cqom itn fellow final report ldtoth ·...

5
Marie Curie ITN cQOM Summary of the Scientific Achievements Name of Fellow: Laszlo Daniel Toth Principal Investigator: Prof. Tobias Kippenberg Academic / Industrial Institution: Swiss Federal Institute of Technology in Lausanne (EPFL) Start Date of ITN Fellowship: 01.11.2013 End Date of ITN Fellowship: 31.05.2016 Date of Report: 23.06.2016 1. Description of research work My research is oriented towards establishing and exploiting the optomechanical interaction using superconducting microwave circuits, in which a mechanical element (a suspended membrane forming an electrode of a capacitor) is coupled to an inductorcapacitor circuit made by a thin superconductor. In particular, I am interested in realizing microwave optomechanics in a multimode system where multiple microwave modes couple to multiple mechanical modes. The physical realization of optomechanics in the microwave domain has certain advantages over its optical counterpart. First, since microwave photons have much lower energy, the system can sustain a high number of them – therefore enhancing the optomechanical interaction without causing heating effects detrimental to many quantum experiments. Second, one can tap on the wellestablished technologies related to microwave generation and detection. Third, the circuit architecture is particularly well suited to realize multimode optomechanics, granted that one establishes sufficient control of the relevant mode parameters in the design and fabrication of the superconducting circuit and the mechanical elements. In the past few years, microwave optomechanics has seen a surge and significant milestones have been achieved, as the cooling of a micromechanical membrane to its quantum ground state, quantum state transfer and entanglement generation between a microwave and a mechanical mode and quantum squeezing of mechanical motion among others. All the experiments mentioned above explicitly exploit the regime in which the cold microwave mode is much more dissipative than the mechanical mode, forming a cold dissipative reservoir for the latter. Breaking from this paradigm, recent theoretical work has considered the opposite regime in which the dissipation of the mechanical oscillator dominates and provides a cold dissipative reservoir to the electromagnetic degree of freedom. This novel scenario, coined as the reversed dissipation regime, allows for manipulation of the electromagnetic mode and enables a new class of dissipative interactions. In practice, this hierarchy can only be achieved in a multimode electromechanical system, where one dissipative microwave mode is used to cool and damp the mechanical oscillator and prepare it as a cold bath for the other microwave mode. A particular goal of my work is to achieve this reversed dissipation regime of circuit electromechanics. Once the reversed dissipation regime is achieved, one can use it to amplify microwave signals with minimum added noise – as dictated by quantum mechanics provided that the mechanical element is close to its quantum ground state. These types of amplifiers are called quantum limited amplifiers and they have become technologically feasible and relevant in the field of

Upload: lehanh

Post on 05-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Marie  Curie  ITN  cQOM  Summary  of  the  Scientific  Achievements    

     Name  of  Fellow:  Laszlo  Daniel  Toth  Principal  Investigator:  Prof.  Tobias  Kippenberg  Academic  /  Industrial  Institution:  Swiss  Federal  Institute  of  Technology  in  Lausanne  (EPFL)  Start  Date  of  ITN  Fellowship:    01.11.2013  End  Date  of  ITN  Fellowship:  31.05.2016  Date  of  Report:  23.06.2016    

