyll-a) o oblique towed 1-Meter Net plankton tows

• Location and origin of upwelling (either wind-driven or current eddies) o CTD and ADCP transects

• Location of terrestrial runoff o Shipek Grab sediment samples o Sorting and Reflectivity measurements

Figure 10. Sampling plan for Catalina Island – Mass Effect study. Location of CTD stations (blue dots) and orientation of cross section plot transects (red arrow) are shown. Stations occurred on 14-16 October, 2007. Island coastline (dark outline) is overlaid from a hand-drawn USGS nautical chart. Light grey island coastline indicates the poor representation of island position using ODV coastlines. For each transect, the localized mass effect was estimated using surface stations from inshore and offshore locations. The following parameters were measured: PO4 concentration (µM), in vivo chlorophyll-a fluorescence (volts), extracted chlorophyll-a (µg/l); and from 0-200m oblique 1-meter net (335um) plankton tows that occurred mid-transect: zooplankton density (ml/m3), zooplankton diversity (H’), gelatinous zooplankton density (ml/m3) and mickronekton density (ml/m3). For ease of comparison island mass effect parameters were transformed into equivalent units in the following manner: all parameters are plotted as proportion of maximum value (range 0.0-1.0) for each island; these are collectively referred to as Mass Effect Indices (MEI’s).

Page 35: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

33

Figure 10. The island mass effect was most prominent along the North Transect having 7 of the highest ranking MEIs (out of 10).

33.6 oN

33.5 oN

33.4 oN

33.3 oN

33.2 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW

East Transect

North Transect

West Transect

33.6 oN

33.5 oN

33.4 oN

33.3 oN

33.2 oN

33.6 oN

33.5 oN

33.4 oN

33.3 oN

33.2 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW118.8 oW 118.6 oW 118.4 oW 118.2 oW

East Transect

North Transect

West Transect

Island Mass EffectIndices

0.00

0.50

1.00

Catalina _east

0.00

0.50

1.00

Catalina_north

0.00

0.50

1.00

Catalina_west

PO

4 in

shor

e

Flu

or in

shor

e

Chl

-a in

shor

e

Zoo

Den

Zoo

Div

Gel

Den

Mne

k D

en

PO

4 of

fsho

re

Flo

ur o

ffsho

re

Chl

-a o

ffsho

re

Legend

Santa Catalina

33.6 oN

33.5 oN

33.4 oN

33.3 oN

33.2 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW

East Transect

North Transect

West Transect

33.6 oN

33.5 oN

33.4 oN

33.3 oN

33.2 oN

33.6 oN

33.5 oN

33.4 oN

33.3 oN

33.2 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW118.8 oW 118.6 oW 118.4 oW 118.2 oW

East Transect

North Transect

West Transect

Island Mass EffectIndices

0.00

0.50

1.00

Catalina _east

0.00

0.50

1.00

Catalina_north

0.00

0.50

1.00

Catalina_west

PO

4 in

shor

e

Flu

or in

shor

e

Chl

-a in

shor

e

Zoo

Den

Zoo

Div

Gel

Den

Mne

k D

en

PO

4 of

fsho

re

Flo

ur o

ffsho

re

Chl

-a o

ffsho

re

Legend

Santa Catalina

Page 36: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

34

Figure 11 a-d. Surface Current vector plot and Temperature, salinity, density and fluorescence cross-section plots for three inshore-to-offshore transects around Santa Catalina. Location and depth of CTD casts are shown by dashed lines in cross-section plots. Depth scale has been limited to upper 200m to emphasize surface features, though CTD casts frequently reached 1000 meters or more. Data interpolation by VG Gridding in ODV, 350 x-scale and 30 y-scale was used to help elucidate sloping isolines for each parameter. Temperature range 5-20 °C, salinity range 33.2-34.2 psu, density (s -t) 24-27 kg/m3, chlorophyll-a fluorescence 0.0-0.6. a) Surface Current vector plot. Note presence of an anti-cyclonic current eddy along the eastern transect and strong current shear (though no eddy feature could be resolved) along the northern transect.

Page 37: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

35

b) East Transect. Based on isolines there is no indication of wind-driven upwelling (upward sloping of isolines toward shore – left side of graph) or eddy–driven upwelling (upward doming of isolines). Chlorophyll-a fluorescence shows a surface peak nearshore and an offshore, sub-surface maximum.

