cope-01 digital logic

6
20 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 20 of 481 (chapter 1: “Digital Logic” up to page 96) Combinational Logic Functions G Logic is reducible/equivalent to pure functions: there are no states! IF the function is combinational then there is only one output for any combination of inputs, e.g. the function can be written out as a truth table: a b c Output q minterms Simplified minterms F F F F F F T F F T F T a b c / / b c / F TT F T F F T a c / / a b / T F T T a c / / TT F T a b / / TTT F Sum of minterms: q = b a b a b c a b / / / / / / / / 0 0 0 ^ ^ ^ h h Sum of simplified minterms: q = a b c / 0 / ^ ^ h Simplifications can be done by (automated) algebraic transformations, Karnaugh maps or others 16 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 16 of 481 (chapter 1: “Digital Logic” up to page 96) Common Boolean operators Commonly used operators on expressions a, b to define boolean algebras: a b 0 (aka a b + or a OR bor SUM) a b / (aka a b $ or a AND bor PRODUCT) a (aka a J or a l or “not a”) Other handy operators: a b " = a b 0 ^ h (aka a IMPLIES b”) a b = ^ h = a b a b / 0 / ^ ^ h h (aka a EQUALS b”) a b 5 = a b a b / 0 / ^ ^ h h (aka a EXCLUSIVE-OR b” or “a XOR b”) a b / = a b 0 ^ h (aka a NOT-AND bor a NAND b”) a b 0 = a b / ^ h (aka a NOT-OR bor a NOR b”) NAND and NOR are the only sole sufficient boolean operators, i.e. you can reduce any boolean expression to only NAND or only NOR operators. 12 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 12 of 481 (chapter 1: “Digital Logic” up to page 96) Axiomatic Boolean Algebra (Whitehead 1898) 0-Laws /-Laws a a 0 = a a a / = a (redundant) a b 0 = b a 0 a b / = b a / (commutative) a b c 0 0 ^ h = a b c 0 0 ^ h a b c / / ^ h = a b c / / ^ h (associative) a a b 0 / ^ h = a (absorption) a b c / 0 ^ h = a b a c / 0 / ^ ^ h h (distribution) True a / = a (identity) (constant) a a 0 = True a a / = False (inverse) DeMorgan (double not) N ti lUi it Algebras allow for easier reasoning than truth tables. 8 1 Digital Logic Uwe R. Zimmer - The Australian National University Computer Organisation & Program Execution 2021 21 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 21 of 481 (chapter 1: “Digital Logic” up to page 96) Combinational Logic Functions G Logic is reducible/equivalent to pure functions: there are no states! IF the function is combinational then there is only one output for any combination of inputs, e.g. the function can be written out as a truth table: a b c Output q minterms Simplified minterms F F F F F F T F F T F T a b c / / b c / F TT F T F F T a c / / a b / T F T T a c / / TT F T a b / / TTT F Sum of minterms: q = b a b a b c a b / / / / / / / / 0 0 0 ^ ^ ^ h h Sum of simplified minterms: q = a b c / 0 / ^ ^ h Simplifications can be done by (automated) algebraic transformations, Karnaugh maps or others Every combinational function can be written as a sum of products! 17 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 17 of 481 (chapter 1: “Digital Logic” up to page 96) All binary Boolean operators Inputs a, b Function Name Sum of products NAND Don’t cares a F F T T build , , /0 b F T F T q F F F F False Constant FALSE a, b F F F T a b / AND a b a b / / / F F T F NOT-IMPLICATION a / ^ F F T T a IDENTITY a b F T F F b a " NOT-IMPLICATION b / h F T F T b IDENTITY b a F T T F a b 5 EXCLUSIVE-OR, XOR a b / 0 / ^ h F T T T a b 0 OR / T F F F NOT-OR, NOR / ^ T F F T a b = EQUALITY, EQ a b b 0 / / ^ ^ h T F T F INVERSE b a T F T T b a " IMPLICATION b a 0 T T F F INVERSE a b T T F T a b " IMPLICATION b 0 T T T F a b / NOT-AND, NAND b 0 T T T T True Constant True a, b Output q 13 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 13 of 481 (chapter 1: “Digital Logic” up to page 96) Axiomatic Boolean Algebra (Huntington 1904) 0-Laws /-Laws (redundant) a b 0 = b a 0 a b / = b a / (commutative) (associative) (absorption) a b c 0 / ^ h = a b a c 0 / 0 ^ ^ h h a b c / 0 ^ h = a b a c / 0 / ^ ^ h h (distribution) a False 0 = a True a / = a (identity) (constant) a a 0 = True a a / = False (inverse) DeMorgan (double not) 9 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 9 of 481 (chapter 1: “Digital Logic” up to page 96) References for this chapter [Patterson17] David A. Patterson & John L. Hennessy Computer Organization and Design – The Hardware/Software Interface Appendix A “The Basics of Logic Design” ARM edition, Morgan Kaufmann 2017 22 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 22 of 481 (chapter 1: “Digital Logic” up to page 96) Combinational Logic Functions G Logic is reducible/equivalent to pure functions: there are no states! IF the function is combinational then there is only one output for any combination of inputs, e.g. the function can be written out as a truth table: a b c Output q F F F F F F T F F T F T F TT F T F F T T F T T TT F T TTT F 18 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 18 of 481 (chapter 1: “Digital Logic” up to page 96) Combinational Logic Functions G Logic is reducible/equivalent to pure functions: there are no states! IF the function is combinational then there is only one output for any combination of inputs, e.g. the function can be written out as a truth table: a b c Output q F F F F F F T F F T F T F TT F T F F T T F T T TT F T TTT F 14 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 14 of 481 (chapter 1: “Digital Logic” up to page 96) Axiomatic Boolean Algebra … many other axiomatic formulations of Boolean algebra exist. 10 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 10 of 481 (chapter 1: “Digital Logic” up to page 96) It starts with a thought … An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities by George Boole, 1854 George Bool, 1815-1864 23 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 23 of 481 (chapter 1: “Digital Logic” up to page 96) Combinational Logic Functions G Logic is reducible/equivalent to pure functions: there are no states! IF the function is combinational then there is only one output for any combination of inputs, e.g. the function can be written out as a truth table: a b c Output q maxterms F F F F a b c 0 0 F F T F a b 0 0 F T F T F TT F a 0 0 T F F T T F T T TT F T TTT F 0 0 maxterms product q = a b c a b a b b 0 0 / 0 0 / 0 0 / 0 0 ^ ^ ^ ^ h h h 19 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 19 of 481 (chapter 1: “Digital Logic” up to page 96) Combinational Logic Functions G Logic is reducible/equivalent to pure functions: there are no states! IF the function is combinational then there is only one output for any combination of inputs, e.g. the function can be written out as a truth table: a b c Output q minterms F F F F F F T F F T F T b / / F TT F T F F T a b / / T F T T a b c / / TT F T a b / / TTT F Sum of minterms: q = a b c a c a c a b c / / / / / / / / 0 0 0 ^ ^ ^ ^ h h h h 15 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 15 of 481 (chapter 1: “Digital Logic” up to page 96) Redundant Boolean Algebra 0-Laws /-Laws a a 0 = a a a / = a (redundant) a b 0 = b a 0 a b / = b a / (commutative) a b c 0 0 ^ h = a b c 0 0 ^ h a b c / / ^ h = a b c / / ^ h (associative) a a b 0 / ^ h = a a a b / 0 ^ h = a (absorption) a b c 0 / ^ h = a b a c 0 / 0 ^ ^ h h a b c / 0 ^ h = a b a c / 0 / ^ ^ h h (distribution) a False 0 = a True a / = a (identity) a True 0 = True a False / = False (constant) a a 0 = True a a / = False (inverse) a b 0 = a b / a b / = a b 0 DeMorgan = a (double not) (redundant) ( d d t) … second nature for a computer scientist! 11 Digital Logic © 2021 Uwe R. Zimmer, The Australian National University page 11 of 481 (chapter 1: “Digital Logic” up to page 96) Boolean Values & Operators There are two values: e.g. True and False. (aka “1” and “0”) Two binary operators on expressions a, b: a b 0 (aka a b + or a OR bor SUM) a b / (aka a b $ or a AND bor PRODUCT) One unary operator on an expression a: a (aka a J or a l or “NOT a”) Truth tables: a b a b 0 a b / a False False False False True True False True False False False True True False True True True True