               1. Description  of  research  work  

 My   research   is   oriented   towards   establishing   and   exploiting   the   optomechanical   interaction  using   superconducting   microwave   circuits,   in   which   a   mechanical   element   (a   suspended  membrane  forming  an  electrode  of  a  capacitor)  is  coupled  to  an  inductor-­‐capacitor  circuit  made  by  a  thin  superconductor.  In  particular,  I  am  interested  in  realizing  microwave  optomechanics  in  a  multimode  system  where  multiple  microwave  modes  couple  to  multiple  mechanical  modes.    The  physical  realization  of  optomechanics  in  the  microwave  domain  has  certain  advantages  over  its  optical  counterpart.  First,  since  microwave  photons  have  much  lower  energy,  the  system  can  sustain  a  high  number  of  them  –  therefore  enhancing  the  optomechanical  interaction  -­‐  without  causing  heating  effects  detrimental  to  many  quantum  experiments.  Second,  one  can  tap  on  the  well-­‐established  technologies  related  to  microwave  generation  and  detection.  Third,  the  circuit  architecture   is   particularly  well   suited   to   realize  multimode   optomechanics,   granted   that   one  establishes  sufficient  control  of  the  relevant  mode  parameters   in  the  design  and  fabrication  of  the  superconducting  circuit  and  the  mechanical  elements.    In   the   past   few   years,  microwave   optomechanics   has   seen   a   surge   and   significant  milestones  have   been   achieved,   as   the   cooling   of   a   micromechanical   membrane   to   its   quantum   ground  state,   quantum   state   transfer   and   entanglement   generation   between   a   microwave   and   a  mechanical  mode  and  quantum  squeezing  of  mechanical  motion  among  others.    All  the  experiments  mentioned  above  explicitly  exploit  the  regime  in  which  the  cold  microwave  mode  is  much  more  dissipative  than  the  mechanical  mode,  forming  a  cold  dissipative  reservoir  for  the  latter.  Breaking  from  this  paradigm,  recent  theoretical  work  has  considered  the  opposite  regime     in   which   the   dissipation   of   the   mechanical   oscillator   dominates   and   provides   a   cold  dissipative  reservoir  to  the  electromagnetic  degree  of  freedom.    This  novel  scenario,  coined  as  the   reversed   dissipation   regime,   allows   for   manipulation   of   the   electromagnetic   mode   and  enables  a  new  class  of  dissipative  interactions.  In  practice,  this  hierarchy  can  only  be  achieved  in  a  multimode  electromechanical  system,  where  one  dissipative  microwave  mode  is  used  to  cool  and  damp  the  mechanical  oscillator  and  prepare  it  as  a  cold  bath  for  the  other  microwave  mode.  A   particular   goal   of   my   work   is   to   achieve   this   reversed   dissipation   regime   of   circuit  electromechanics.      Once   the  reversed  dissipation  regime   is  achieved,  one  can  use   it   to  amplify  microwave  signals  with  minimum  added  noise  –  as  dictated  by  quantum  mechanics  -­‐  provided  that  the  mechanical  element   is   close   to   its   quantum   ground   state.   These   types   of   amplifiers   are   called   quantum-­‐limited   amplifiers   and   they   have   become   technologically   feasible   and   relevant   in   the   field   of  

quantum   technologies   (quantum   computing,   quantum   sensing   etc.)   in   recent   years.   The   first  realization  and  characterization  of  such  a  device  based  on  the  reversed  dissipation  regime  is  also  within  the  scope  of  my  project.    Generally,  having   two   light  modes  coupled   to   the  same  mechanical  oscillator  provides  a  more  convenient   way   to   perform   various  measurements   compared   to   single-­‐mode   optomechanics.  For  example,  one  can  use  one  electromagnetic  mode  for  regular  sideband  cooling  and  the  other  one  to  infer  the  state  of  the  mechanical  oscillator  without  disturbing  it  (a  scheme  called  out-­‐of-­‐loop  thermometry).  More  concretely,  when  the  mode  is  cooled  close  to  the  ground  state  by  one  of  the  modes,  one  can  probe  on  resonance  of  the  other  mode  and  measure  the  asymmetry   in  the   scattered   sidebands.   This   asymmetry   is   a   direct   consequence   of   quantum  mechanics   and  provides  a  self-­‐calibrated  measure  of  the  thermal  occupation  of  the  mechanics.  Another  use  of  this   system   is   the   demonstration   of   the   phenomenon   of   level   attraction   or   unstable   avoided  crossing.  If  two  coupled  modes  cross  in  frequencies  with  one  of  negative  energy  and  the  other  of  positive  energy,  instead  of  the  usual  level  repulsion,  the  levels  attract  each  other  and  become  unstable  when  degenerate.   The  optomechanical  Hamiltonian  with  a  blue-­‐detuned  pump  gives  rise  to  this  exact  setting.  Here  the  second  mode  is  useful  only  for  the  practical  reason  that  the  mechanical  and  microwave  modes  should  have  similar  widths  for  the  resulting  dispersion  to  be  visible.   The   auxiliary   microwave   mode   is   then   required   to   damp   and   cool   the   mechanical  oscillator.      

2. Goals  achieved  and/or  progress  towards  them    

Microwave  optomechanics  was  a  new  direction  in  the  group,  therefore  the  first  goal  was  to  set  up  a  lab,  essentially    from  scratch,  and  all  the  equipment  necessary  for  measurements.  At  the  heart  of  the  measurement  setup  is  a  dry  dilution  refrigerator  (BlueFors),  capable  of  achieving  ~  8mK  in  continuous  operation.  Initially  set  up  in  the  beginning  of  2014,  various  aspects  have  been  improved  (including  the  design  of  the  sample  holder,  characterization  and  filtering  of  the  measurement  lines,  noise  calibration  capabilites)  and  the  laboratory  has  been  fully  renovated  and  upgraded  during  the  period  of  1.11.2015  –  1.05.2016.  