Page 38: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

36

c) North Transect. Based on isolines there is no indication of wind-driven, coastal upwelling but there is some indication of sloping isopycnals offshore, possibly associated with an edge of an anti-cyclonic eddy (though this feature is not fully resolved in the surface current plot, Figure 11a). Chlorophyll-a fluorescence is minimal nearshore but shows a significant offshore, sub-surface maximum, coincident with sloping isopycnals.

Page 39: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

37

d) West Transect. Based on isolines there is no indication of wind-driven upwelling or eddy–driven upwelling. Chlorophyll-a fluorescence shows a weak, sub-surface maximum compared to other island transects.

Page 40: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

38

Figure 12. Sampling plan for Isla de Guadalupe – Mass Effect study. Location of CTD stations (blue dots) and orientation of cross section plot transects (red arrow) are shown. Stations occurred on 20-23 October, 2007. Island coastline (dark outline) is overlaid from a hand-drawn USGS nautical chart. Light grey island coastline indicates the poor representation of island position using ODV coastlines. Analysis of island Mass Effect Indices (MEIs) as in Figure 10. Note, there were no Surface Station samples for the East Transect (ns), consequently the North Transect has a majority of high ranking MEIs for nutrient and productivity estimates. Conversely, the East transect had the highest ranking MEIs for 3 of the 4 zooplankton MEIs.

Isla de Guadalupe

29.4 oN

29.2 oN

29.0 oN

28.8 oN

28.6 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW 118.0 oW 117.8 oW

East Transect

North Transect

South Transect

29.4 oN

29.2 oN

29.0 oN

28.8 oN

28.6 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW 118.0 oW 117.8 oW

29.4 oN

29.2 oN

29.0 oN

28.8 oN

28.6 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW 118.0 oW 117.8 oW

East Transect

North Transect

South Transect

Island Mass EffectIndices

PO

4 in

shor

e

Flu

or in

shor

e

Chl

-a in

shor

e

Zoo

Den

Zoo

Div

Gel

Den

Mne

k D

en

PO

4 of

fsho

re

Flo

ur o

ffsho

re

Chl

-a o

ffsho

re

Legend0.00

0.50

1.00

Guadalupe_south

0.00

0.50

1.00

Guadalupe_east

0.00

0.50

1.00

Guadalupe_north

ns ns nsns ns ns 0.0

Isla de Guadalupe

29.4 oN

29.2 oN

29.0 oN

28.8 oN

28.6 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW 118.0 oW 117.8 oW

East Transect

North Transect

South Transect

29.4 oN

29.2 oN

29.0 oN

28.8 oN

28.6 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW 118.0 oW 117.8 oW

29.4 oN

29.2 oN

29.0 oN

28.8 oN

28.6 oN

118.8 oW 118.6 oW 118.4 oW 118.2 oW 118.0 oW 117.8 oW

East Transect

North Transect

South Transect

Island Mass EffectIndices

PO

4 in

shor

e

Flu

or in

shor

e

Chl

-a in

shor

e

Zoo

Den

Zoo

Div

Gel

Den

Mne

k D

en

PO

4 of

fsho

re

Flo

ur o

ffsho

re

Chl

-a o

ffsho

re

Legend0.00

0.50

1.00

Guadalupe_south

0.00

0.50

1.00

Guadalupe_east

0.00

0.50

1.00

Guadalupe_north

ns ns nsns ns ns 0.0

Page 41: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

39

Figure 13 a-d. Surface Current vector plot and Temperature, salinity, density and fluorescence cross-section plots for three inshore-to-offshore transects around Isla de Guadalupe . Location and depth of CTD casts are shown by dashed lines in cross-section plots. Depth scale has been limited to upper 200m to emphasis surface features, though CTD casts frequently reached 1000 meters or more. Data interpolation by VG Gridding in ODV, 250 x-scale and 30 y-scale was used to help elucidate sloping isolines for each parameter. Parameter ranges as in Figure 11. a) Surface Current vector plot. Along the entire eastern shore of Guadalupe there is a

prevailing southerly current showing considerable shear with the island. The result is the appearance of significant recirculation and eddy formation along the southern shore.

Page 42: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

40

b) North Transect. Sloping isolines suggest downwelling along the coast, but also a shallow and weakly stratified water column offshore. Both were consistent with the persistent northerly winds at that were responsible for the prevailing surface currents at this time (previous figure). A significant offshore, surface maximum in fluorescence, as well as a uniformly distributed sub-surface maximum, coincided with the weakened stratification.