Upload: others

Post on 05-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: COPE-01 Digital Logic

20

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

20

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

min

term

sSi

mp

lifi e

d m

inte

rms

FF

FF

FF

TF

FT

FT

ab

c/

/

bc

/

FT

TF

TF

FT

ab

c/

/a

b/

TF

TT

ab

c/

/

TT

FT

ab

c/

/

TT

TF

Sum

of m

inte

rms:

q =

a

bc

ab

ca

bc

ab

c/

//

//

//

/0

00

^^

^^

hh

hh

Sum

of s

imp

lifi e

d m

inte

rms:

q =

a

bb

c/

0/

^^

hh

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

16

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

16

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

mon

Boo

lean

ope

rato

rsC

om

mo

nly

use

d o

per

ato

rs o

n e

xpre

ssio

ns

a, b

to d

efi n

e b

oo

lean

alg

ebra

s:

a

b0

(aka

ab

+ o

r “a

OR

b”

or S

UM

)

ab

/

(aka

ab

$ o

r “a

AN

D b

” o

r PR

OD

UC

T)

a (a

ka

aJ

or a

l or “

no

t a ”

)

Oth

er h

and

y o

per

ato

rs:

a

b"

=

ab

0^

h (a

ka “

a IM

PLIE

S b

”) a

b=

^h =

a

ba

b/

0/

^^

hh

(aka

“a

EQU

ALS

b”)

a

b5

=

ab

ab

/0

/^

^h

h (a

ka “

a EX

CLU

SIV

E-O

R b

” o

r “a

XOR

b”)

a

b/

=

ab

0^

h (a

ka “

a N

OT-

AN

D b

”or “

a N

AN

D b

”)

ab

0 =

a

b/

^h

(aka

“a

NO

T-O

R b

”or “

a N

OR

b”)

NA

ND

an

d N

OR

are

the

on

ly s

ole

su

ffi c

ien

t bo

ole

an o

per

ato

rs,

i.e. y

ou

can

red

uce

an

y b

oo

lean

exp

ress

ion

to o

nly

NA

ND

or

on

ly N

OR

op

erat

ors

.

12

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

12

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Axi

omat

ic B

oole

an A

lgeb

ra (

Whi

tehe

ad 1

898)

0

-Law

s/

-Law

sa

a0

= a

aa

/ =

a(r

edu

nd

ant)

ab

0 =

ba

0a

b/

= b

a/

(co

mm

uta

tive

)

ab

c0

0^

h =

ab

c0

0^

ha

bc

//

^h

= a

bc

//

^h

(ass

oci

ativ

e)

aa

b0

/^

h = a

(a

bso

rpti

on

)

ab

c/

0^

h =

ab

ac

/0

/^

^h

h(d

istr

ibu

tio

n)

Tru

ea/

= a

(id

enti

ty)

(co

nst

ant)

aa

0 =

Tru

ea

a/

= F

alse

(in

vers

e)

DeM

org

an

(do

ub

le n

ot)

Nti

lUi

it

Alg

ebra

s al

low

for e

asie

r re

aso

nin

g th

an t

ruth

tab

les.