 The  clean  room  process   for   fabricating  superconducting  circuits  with  a  mechanically  compliant  vacuum-­‐gap  capacitor  was  developed  by  me  in  the  Micro-­‐  and  Nanofabrication  Facility  (CMi)  at  EPFL.   The   process   consists   of   4   lithography   layers   and   3   deposition   layers   and   produces  electromechanical   LC   resonators  with  Q-­‐factors   close   to   105.   An   example   of   a   fabricated   chip  and  devices  is  shown  on  Figure  1.    To  achieve  the  reversed  dissipation  regime,  the  capability  of  producing  high  quality  factors  is  not  enough;   one   needs   to   engineer   two   microwave   modes   with   substantially   different   external  coupling   factors   (but   both   coupled   to   the   same  mechanical   element).  We   have   achieved   this  condition   by   utilizing   the   (symmetric   and   antisymmetric)   normal   modes   of   an   initially  degenerate   coupled  hybrid   system,   requiring   careful   initial   simulations   and   circuit   design   (see  Figure   2.   A).   We   have   reached   the   reversed   dissipation   regime   by   damping   the   mechanical  oscillator  to  Γeff/2π>6κ  using  the  auxiliary  (symmetric,  bright)  microwave  mode  (κ  is  the  energy  dissipation  rate  of  the  dark,  antisymmetric  mode).    

   

Figure  1.  An  example  a   fabricated  device  with  a  multimode  superconducting  circuit   (Al  on  sapphire).  A)  Photograph  of  the  6.5  mm  x  9.5  mm  chip.  B)  optical  micrograph  of  the  device.  The  mechanically  compliant  vacuum-­‐gap  capacitor  is  in  the  middle  whose  bottom  plate  is  split  and  connected  to  two  inductors.  C)  Scanning  electron  micrograph  of  the  vacuum-­‐gap  capacitor.  D)  Topography  of  the  capacitor  obtained  by  optical  profilometry  at  room  temperature.  

 

 

Figure   2.   Reaching   the   required   hierarchy   of   dissipation   rates   for   the  microwave  modes   for   the   reversed   dissipation  regime.   A)  Optical  micrograph   of   the   device.   B)   Simplified  measurement   scheme.  Multiple   sources   are   combined   and  sent   down   the   dilution   refrigirator   through   various   stages   of   attenuation.   The   signal   interacts   with   the   chip   and   is  measured  after  a  HEMT  amplifier.  D)  Response  of  the  device  featuring  the  hierarchy  in  the  dissipation  rates  of  the  two  modes.  

Using  this  hierarchy,  we  then  demonstrated  the  “mechanical  spring  effect”,  i.e.  the  modification  of  the  susceptibility  of  a  microwave  mode  using  the  dissipative  mechanical  element  through  the  optomechanical  interaction.  Effectively,  this  provides  a  way  to  tailor  the  internal  dissipation  rate  of  the  cavity  and  when  this  turns  negative,  there  is  net  gain  introduced  and  the  system  works  as  a   low-­‐noise   amplifier.  We   have   characterized   this   amplifier,   found   that,   although   in   a   narrow  bandwidth,   it  can  beat  the  commercial  HEMT  amplifiers   in  terms  of  added  noise  and  currently  are  working  on  fully  understanding  and  improving  its  noise  properties.  

In   the   longer   run,   beyond   offering   the   manipulation   of   microwave   fields,   such   a   dissipative  reservoir   for   microwave   light,   when   coupled   to   multiple   cavity   modes,   forms   the   basis   of  microwave   entanglement   schemes   and   dissipative   quantum   phase   transitions.   Equally  important,   combining   such   reservoir-­‐mediated   interaction   with   coherent   dynamics   allows   for  the   realization  of   recently  predicted  non-­‐reciprocal  devices,  which  would  extend   the  available  toolbox  of  quantum-­‐limited  microwave  manipulation  techniques.    We  have  also  optimized  our  device  and  measured  level  attraction  in  an  optomechanical  system.  These   measurements   are   currently   being   analysed   and   a   full   theoretical   model   taking   into  account  experimental  details  is  being  set  up.  