Page 43: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

41

c) East Transect. Isolines suggest increased stratification and possible downwelling in comparison to the Northern transect. Diminished surface fluorescence coincides with this change in hydrographic conditions.

Page 44: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

42

d) South Transect. A deeper and more steeply stratified water column along the South Transect was consistent with the weak sub-surface fluorescence maximum layer.

Page 45: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

43

Figure 14. Sampling plan for Isla de Socorro – Mass Effect study. Location of CTD stations (blue dots) and orientation of cross section plot transects (red arrow) are shown. Stations occurred on 10-11 November, 2007. Island coastline (dark outline) is overlaid from a hand-drawn USGS nautical chart. Analysis of island Mass Effect Indices (MEIs) as in Figure 10. Both transects surveyed around Isla de Socorro showed significant island mass effects, and had similar values for nearly all MEIs, with the notable exception of micronekton density. Patterns in diel migration may account for this difference (see Table ??). However, this explanation would not be consistent with observed similarities in zooplankton indices among the two transects.

Isla de Socorro Island Mass EffectIndices

PO

4 in

shor

e

Flu

or in

shor

e

Chl

-a in

shor

e

Zoo

Den

Zoo

Div

Gel

Den

Mne

k D

en

PO

4 of

fsho

re

Flo

ur o

ffsho

re

Chl

-a o

ffsho

re

Legend

0.00

0.50

1.00

Socorro_east

0.00

0.50

1.00

Socorro_west

0.0

19.0 oN

18.8 oN

18.6 oN

111.2 oW 111.0 oW 110.8 oW

West Transect

East Transect

19.0 oN

18.8 oN

18.6 oN

111.2 oW 111.0 oW 110.8 oW

19.0 oN

18.8 oN

18.6 oN

111.2 oW 111.0 oW 110.8 oW

West Transect

East Transect

Isla de Socorro Island Mass EffectIndices

PO

4 in

shor

e

Flu

or in

shor

e

Chl

-a in

shor

e

Zoo

Den

Zoo

Div

Gel

Den

Mne

k D

en

PO

4 of

fsho

re

Flo

ur o

ffsho

re

Chl

-a o

ffsho

re

Legend

0.00

0.50

1.00

Socorro_east

0.00

0.50

1.00

Socorro_west

0.0

19.0 oN

18.8 oN

18.6 oN

111.2 oW 111.0 oW 110.8 oW

West Transect

East Transect

19.0 oN

18.8 oN

18.6 oN

111.2 oW 111.0 oW 110.8 oW

19.0 oN

18.8 oN

18.6 oN

111.2 oW 111.0 oW 110.8 oW

West Transect

East Transect

Page 46: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

44

Figure 15 a-c. Surface Current vector plot and Temperature, salinity, density and fluorescence cross-section plots for three inshore -to-offshore transects around Isla de Socorro. Location and depth of CTD casts are shown by dashed lines in cross-section plots. Depth scale has been limited to upper 200m to emphasis surface features, though CTD casts frequently reached 1000 meters or more. Data interpolation by VG Gridding in ODV, 350 x-scale and 30 y-scale was used to help elucidate sloping isolines for each parameter. Temperature range 5-20 °C, salinity range 33.2-34.2 psu, density (s -t) 22-27 kg/m3, chlorophyll-a fluorescence 0.0-0.6. a) Surface Current vector plot. Surface current patterns around Isla Socorro are complex and suggest presence of eddies along both transects. However, these features are likely aspects of a regional scale eddy field rather than island-scale processes (recall Figures 7 and 8a-c).

Page 47: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

45

b) East Transect. Note change in temperature, salinity and density scales from Catalina and Guadalupe islands. Surface mixed layer is warmer, saltier but also narrower than for other islands. The pycnocline is strongly stratified, but shallower than previously seen around other islands. Is explains low surface fluorescence but a well-developed sub-surface maximum, presumably supported by ‘deep’, nutrient rich waters extending into the euphotic zone.

Page 48: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

46

c) West Transect. Strong, but shallow stratification again limits surface fluorescence but supports a developed sub-surface maximum. Given the maximum is skewed toward shore, despite lack of evidence for coastal upwelling, suggests a terrestrial source for this expression of mass effect.