8

1D

igita

l Log

ic

Uw

e R

. Zim

mer

- T

he A

ustr

alia

n N

atio

nal U

nive

rsity

Co

mp

ute

r Org

anis

atio

n &

Pro

gram

Exe

cuti

on

202

1

21

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

21

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

min

term

sSi

mp

lifi e

d m

inte

rms

FF

FF

FF

TF

FT

FT

ab

c/

/

bc

/

FT

TF

TF

FT

ab

c/

/a

b/

TF

TT

ab

c/

/

TT

FT

ab

c/

/

TT

TF

Sum

of m

inte

rms:

q =

a

bc

ab

ca

bc

ab

c/

//

//

//

/0

00

^^

^^

hh

hh

Sum

of s

imp

lifi e

d m

inte

rms:

q =

a

bb

c/

0/

^^

hh

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

Ever

y co

mb

inat

ion

al fu

nct

ion

can

b

e w

ritt

en a

s a

sum

of p

rodu

cts!

17

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

17

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

All

bina

ry B

oole

an o

pera

tors

Inp

uts

a, b

Fun

ctio

nN

ame

Sum

of p

rod

uct

sN

AN

DD

on

’t ca

res

aF

FT

Tb

uild

,

,x

/0

bF

TF

T

q

FF

FF

Fals

eC

on

stan

t FA

LSE

a, b

FF

FT

ab

/A

ND

ab

ab

//

/

FF

TF

ab

"N

OT-

IMPL

ICA

TIO

Na

b/

^h

FF

TT

aID

ENTI

TY a

bF

TF

Fb

a"

NO

T-IM

PLIC

ATI

ON

a

b/

^h

FT

FT

bID

ENTI

TY b

aF

TT

Fa

b5

EXC

LUSI

VE-

OR

, XO

Ra

ba

b/

0/

^^

hh

FT

TT

ab

0O

Ra

ab

b/

//

TF

FF

ab

0N

OT-

OR

, NO

Ra

b/

^h

TF

FT

ab

=EQ

UA

LITY

, EQ

aa

bb

0/

/^

^h

hT

FT

Fb

INV

ERSE

ba

TF

TT

ba

"IM

PLIC

ATI

ON

ba0

TT

FF

aIN

VER

SE a

aa

/b

TT

FT

ab

"IM

PLIC

ATI

ON

ab

0

TT

TF

ab

/N

OT-

AN

D, N

AN

Da

b0

TT

TT

Tru

eC

on

stan

t Tru

ea,

bO

utp

ut q

13

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

13

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Axi

omat

ic B

oole

an A

lgeb

ra (

Hun

ting

ton

1904

)

0-L

aws

/-L

aws

(red

un

dan

t)

ab

0 =

ba

0a

b/

= b

a/

(co

mm

uta

tive

)

(ass

oci

ativ

e)

(ab

sorp

tio

n)

ab

c0

/^

h =

ab

ac

0/

0^

^h

ha

bc

/0

^h =

a

ba

c/

0/

^^

hh

(dis

trib

uti

on

)

aFa

lse

0 =

aTr

ue

a/

= a

(id

enti

ty)

(co

nst

ant)

aa

0 =

Tru

ea

a/

= F

alse

(in

vers

e)

DeM

org

an

(do

ub

le n

ot)

9

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

9 o

f 481

(cha

pter

1: “

Dig

ital L

ogic

” up

to p

age

96)

Ref

eren

ces

for

this

cha

pter

[Pat

ters

on1

7]D

avid

A. P

atte

rso

n &

Joh

n L

. Hen

nes

syC

om

pu

ter O

rgan

izat

ion

an

d D

esig

n –

Th

e H

ard

war

e/So

ftw

are

Inte

rfac

eA

pp

end

ix A

“Th

e B

asic

s o

f Lo

gic

Des

ign”

AR

M e

dit

ion

, Mo

rgan

Kau

fman

n 2

017

22

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

22

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

FF

FF

FF

TF

FT

FT

FT

TF

TF

FT

TF

TT

TT

FT

TT

TF

18

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

18

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

FF

FF

FF

TF

FT

FT

FT

TF

TF

FT

TF

TT

TT

FT

TT

TF

14

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

14

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Axi

om

atic

Bo

ole

an A

lgeb

ra

… m

any

oth

er a

xio

mat

ic fo

rmu

lati

on

s o

f Bo

ole

an a

lgeb

ra e

xist

.

10

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

10

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

It s

tart

s w

ith

a th

ough

t …

An

Inve

stig

atio

n o

f th

e La

ws

of T

ho

ugh

t o

n W

hic

h a

re F

ou

nd

ed th

e M

ath

emat

ical

Th

eori

es o

f Lo

gic

and

Pro

bab

iliti

es

by

Geo

rge

Boo

le, 1

854

Geo

rge

Bo

ol,

1815

-186

4

23

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

23

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

max

term

sF

FF

Fa

bc

00

FF

TF

ab

c0

0

FT

FT

FT

TF

ab

c0

0

TF

FT

TF

TT

TT

FT

TT

TF

ab

c0

0

max

term

s p

rod

uct

q =

a

bc

ab

ca

bc

ab

c0

0/

00

/0

0/

00

^^

^^

hh

hh

19

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

19

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

min

term

sF

FF

FF

FT

FF

TF

Ta

bc

//

FT

TF

TF

FT

ab

c/

/

TF

TT

ab

c/

/

TT

FT

ab

c/

/

TT

TF

Sum

of m

inte

rms:

q =

a

bc

ab

ca

bc

ab

c/

//

//

//

/0

00

^^

^^

hh

hh

15

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

15

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Red

unda

nt B

oole

an A

lgeb

ra

0-L

aws

/-L

aws

aa

0 =

aa

a/

= a

(red

un

dan

t)

ab

0 =

ba

0a

b/

= b

a/

(co

mm

uta

tive

)

ab

c0

0^

h =

ab

c0

0^

ha

bc

//

^h

= a

bc

//

^h

(ass

oci

ativ

e)

aa

b0

/^

h = a

aa

b/

0^

h = a

(ab

sorp

tio

n)

ab

c0

/^

h =

ab

ac

0/

0^

^h

ha

bc

/0

^h =

a

ba

c/

0/

^^

hh

(dis

trib

uti

on

)

aFa

lse

0 =

aTr

ue

a/

= a

(id

enti

ty)

aTr

ue

0 =

Tru

ea

Fals

e/

= F

alse

(co

nst

ant)

aa

0 =

Tru

ea

a/

= F

alse

(in

vers

e)

ab

0 =

ab

/a

b/

= a

b0

DeM

org

an

a=

a(d

ou

ble

no

t)

(red

un

dan

t)(

dd

t)

… s

eco

nd

nat

ure

for a

co

mp

ute

r sci

enti

st!

11

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

11

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Boo

lean

Val

ues

& O

pera

tors

Ther

e ar

e tw

o v

alu

es:

e.

g. T

rue

and

Fal

se.

(aka

“1”

an

d “

0”)

Two

bin

ary

op

erat

ors

on

exp

ress

ion

s a,

b:

a

b0

(aka

ab

+ o

r “a

OR

b”

or S

UM

)

ab

/

(aka

ab

$ o

r “a

AN

D b

” o

r PR

OD

UC

T)

On

e u

nar

y o

per

ato

r on

an

exp

ress

ion

a:

a

(aka

a

J o

r al o

r “N

OT

a”)

Tru

th ta

ble

s:

ab

ab

0a

b/

aFa

lse

Fals

eFa

lse

Fals

eTr

ue

Tru

eFa

lse

Tru

eFa

lse

Fals

eFa

lse

Tru

eTr

ue

Fals

eTr

ue

Tru

eTr

ue

Tru

e

Page 2: COPE-01 Digital Logic

36

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

36

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Hal

f Add

er

AB

SC

S m

inte

rms

C m

inte

rms

00

00

01

10

AB

/

10

10

AB

/

11

01

AB

/

32

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

32

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Enco

ding

Ass

um

ing

a ty

pe

can

hav

e 7

dif

fere

nt v

alu

es, m

any

form

s o

f en

cod

ing

are

po

ssib

le:

Enu

mer

atio

n ty

pe

Enco

din

g

1-b

it e

rro

r d

etec

tin

g1-

bit

err

or

corr

ecti

ng

Ind

exV

alu

eSi

ngl

e b

itG

ray

cod

eEv

en

par

ity

Ham

min

g (7

,4)

Ham

min

g(3

,1)

Bin

ary

1Se

cure

d00

0000

100

000

0000

0000

000

0000

000

000

2Ta

xi00

0001

000

100

1111

1000

000

0000

111

001

3Ta

ke-o

ff00

0010

001

101

0110

0110

000

0111

000

010

4C

ruis

ing

0001

000

010

0110

0111

100

0001

1111

101

1

5G

lidin

g00

1000

011

010

0101

0101

011

1000

000

100

6A

pp

roac

h01

0000

011

110

1010

1101

011

1000

111

101

7La

nd

ing

1000

000

101

1100

1100

110

1111

1100

011

0

VH

DL

or

Ver

ilog

give

s yo

u fu

ll co

ntr

ol o

ver

the

enco

din

g.

28

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

28

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Th

e lo

gic

equ

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

Min

term

sSi

mp

lifi e

d m

inte

rms

FF

FF

FF

TF

FT

FT

ab

c/

/

bc

/

FT

TF

TF

FT

ab

c/

/a

b/

TF

TT

ab

c/

/

TT

FT

ab

c/

/

TT

TF

Sum

of m

inte

rms:

q =

a

bc

ab

ca

bc

ab

c//

//

//

//

00

0^

^^

^h

hh

hSu

m o

f sim

plifi

ed

min

term

s:q

=

ab

bc

/0

/^

^h

h

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

b/

bh

a b c

ORs

q

ANDs

24

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

24

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

max

term

sSi

mp

lifi e

d m

axte

rms

FF

FF

ab

c00

ab

0F

FT

Fa

bc

00

FT

FT

FT

TF

ab

c00

bc

0

TF

FT

TF

TT

TT

FT

TT

TF

ab

c00

max

term

s p

rod

uct

q =

a

bc

ab

ca

bc

ab

c00

/00

/00

/00

^^

^^

hh

hh

sim

plifi

ed

max

term

s p

rod

uct

q =

a

bb

c0

/0

^^

hh

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

37

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

37

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Hal

f Add

er

AB

SC

S m

inte

rms

C m

inte

rms

00

00

01

10

/

10

10

/

11

01

/

S =

/

0/

^^

hh

C =

/

33

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

33

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Bin

ary

enco

ding

En

cod

ing

of c

ho

ice

if c

om

pac

tnes

s is

ess

enti

al o

r yo

u n

eed

to a

dd

val

ues

.