 3. Training  received  (complementary/soft  skills,  ITN  workshops  attended)    

I  have  attended  the  following  workshops  during  my  ITN  fellowship:    7-­‐9  October  2013     Theory  of  cavity  optomechanics  (Erlangen)  10  October  2013     Taking  an  idea  to  a  product  (Munich)  2-­‐4  April  2014     Laser  Stabilization  and  high-­‐sensitivity  displacement  sensing  (Paris)  21-­‐23  July  2014     Finite  element  modeling  (Lausanne)  1-­‐5  February  2015     cQOM  Diavolezza  workshop  30  Nov  –  1  Dec  2015   Taking  a  research  idea  to  a  product  (IBM  Zurich)  31  Jan  –  4  Feb  2016   cQOM  Diavolezza  workshop  17-­‐19  May  2016     From  photonics  research  to  the  CMOS-­‐fab  (Ghent)  

     4. Participation  and  role  in  dissemination  and  outreach  activities  

 I  have  participated  in  various  outreach  activities  throughout  my  ITN  fellowship.  In  particular:  

1. I   participated   in   setting   up   and   presenting   at   our   booth   at   the   Nuit   de   la   Science   in  Geneva  (July  2014).  We  showcased  three  custom  made  photonics-­‐related  experiments.  Nuit   de   la   Science   is   a   multi-­‐day   public   event   organized   by   the   Museum   d`histoire  naturelle  in  Geneva  every  two  years,  attracting  thousands  of  people  from  all  age  groups.  The  booth  was  visited  by  hundreds  of  people  and  we  were  engaged  in  discussions  with  the  public   for   two  entire  days.   I   acknowledge   the  great  help  of  Clément   Javerzac-­‐Galy  and  Nicolas  Piro.  

2. I  have  been  involved  in  the  “Journée  des  classes”  in  June  2015,  where  we  showcased  fun  experiments   related   to   the   fundamental   aspects   of   light   such   as   light   scattering,  diffraction,  polarization  etc.  Journée  des  classes  is  a  full  day  event  at  EPFL  where  primary  and   high-­‐school   students   visit   labs   and   participate   in   interactive   experiments.   I  acknowledge   support   from  Clément   Javerzac-­‐Galy   for  masterminding  our  participation  in  the  event  and  obtaining  distributable  materials.  

3. Together  with  ESR  Talitha  Weiss,   I   have  managed   the  project   to  update   the  article  on  “cavity  optomechanics”  on  Wikipedia,  which  is  the  popular  web-­‐based,  multilingual  free-­‐content  encyclopedia  project  with  over  375  million  unique  visitors  a  month.  The  project  was  supported  by  ESRs    Koppany  Kormoczy,  Nenad  Kralj,  Liu  Qiu  and  Ryan  Schilling  and  I  corresponded  with   the  original    Wikipedia   contributor   to   the   topic   over   the   course  of  the   project.   Currently   the   page   receives   over   30   unique   visitors   a   day   on   average,  contributing  significantly  to  provide  information  to  the  general  public  about  the  central  topic  of  our  research.  

 

 5. List  of  conferences  attended  

 Apart  from  the  ITN  workshops  listed  above,  I  have  attended  the  following  conferences  and  invited  seminars:    9-­‐14  March  2014   Gordon  Research  Conference  (Ventura,  USA)   poster  presented  7-­‐9  January  2015   QSIT  NCCR  Meeting  (Arosa,  Switzerland)   poster  presented  7-­‐12  June  2015   QSIT  conference  (Monte  Verita,  Switzerland)   poster  presented  19  June  2015   Center  for  Nanoscale  Systems  (Harvard,  USA)   invited  talk  4  January  2016   Wigner  Research  Center  (Budapest,  Hungary)   invited  seminar  talk  6-­‐11  March  2016   Gordon  Research  Conference  (Ventura,  USA)   poster  presented      

6. Publications  (with  links)    L.  D.  Toth,  N.  Bernier,  A.  Nunnenkamp,  E.  Glushkov,  A.  K.  Feofanov,  T.  J.  Kippenberg:  Engineered  dissipative  reservoir  for  microwave  light.  E-­‐print:  http://arxiv.org/abs/1602.05180    C.  Javerzac-­‐Galy,  K.  Plekhanov,  N.  Bernier,  L.  D.  Toth,  A.  K.  Feofanov,  T.  J.  Kippenberg:  On-­‐chip  integrated  microwave-­‐to-­‐optical  quantum  coherent  converter.  E-­‐print:  http://arxiv.org/abs/1512.06442