Page 49: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

47

Table 6. Summary of shipek grab sediment sampling_ Island Mass Effect study. Phi-scale and sorting index calculations followed Boggs (2001). Digital image analysis of sediment samples using Image J software allowed quantitative assessment of sediment reflectivity which was used to measure terrigenous content. Lower grey value indicates darker sediments, and thus greater terrigenous content. Poor sorting and high terrigenous content of sediment samples suggested a site of terrestrial runoff and thus a source of nutrients supporting island mass effect. ISLAND Location Mean

Sediment Size (phi scale)

Mean Sediment Size

(µm)

Sorting Index

ReflectivityGrey Value

Description Interpretation of Runoff

Catalina East 3.30 125 0.99 moderate

136 Sandy, mostly silty, rounded sediments; no organics

No

North 1.17 500 0.89 moderate

128 mostly silty with some small sand; sediments fairly well rounded but some angular; no organics

Yes *

West 3.77 63 1.00 poor

153 mostly sandy & angular, no organics

No

Guadalupe North 2.30 250 0.91 moderate

94 Fine sand, rounded, no smell, many long worm tubes, small crabs, polychaetes

Yes *

East 1.77 250 1.13 poor

119 granular and sandy, angular, shell fragments and organic "fluff", algal fragments

No **

South 1.77 250 0.95 moderate

122 granular and sandy, angular, no smell, small brittle stars and worm tubes

No

Socorro East 2.77 125 1.29 poor

100 Many small shell fragments and silt, slightly angular, no smell of organics

Yes *

West 0.40 1000 1.63 poor

95 Many large shell fragments, sand, and silt, large size range, both angular and well rounded, no smell

Yes *

* Island transects with terrestrial runoff that also corresponded to regions of significant island mass effect. ** Island transects where absence of terrestrial runoff corresponded to area of significant island mass effect.

Page 50: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

48

Table 7. Neuston station data for S213.

Station #

(S213-)

Date (2007)

Local Time (+8

GMT)

Temp (°C)

Salinity (ppt)

Moon Phase (%)

Zooplankton

Density (ml/m²)

Zooplankton

Diversity (H')

Mycto #

Halo #

Phylo #

Lepto #

Plastic #

Tar #

Locale

002 13-Oct 0121 19.30 33.60 5 0.040 0.26 0 0 0 0 0 1 Southern CA Bight

015 17-Oct 1151 19.50 33.40 32 0.008 0.82 0 0 0 0 0 0 PSAW-California Current

017 18-Oct 0006 17.90 33.20 36 0.022 0.51 1 0 0 0 2 0 PSAW-California Current

020 19-Oct 0021 19.00 33.20 42 0.011 0.12 1 0 0 0 0 0 PSAW-California Current

021 19-Oct 1123 19.50 33.20 42 0.005 0.17 0 0 0 0 0 0 PSAW-California Current

025 21-Oct 0134 19.20 33.50 72 0.021 0.67 0 0 0 0 0 0 NPCW-Subtropical Transition

039 25-Oct 0012 20.20 29.60 96 0.039 0.38 2 0 0 0 0 1 NPCW-Subtropical Transition

042 26-Oct 1038 20.00 33.00 100 0.009 0.28 0 0 0 0 11 0 NPCW-Subtropical Transition