00

10

10

10 *2

0*2

1*2

2*2

3*2

4*2

5*2

6*2

7

328

2+

+=

42

29

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

29

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Th

e lo

gic

equ

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

Min

term

sSi

mp

lifi e

d m

inte

rms

FF

FF

FF

TF

FT

FT

ab

c//

bc

/

FT

TF

TF

FT

ab

c//

ab

/T

FT

Ta

bc

//

TT

FT

ab

c//

TT

TF

Sum

of m

inte

rms:

q =

a

bc

ab

ca

bc

ab

c//

//

//

//

00

0^

^^

^h

hh

hSu

m o

f sim

plifi

ed

min

term

s:q

=

ab

bc

//

0^

^h

h

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

b/

bh

a b c

ORs

q

ANDs

com

bin

atio

n o

f in

pu

ts,

The

nu

mb

er o

f ter

ms

(“fa

n-i

n” fo

r th

e ga

tes)

in

fl u

ence

s th

e to

tal d

elay

25

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

25

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Lo

gic

is r

edu

cib

le/e

qu

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

max

term

sSi

mp

lifi e

d m

axte

rms

FF

FF

ab

c00

ab

0F

FT

Fa

bc

00

FT

FT

FT

TF

ab

c00

bc

0

TF

FT

TF

TT

TT

FT

TT

TF

ab

c00

max

term

s p

rod

uct

q =

a

bc

ab

ca

bc

ab

c00

/00

/00

/00

^^

^^

hh

hh

sim

plifi

ed

max

term

s p

rod

uct

q =

a

bb

c0

/0

^^

hh

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

Ever

y co

mb

inat

ion

al fu

nct

ion

can

b

e w

ritt

en a

s a

prod

uct

of s

ums!

38

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

38

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Hal

f Add

er

AB

SC

S m

inte

rms

C m

inte

rms

00

00

01

10

/

10

10

/

11

01

/

S =

/

0/

^^

hh =

C =

/

34

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

34

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Bin

ary

enco

ding

En

cod

ing

of c

ho

ice

if c

om

pac

tnes

s is

ess

enti

al o

r yo

u n

eed

to a

dd

val

ues

.

00

10

10

10 *2

0*2

1*2

2*2

3*2

4*2

5*2

6*2

7

328

2+

+=

42

00

00

0=

00

01

1=

00

10

2=

00

11

3=

01

00

4=

01

01

5=

01

10

6=

01

11

7=

10

00

8=

10

01

9=

10

10

A=

10

11

B=

11

00

C=

11

01

D=

11

10

E=

11

11

F=

Bin

ary

Hex

adec

imal

Dec

imal = = = = = = = = = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

30

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

30

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Proc

essi

ng D

ata

Encr

ypti

ng

a b

it v

ecto

r (w

hat

ever

it r

epre

sen

ts)

wit

h a

sec

ret k

ey:

Ass

um

ing

the

key

is r

and

om

an

d n

ot u

sed

for

anyt

hin

g el

se:

Th

is is

su

rpri

sin

gly

secu

re

… a

nd

ext

rem

ely

fast

!

D0

XOR

K0

E 0

Encryption

XOR

Decryption

D0

D1

XOR

K1

E 1XO

RD

1

D2

XOR

K2

E 2XO

RD

2

D3

XOR

K3

E 3XO

RD

3

D4

XOR

K4

E 4XO

RD

4

D5

XOR

K5

E 5XO

RD

5

D6

XOR

K6

E 6XO

RD

6

D7

XOR

K7

E 7XO

RD

7

26

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

26

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Dig

ital

Ele

ctro

nics

Sym

bo

lic:

/=

Ele

men

tary

logi

c ga

te s

ymb

ols

:

Dia

gram

:

Tech

no

logy

:

NA

ND

A BQ

A B

Q

PMO

S

NM

OS

NA

ND

NA

ND

NA

ND

AQ

NA

ND

NA

ND

NA

ND

Q

Q

A B A B

NA

ND

NA

ND

NA

ND

NA

ND

A B

Q

NOT

AQ

OR

QA B

QA B

AND

XOR

A BQ

≡ ≡ ≡ ≡

39

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

39

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Hal

f Add

er

AB

SC

S m

inte

rms

C m

inte

rms

00

00

01

10

/

10

10

/

11

01

/

S =

/

0/

^^

hh =

C =

/

AXO

R

AND

B

S C

35

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

35

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Bin

ary

enco

ding

En

cod

ing

of c

ho

ice

if c

om

pac

tnes

s is

ess

enti

al o

r yo

u n

eed

to a

dd

val

ues

.

00

10

10

10 *2

0*2

1*2

2*2

3*2

4*2

5*2

6*2

7

328

2+

+=

42

00

00

0=

00

01

1=

00

10

2=

00

11

3=

01

00

4=

01

01

5=

01

10

6=

01

11

7=

10

00

8=

10

01

9=

10

10

A=

10

11

B=

11

00

C=

11

01

D=

11

10

E=

11

11

F=

Bin

ary

Hex

adec

imal

Dec

imal = = = = = = = = = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2A

*160

3210

+=

42

*161

31

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

31

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Bit

Vec

tors

Gro

up

s o

f bit

s co

uld

rep

rese

nt:

Stat

es, e

nu

mer

atio

n v

alu

es, a

rray

s o

f Bo

ole

ans,

nu

mb

ers,

etc

. pp

.…

or

any

gro

up

ing

or

com

bin

atio

n o

f th

e ab

ove

A

lgeb

raic

Typ

es

The

form

of e

nco

din

g co

uld

be

cho

sen

to o

pti

miz

e fo

r:

• Pe

rfor

man

ce

e.g

. min

imal

dec

od

ing

effo

rt

• R

edun

danc

y / e

rro

r d

etec

tio

n

e.g

. lar

ge H

amm

ing

dis

tan

ce

• Sa

fe t

rans

itio

ns

e.g

. Gra

y co

des

• Ph

ysic

al m

appi

ng

e.g

. map

s o

n e

xist

ing

har

dw

are

inte

rfac

es

• C

ompa

ctne

ss

e.g

. ho

lds

the

max

imal

nu

mb

er o

f val

ues

per

mem

ory

cel

l

27

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

27

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Com

bina

tion

al L

ogic

Fun

ctio

ns

Th

e lo

gic

equ

ival

ent t

o p

ure

fun

ctio

ns:

ther

e ar

e n

o s

tate

s!