044 27-Oct 1051 24.90 33.60 97 0.014 0.47 0 0 0 0 0 2 NPEW-Tropical

046 28-Oct 0000 25.60 33.80 97 0.061 0.16 0 2 0 0 0 0 NPEW-Tropical

049 29-Oct 0004 26.40 32.10 84 0.018 0.27 0 35 0 0 2 0 NPEW-Tropical

051 30-Oct 0038 28.10 35.10 75 0.115 0.38 7 2 0 0 0 0 NPEW-Tropical

052 30-Oct 1220 28.00 35.00 75 0.008 0.45 0 0 0 0 0 0 NPEW-Tropical

Page 51: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

49

054 31-Oct 0945 27.10 35.20 54 0.139 0.35 0 0 0 0 15 0 Gulf of California

055 05-Nov 2003 27.40 35.10 17 0.237 0.60 0 0 1 0 0 0 Gulf of California

056 06-Nov 1213 26.80 35.20 10 0.065 0.23 0 0 0 0 2 0 Gulf of California

057 06-Nov 2240 27.50 34.60 10 0.137 0.55 0 14 6 0 1 0 Gulf of California

061 08-Nov 0112 27.60 35.00 5 0.080 0.50 2 23 0 0 0 0 NPEW-Tropical

063 08-Nov 1653 29.40 34.40 2 0.034 0.45 0 5 0 0 9 0 NPEW-Tropical

079 17-Nov 0538 27.20 33.60 45 ND ND ND ND ND ND ND ND NPEW-Bahia de Banderas

Tow area was derived by calculating distance in meters between successive GPS positions (every minute). Net opening was 1.0 m wide by 0.5 m tall with a net mesh of 335 µm. Zooplankton density is recorded as wet volume displacement per tow area (ml/m2). Micronekton (>2cm) and gelatinous zooplankton were removed using a 1 cm mesh sieve and biomass (volume displacement) was determined; data available upon request. Lantern fish (Family Myctophidae), spiny lobster larvae (phyllosoma), eel larvae (leptocephali) and Halobates spp. were sorted from net contents and recorded as numbers caught per tow. Floating plastic and tar was also sorted from net contents, counted and recorded as numbers collected per tow. ND represents stations were no data was collected for that parameter.

Page 52: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

50

Table 8. Meter net station data for S213. Station # (S213-)

Date (2007)

Local Time (+8

GMT)

Target Tow Depth

(m)

Zoop Density (ml/m3)

Zoop Diversity

(H')

Mycto #

Phylo #

Lepto #

General Locale Descriptive Significance

006 14-Oct 0949 195 0.255 0.82 0 0 0 Catalina Island Island Mass Effect

010 15-Oct 1820 181 0.089 0.34 1 0 0 Catalina Island Island Mass Effect

013 16-Oct 0225 208 0.206 0.47 0 0 0 Catalina Island Island Mass Effect

027 21-Oct 1045 477 0.028 0.52 0 1 0 Isla de Guadalupe

Island Mass Effect

032 22-Oct 1734 290 0.080 0.55 0 0 0 Isla de Guadalupe

Island Mass Effect

035 23-Oct 1130 327 0.043 0.36 0 0 1 Isla de Guadalupe

Island Mass Effect

058 07-Nov 0513 300 0.070 0.35 3 0 1 NPEW-Tropical

CICIMAR sample collection

066 10-Nov 0906 304 0.072 0.35 0 1 2 NPEW-Isla Socorro

Island Mass Effect

070 11-Nov 0354 255 0.062 0.41 2 0 0 NPEW-Isla Socorro

Island Mass Effect

073 14-Nov 0507 150 0.188 0.65 ND ND ND NPEW-Tropical

CICIMAR sample collection

075 14-Nov 2131 266 ND 0.37 ND ND ND NPEW-Tropical

CICIMAR sample collection

076 15-Nov 2105 276 ND 0.60 ND ND ND NPEW-Tropical

CICIMAR sample collection

077 15-Nov 0454 136 ND ND ND ND ND NPEW-Tropical

CICIMAR sample collection

Tow area was derived by calculating distance in meters between successive GPS positions (every minute). Net volume based on 1MN = 1 meter diameter frame . Net mesh of 335µm. Micronekton (>2cm) and gelatinous zooplankton were removed using a 1 cm mesh sieve and biomass (volume displacement) was determined; data available upon request. Lantern fish (Family Myctophidae), spiny lobster larvae (phyllosoma) and eel larvae (leptocephali) were sorted from net contents and recorded as numbers caught per tow. All tows were oblique tows, for Island Mass Study tows ranged form 0 to within 50m of the seafloor, while samples for CICMAR target range was 0-250m. ND represents stations were no data was collected for that parameter.

Page 53: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

51

Table 9. Tucker trawl station data for S213. Station # (S213-)

Date (2007)

Local Time (+8

GMT)

Net Number

Tow Depth

(m)

Tow Volume

(m3)

ZoopDen (ml/m3)

Zooplankton

Diversity (H')

Mycto #

Phylo #

Lepto #

Descriptive Significance

016 17-Oct 2037 1,2 combined

0-423 4562 0.022 0.53 2 0 0 upper water column

016 17-Oct 2145 3 0-423 1625 0.039 0.29 0 0 0 upper water column

021 19-Oct 0923 1,3 combined

0-443 4624 0.008 0.57 1 0 0 upper water column

021 19-Oct 0955 2 443 1870 0.018 0.09 8 0 0 upper OMZ layer

022 19-Oct 1625 1,3 combined

0-645 5437 ND ND 4 0 0 CMARZ

022 19-Oct 1714 2 645 2143 0.005 0.40 1 0 0 mid OMZ layer

024 20-Oct 2103 1,3 combined

0-553 4014 0.006 0.50 5 1 0 upper water column

024 20-Oct 2150 2 553 2272 0.003 0.84 0 0 0 upper OMZ layer

030 22-Oct 0405 1,3 combined

0-839 6261 ND ND 2 1 0 CMARZ

030 22-Oct 0451 2 839 2678 0.003 0.69 0 0 0 mid OMZ layer

042 26-Oct 0833 1 0-500 2086 0.040 0.41 6 0 0 upper water column

042 26-Oct 0902 2 500-0 3532 0.046 0.40 16 0 0 upper water column

043 26-Oct 1623 1, 3 combined

0-620 5915 ND ND 7 0 0 CMARZ

043 26-Oct 1702 2 620-720 2005 0.008 0.26 4 0 0 mid OMZ layer

045 27-Oct 2019 1, 3 combined

0-334 1829 0.062 0.32 1 0 0 upper water column

Page 54: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

52

045 27-Oct 2043 2 225-334 1907 0.031 0.11 0 0 0 upper OMZ layer

047 28-Oct 0427 1, 3 combined

0-630 3747 ND ND 25 0 0 CMARZ

047 28-Oct 0505 2 600-665 1267 0.014 0.34 0 0 0 mid OMZ layer

060 07-Nov 2024 1, 3 combined

0-259 3120 0.055 0.42 18 0 3 upper water column

060 07-Nov 2049 2 150 2100 0.004 0.20 0 0 0 upper OMZ layer

062 08-Nov 0426 1, 3 combined

0-675 4145 ND ND 5 0 0 CMARZ

062 08-Nov 0504 2 675 1257 0.008 0.36 0 0 0 mid OMZ layer

065 09-Nov 0815 1, 3 combined

0-112 2595 0.053 0.38 0 0 4 upper water column

065 09-Nov 0837 2 112 2199 0.134 0.36 0 0 1 upper OMZ layer

072 12-Nov 0954 1, 3 combined

0-480 3186 0.027 ND 19 0 0 upper water column

072 12-Nov 1026 2 480 1790 0.003 0.26 8 0 0 mid OMZ layer

Duplicate station numbers indicate multiple net deployments occurring in sequence during the tow. Net1 was open from the surface down to the deepest target depth and represents an oblique tow. This net was frequently combined with Net 3, an oblique tow from depth back to the surface. A trigger weight closes Net 1, opening Net 2; the latter was towed for 30’ at a specific target depth, also corresponding to an ecological zone based on position relative to the oxygen minimum zone (OMZ). Again a trigger weight was used to close Net 2 and open Net 3. Net fra me was 1 m2 and nets were 333 um mesh. Micronekton (>2cm) and gelatinous zooplankton were removed using a 1 cm mesh sieve and biomass (volume displacement) was determined; data available upon request. Lantern fish (Family Myctophidae), spiny lobster larvae (phyllosoma) and eel larvae (leptocephali) were sorted from net contents and recorded as numbers caught per tow. ND represents stations were no data was collected for that parameter.

Page 55: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

53

Table 10. Squid jigging station data for S213.

Station # (S213-)

Lights ON

(+8 GMT)

Dur Obs (min)

Temp (°C)

Salinity (psu)

Fluor (mV)

Moon Phase (%)

Collection Effort - # jigs

(sm / lrg)

Max squid obs (#)

Squid Collected with Notes Locale

001 2121 30 19.20 33.70 4.30 2 2 / 2 0 Southern CA Bight

004 2133 29 18.50 33.60 4.90 5 1 / 2 0 Southern CA Bight

019 2000 85 18.90 33.10 4.00 42 3 / 1 0 PSAW-California Current

029 2146 97 19.50 32.70 3.60 75 3 / 3 0 Isla de Guadalupe

037 0310 70 19.50 32.60 3.70 96 4 / 3 4 Two female D. gigas: (1) ML38, FW23, LT40, ST17; (2) ML46, FW30, LT34, ST22