IF th

e fu

nct

ion

is c

om

bin

atio

nal

then

ther

e is

on

ly o

ne

ou

tpu

t fo

r an

y co

mb

inat

ion

of i

np

uts

, e.

g. th

e fu

nct

ion

can

be

wri

tten

ou

t as

a tr

uth

tab

le:

ab

cO

utp

ut q

Min

term

sSi

mp

lifi e

d m

inte

rms

FF

FF

FF

TF

FT

FT

ab

c//

bc

/

FT

TF

TF

FT

ab

c//

ab

/T

FT

Ta

bc

//

TT

FT

ab

c//

TT

TF

Sum

of m

inte

rms:

q =

a

bc

ab

ca

bc

ab

c//

//

//

//

00

0^

^^

^h

hh

hSu

m o

f sim

plifi

ed

min

term

s:q

=

ab

bc

/0

/^

^h

h

Sim

plifi

cat

ion

s ca

n b

e d

on

e b

y (a

uto

mat

ed) a

lgeb

raic

tran

sfo

rmat

ion

s, K

arn

augh

map

s o

r o

ther

s

b/

bh

a b c

q

ORs

ANDs

Page 3: COPE-01 Digital Logic

52

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

52

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

2’s

com

plem

ents

The

2’s

com

ple

men

t en

cod

ing

inte

rpre

ts

the

nat

ura

l bin

ary

ran

ge 2n

1-

… 2

1n

-

as n

egat

ive

nu

mb

ers

2n1

--

1-

00

10

10

10

11

01

01

10

… …000

000000111

000000111

000000111

000……

000111

…111

000000111

000000111

111000000

00

00

00

00

11

11

11

11

0

00

10

10

10

11

01

01

10

2n-1 -1

00

00

00

00

01

11

11

11

00

01

01

01

0…

10

00

00

00

-2n-

1

Nat

ural

bin

ary

num

bers

2's

com

plem

ent b

inar

y nu

mbe

rs

2n -1…

48

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

48

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

2 -

1 =

1 ?

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

44

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

44

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Full

Add

er

Ai

BiCi

1-

SiCi

Si m

inte

rms

Ci m

inte

rms

00

00

00

10

10

AB

Ci

ii

1/

/-

10

01

0A

BC

ii

i1

//

-1

10

01

AB

Ci

ii

1/

/-

00

11

0A

BC

ii

i1

//

-0

11

01

AB

Ci

ii

1/

/-

10

10

1A

BC

ii

i1

//

-1

11

11

AB

Ci

ii

1/

/-

AB

Ci

ii

1/

/-

Si =

AB

Ci

ii

15

5-

^h

Ci =

AB

CA

BC

AB

CA

BC

ii

ii

ii

ii

ii

ii

11

11

//

0/

/0

//

0/

/-

--

-_

_^

^i

ih

h=

AB

CA

BC

AB

CA

BC

ii

ii

ii

ii

ii

ii

11

11

//

//

0/

/0

//

0-

--

-_

^_

^i

hi

h=

AB

AB

AB

Ci

ii

ii

ii

1/

0/

//

0-

^___

^h

ih i

i=

AB

AB

Ci

ii

ii

1/

05

/-

^^^

hh

h

40

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

40

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Full

Add

er

Ai

BiCi

1-

SiCi

00

00

00

10

10

10

01

01

10

01

00

11

00

11

01

10

10

11

11

11

53

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

53

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

2’s

com

plem

ents

The

2’s

com

ple

men

t en

cod

ing

inte

rpre

ts

the

nat

ura

l bin

ary

ran

ge 2n

1-

… 2

1n

-

as n

egat

ive

nu

mb

ers

2n1

--

1-

00

10

10

10

11

01

01

10

… …000

000000111

000000111

000000111

000…

000111

…111

000000111

000000111

111000000

00

00

00

00

11

11

11

11

0

00

10

10

10

11

01

01

10

2n-1 -1

00

00

00

00

01

11

11

11

00

01

01

01

0…

10

00

00

00

-2n-

1

Nat

ural

bin

ary

num

bers

2's

com

plem

ent b

inar

y nu

mbe

rs

2n -1…

It’s

all

in y

ou

r min

d!

49

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

49

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rad

ix c

ompl

emen

ts C

an w

e d

efi n

e n

egat

ive

nu

mb

ers

such

that

ou

r ad

der

sti

ll w

ork

s?

xx

0-

=

Or:

wh

at c

an y

ou

ad

d to

42

in a

n 8

bit

bin

ary

rep

rese

nta

tio

n

such

that

the

resu

lt w

ill b

e 28 (a

nd

hen

ce 0

in 8

bit

s)?

00

10

10

10

??

??

??

??