Isla de Guadalupe

041 0237 53 21.50 33.00 3.20 100 0 / 0 0 NPCW-Subtropical transition

049 0047 43 26.30 33.70 3.30 84 3 / 1 ~30 NPEW-Tropical

050 2116 59 28.40 34.90 5.20 84 4 / 2 0 NPEW-Tropical

053 0006 77 27.80 35.00 5.20 72 4 / 1 20 NPEW-Tropical

055 2120 70 27.00 35.10 6.70 17 2 / 1 ~20 One juvenile < 10 cm total length, not dissected

Gulf of California

064 2131 38 26.70 34.40 3.60 0 2 / 1 20 Three female D. gigas: (1) ML17, FW11, LT11, ST7; (2) ML17, FW10, LT8, ST7; (3) ML14, FW9, LT6, ST5

NPEW-Tropical

Jigging occurred with the ship hove to and deck lights on to attract squid. Duration of attracting lights recorded in minutes. Maximum number of squid observed at a single moment during the observation period. However, this does not reflect the variable nature of squid presence. At times, squid were visible near surface during the entire observation period, other times squid were episodically present. Small jigs were 10 cm in length on hand lines, large jigs were 25cm in length on rod and reel. Specimen measurements in cm. ML – mantle length, FW – mantle fin width, LT – long tentacle length, StT – short tentacle length.

Page 56: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

54

Figure 16. Oxygen minimum zone (OMZ) upper and lower limits along the Eastern Pacific Ocean (Helly and Levin 2004). Region marked by dashed lines indicates area of S213 cruise track. Enlarged figure (right panel) graphically represents the working hypothesis for the Trophic Dynamics research team (see Table 12). As the upper limit of the OMZ shallowed, so to would the extent of diel vertical migration by zooplankton and myctophids. The coincident accumulation and increased densities of these trophic levels in the upper water column would represent good foraging areas (on a regional/latitudinal scale) along the Baja coast for the jumbo flying squid Dosidicus gigas.

Page 57: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

55

Figure 17. Zooplankton and Myctophid distribution in relation to oxygen minimum zone . Center panel: Dissolved oxygen cross-section plot showing the position of the OMZ with location (depth range and latitude) of neuston and Tucker Trawl net tows super-imposed. Three regions are distinguished by depth of the OMZ. Upper panel: Day/night distribution of zooplankton density* by region. Lower panel: Day/night distribution of Myctophid density*.

* Calculation of density was normalized across gear type by transforming neuston net data to tow volume (ml/m3) assuming a net height of 0.25m.

REGION IDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Zooplankton Density (ml/m3)

REGION IIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Zooplankton Density (ml/m3)

REGION IIIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Zooplankton Density (ml/m3)

REGION IDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Myctophid Density (ml/m3)

REGION IIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Myctophid Density (ml/m3)

REGION IIIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Myctophid Density (ml/m3)

REGION IDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Zooplankton Density (ml/m3)

REGION IIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Zooplankton Density (ml/m3)

REGION IIIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Zooplankton Density (ml/m3)

REGION IDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Myctophid Density (ml/m3)

REGION IIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Myctophid Density (ml/m3)

REGION IIIDay/Night Distribution

0 25 50 75 100

mid OMZ layer

upper OMZ layer

upper watercolumn

surface

DE

PTH

ZO

NE

% Myctophid Density (ml/m3)

Page 58: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

56

Table 11. Shipek grab station data for S213.

Station # (S213-)

Date (2007)

Time (local +8

GMT)

Sample Depth

(m)

Locale Qualitative Description

005 14-Oct 0848 81 Catalina Island

Moderate olive brown, 5 y 4/4, olive gray 5 y 3/2; Sandy, mostly silty, rounded sediments; no organics

007 14-Oct 1134 61 Catalina Island

Grayish olive 10 y 4/2; mostly silty with some small sand; sediments fairly well rounded but some angular; no organics

011 15-Oct 2208 91 Catalina Island

Olive gray 5 Y 3/2, Grayish olive 10 Y 4/2, mostly sandy & angular, no organics

014 16-Oct 0550 101 Catalina Island

Olive gray 5 Y 3/2, silty/clayish & well rounded; Benthic polychaete, tube worms, small annelid, stinky (organic)

026 21-Oct 0930 96 Isla de Guadalupe

Moderate yellowish brown 10 YR 5/4, granular and sandy, angular, no smell, small brittle stars and worm tubes