+ =

00

00

00

00

1

42 -42

256

45

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

45

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Full

Add

er

Ai

BiCi

1-

SiCi

Si m

inte

rms

Ci m

inte

rms

00

00

00

10

10

AB

Ci

ii

1/

/-

10

01

0A

BC

ii

i1

//

-1

10

01

AB

Ci

ii

1/

/-

00

11

0A

BC

ii

i1

//

-0

11

01

AB

Ci

ii

1/

/-

10

10

1A

BC

ii

i1

//

-1

11

11

AB

Ci

ii

1/

/-

AB

Ci

ii

1/

/-

Si =

AB

Ci

ii

15

5-

^h

Ci =

AB

AB

Ci

ii

ii

1/

05

/-

^^^

hh

h

Ai

XOR

AND

Bi

XOR

AND

OR

S i

Ci-

1C

i

41

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

41

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Full

Add

er

Ai

BiCi

1-

SiCi

Si m

inte

rms

Ci m

inte

rms

00

00

00

10

10

AB

Ci

ii

1/

/-

10

01

0A

BC

ii

i1

//

-1

10

01

AB

Ci

ii

1/

/-

00

11

0A

BC

ii

i1

//

-0

11

01

AB

Ci

ii

1/

/-

10

10

1A

BC

ii

i1

//

-1

11

11

AB

Ci

ii

1/

/-

AB

Ci

ii

1/

/-

Si =

AB

CA

BC

AB

CA

BC

ii

ii

ii

ii

ii

ii

11

11

//

0/

/0

//

0/

/-

--

-_

__

^i

ii

h

54

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

54

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

2 -

1 =

1 ?

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

50

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

50

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rad

ix c

ompl

emen

ts C

an w

e d

efi n

e n

egat

ive

nu

mb

ers

such

that

ou

r ad

der

sti

ll w

ork

s?

xx

0-

=

Or:

wh

at c

an y

ou

ad

d to

42

in a

n 8

bit

bin

ary

rep

rese

nta

tio

n

such

that

the

resu

lt w

ill b

e 28 (a

nd

hen

ce 0

in 8

bit

s)?

00

10

10

10

11

01

01

10

+ =

00

00

00

00

1

42 -42

256

46

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

46

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

2 +

2 =

4 ?

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

42

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

42

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Full

Add

er

Ai

BiCi

1-

SiCi

Si m

inte

rms

Ci m

inte

rms

00

00

00

10

10

AB

Ci

ii

1/

/-

10

01

0A

BC

ii

i1

//

-1

10

01

AB

Ci

ii

1/

/-

00

11

0A

BC

ii

i1

//

-0

11

01

AB

Ci

ii

1/

/-

10

10

1A

BC

ii

i1

//

-1

11

11

AB

Ci

ii

1/

/-

AB

Ci

ii

1/

/-

Si =

AB

CA

BC

AB

CA

BC

ii

ii

ii

ii

ii

ii

11

11

//

0/

/0

//

0/

/-

--

-_

__

^i

ii

h=

A

BA

BC

AB

AB

Ci

ii

ii

ii

ii

i1

1/

//

0/

//

00

--

__^

____

^h

iii

ihi

i=

A

BC

AB

Ci

ii

ii

i1

15

/0

/=

--

_ ^^^

hi

hh =

A

BC

AB

Ci

ii

ii

i1

15

/0

/5

--

_ ^__

hi

ii

= A

BC

ii

i1

55

-^

h

55

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

55

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

2 -

1 =

1 !

… w

ith

an

ove

rall

carr

y-fl

ag in

dic

ated

.

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

51

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

51

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rad

ix c

ompl

emen

ts C

an w

e d

efi n

e n

egat

ive

nu

mb

ers

such

that

ou

r ad

der

sti

ll w

ork

s?

xx

0-

=

Or:

wh

at c

an y

ou

ad

d to

42

in a

n 8

bit

bin

ary

rep

rese

nta

tio

n

such

that

the

resu

lt w

ill b

e 28 (a

nd

hen

ce 0

in 8

bit

s)?

00

10

10

10

11

01

01

10

+ =

00

00

00

00

1

42 -42

256

“In

vert

all

bit

s an

d a

dd

1”

2’s-

com

plem

ent

(as

the

rad

ix/b

ase

is 2

)

47

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

47

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

2 +

2 =

4 !

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

43

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

43

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Full

Add

er

Ai

BiCi

1-

SiCi

Si m

inte

rms

Ci m

inte

rms

00

00

00

10

10

AB

Ci

ii

1/

/-

10

01

0A

BC

ii

i1

//

-1

10

01

AB

Ci

ii

1/

/-

00

11

0A

BC

ii

i1

//

-0

11

01

AB

Ci

ii

1/

/-

10

10

1A

BC

ii

i1

//

-1

11

11

AB

Ci

ii

1/

/-

AB

Ci

ii

1/

/-

Si =

AB

Ci

ii

15

5-

^h

Ci =

AB

CA

BC

AB

CA

BC

ii

ii

ii

ii

ii

ii

11

11

//

0/

/0

//

0/

/-

--

-_

_^

^i

ih

h

Page 4: COPE-01 Digital Logic

68

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

68

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Der

ivin

g SR

Flip

Flo

ps

SR

QQ

Q m

inte

rms

00

0*

SR

Q/

/

00

1*

SQ

R/

/

01

01

SR

Q/

/

01

11

SR

Q/

/

10

00

10

10

11

00

11

11

SR

Q/

/

64

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

64

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

SR

QQ

00

??

01

10

10

01

11

QQ

60

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

60

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

SR

QQ

00

??

01

??

10

??

11

??

56

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

56

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

How

long

do

es it

tak

e un

til t

he

last

car

ry fl

ag s

tab

ilize

s ?