031 22-Oct 1215 62 Isla de Guadalupe

Light Brown 5 YR 5/6, granular and sandy, angular, shell fragments and organisc "fluff", three different species of brown algae, 1 piece green algae, 2 small pieces of tar

034 23-Oct 0843 113 Isla de Guadalupe

Grayish brown 5 YR 3/2, Moderate brown 5 YR 3/4, small pebbles, sand, silt, mostly very angular, worm tubes, greed seaweed, shell fragments, brittle coral (fan-shaped light pink)

034 23-Oct 0858 79 Isla de Guadalupe

Dusky brown 5 YR 2/2, fine sand, rounded, no smell, many long worm tubes, small crabs, 2 pink worms (3 cm), eye sack

050 29-Oct 2116 12 Bay of Cabo San Lucas

moderate olive brown, 5 y 4/4, olive gray 5 y 3/2; Sandy, mostly silty, rounded sediments; no organics

068 10-Nov 1816 92 Isla Socorro dark yellowish brown, 10YR 42, small shell frags and silt, slightly angular, shell frags but no smell

069 10-Nov 2314 92 Isla Socorro Moderate yellowish brown 10 YR 5/4 (bigger shell frags), and moderate brown, 5YR 3/4 (silty stuff), lots of large shell frags, sand, and silt, large size range, both angular and well rounded, no smell

078 15-Nov 0000 19 Isla la Marieta

Shells and fragments, tube worms, some fragments of seaweed, no smell

Sediment samples (100 ml) were wet sieved and percent wet volume determined, data available upon request.

Page 59: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

57

Table 12. Student research topics for S213.

Research Topic I: Regional Comparisons - Physical, Bio-Chemical

Folasade Morvan

Vertical distribution of nutrients and bacteria throughout the O.M.Z.

Ellie Kane, Lucy Rozansky, and Tim Groves

Hydrographic patterns in the Southern California Bight and coastal Baja peninsula in relation to ENSO conditions

Delia Adriana Daza

Geographic patterns of nutrients and heterotrophic bacteria

Research Topic II: Trophic Dynamics

Emily Cira, Rebecca Inver, and Thomas Stout

Zooplankton vertical migration and community parameters across the oxygen minimum zone of the Eastern Pacific

Tasia Blough, and Katie Shaughnessy

Variation of myctophid vertical migration patterns and diet throughout the oxygen minimum zone of the Eastern Pacific

Marjorie Crowley Distribution of larval Dosidicus gigas in the surrounding waters of the Southern California Bight

Adam Smith Zooplankton density and it’s correlation to megafaunal distribution along the S-213 Cruise Track

Research Team III: Island Mass Effect

Shiloh Schlung

The role of terrestrial runoff in island mass effect around three islands in the Eastern Pacific

Isaac Schoepp

The role of wind-driven upwelling in the island mass effect around Santa Catalina, Isla Guadalupe, and Isla Socorro islands

Kristine Unkrich Island eddies at Catalina, Guadalupe, and Socorro: Where are they located and how are they formed?

Aspen Gavenus

Larval nekton distribution and zooplankton density: determining primary mechanisms of island mass effect

Page 60: CRUISE REPORT S213 Scientific data collected aboard SSV … · 2013. 5. 16. · CRUISE REPORT S213 Scientific data collected aboard SSV Robert C. Seamans San Diego, California –

58

References Boggs, S., Jr., 2001. Principles of Sedimentology and Stratigraphy, 3rd Ed. Prentice Hall, Upper Saddle River, N.J. Martinez, Elodie and Keitapu Maamaatuaiahutapu, 2004. Island mass effect in the Marquesas Islands: Time variation. Geophysical Research Letters, vol 31, L18307. Messie, M. et al., 2006. Chlorophyll bloom in the western Pacific at the end of the 1997-1998 El Nino: The role of the Kiribati Islands. Geophysical Research Letters, vol 33, L14601. Dandonneau and Charpy 1985. An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations. Deep Sea Research 32(6): 707-721. Hernandez-Leon 1991. Accumulation of mesozooplankton in a wake area as a causative mechanism of the “island mass effect”. Marine Biology 109: 141-147. Helly and Levin 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Research 51: 1159-1168. Wolanski and Hamner 1988. Topographically controlled fronts in the ocean and their biological influence. Science 241: 177-181.