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

69

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

69

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Der

ivin

g SR

Flip

Flo

ps

SR

QQ

Q m

inte

rms

Sim

plifi

ed

00

0*

SR

Q/

/

S0

01

*S

QR

//

01

01

SR

Q/

/

01

11

SR

Q/

/

RQ

/

10

00

10

10

11

00

11

11

SR

Q/

/

Q =

SR

Q0

/^

h

65

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

65

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

NA

ND

NA

ND

≡Q Q

NA

ND

NA

ND

NA

ND

Q

NA

ND

Q

S R

S R

NA

ND

NA

ND

SR

QQ

00

½ ½

01

10

10

01

11

QQ

Ass

um

ing Q

as

wel

l as Q

to

be

acti

ve s

imu

ltan

eou

sly

may

lead

to in

stab

ility

.

61

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

61

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

SR

QQ

00

??

01

??

10

??

11

QQ

57

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

57

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Rip

ple

Car

ry A

dder

Wha

t d

isti

ngui

shes

the

red

fro

m t

he g

reen

gat

es ?

A1

XOR

AND

B1

XOR

AND

OR

S 1A

2

XOR

AND

B2

XOR

AND

OR

S 2

C1

C2

A0

XOR

AND

B0

S 0

C0

Car

ry-l

oo

kah

ead

cir

cuit

ry

70

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

70

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Der

ivin

g SR

Flip

Flo

ps

SR

QQ

Q m

inte

rms

Sim

plifi

ed

00

0*

SR

Q/

/

S0

01

*S

QR

//

01

01

SR

Q/

/

01

11

SR

Q/

/

RQ

/

10

00

10

10

11

00

11

11

SR

Q/

/

Q =

SR

Q0

/^

h = S

RQ

//

66

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

66

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

SR

QQ

00

Forb

idd

en0

11

01

00

11

1Q

Q

“S-R

Flip

-Flo

p”

62

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

62

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

SR

QQ

00

??

01

??

10

??

11

QQ

58

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

58

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Ari

thm

etic

Log

ic U

nit

(ALU

)

Ai

XOR

AND

Bi

XOR

AND

OR

S i

Ci-

1C

i

AND

AND

AND

AND

OR

OR

OP 1

-4R

esu

lti

AND

AND

AND

AND

OP 1

(AD

D)

OP 2

(XO

R)

OP 3

(AN

D)

OP 4

(OR

)

INST

R

ALU

Slic

e i

ALU

In

stru

ctio

nD

eco

der

A s

imp

le A

LU w

hic

h c

an A

DD

, XO

R, A

ND

, OR

two

arg

um

ents

.

71

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

71

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Der

ivin

g SR

Flip

Flo

ps

SR

QQ

Q m

inte

rms

Sim

plifi

ed

00

0*

SR

Q/

/

S0

01

*S

QR

//

01

01

SR

Q/

/

01

11

SR

Q/

/

RQ

/

10

00

10

10

11

00

11

11

SR

Q/

/

Q =

SR

Q0

/^

h = S

RQ

//

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

67

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

67

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Der

ivin

g SR

Flip

Flo

ps

SR

QQ

00

0*

00

1*

01

01

01

11

10

00

10

10

11

00

11

11

63

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

63

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Stat

es

≡Q Q

NA

ND

Q

NA

ND

Q

S R

S R

SR

QQ

00

??

01

10

10

??

11

QQ

59

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

59

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Tow

ards

Sta

tes

(eve

ryth

ing

up

to h

ere

was

co

mb

inat

ion

al lo

gic)

Ho

w d

o w

e m

ake

op

erat

ion

s d

epen

ds

on

:

… a

n o

verfl

ow

in th

e p

revi

ou

s o

per

atio

n?

… th

e st

ate

of t

he

CPU

?

… a

co

un

ter

hav

ing

reac

hed

zer

o?

… tw

o a

rgu

men

ts h

avin

g b

een

eq

ual

?

… e

tc. p

p.

We

nee

d to

ho

ld o

n to

so

me

stat

es!

Page 5: COPE-01 Digital Logic

84

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

84

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Slav

eSl

aM

asMM

as

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C80

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

80

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Slav

eSl

aM

asMM

as

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C76

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

76

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

72

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

72

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

85

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

85

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Mas

MMas

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C

Slav

e fo

llow

s o

n th

e fa

llin

g cl

ock

ed

ge

81

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

81

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Slav

eSl

aM

asMM

as

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C77

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

77

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

73

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

73

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

86

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

86

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Slav

eSl

aM

asMM

as

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C

Slav

e fo

llow

s o

n th

e fa

llin

g cl

ock

ed

geSl

ave

fSl

The

dec

ou

plin

g b

etw

een

th

e tw

o s

tage

s m

akes

this

fl

ip-fl

op

rac

e fr

ee –

eve

n

in JK

-to

ggle

mo

de.

82

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

82

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Slav

eSl

aM

asMM

as

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C78

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

78

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

74

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

74

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

87

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

87

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Reg

iste

r

D0

Q0

D

C

D1

Q1

D

D2

Q2

D

D3

Q3

D

D4

Q4

D

D5

Q5

D

D6

Q6

D

D7

Q7

D

Co

uld

ser

ve a

s a

gen

eric

, fas

t sto

rage

insi

de

the

CPU

(gen

eral

reg

iste

r)

Or

to h

old

inte

rnal

sta

tes

(e.g

. ALU

ove

rfl o

w) o

f th

e C

PU

wh

ich

are

use

d b

y e.

g. b

ran

chin

g in

stru

ctio

ns.

83

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

83

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Mas

ter-

Slav

e JK

Flip

-Flo

p

Mas

ter

Slav

eSl

aM

asMM

as

NA

ND

NA

ND

Q Q

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NOT

S R

J K C

J K

Q Q

S R≡

C

Mas

ter

is r

eset

on

the

risi

ng

clo

ck e

dge

79

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

79

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

75

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

75

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

D F

lip-F

lop

DQ Q≡

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

NA

ND

DC

Q Q

C

S RSet p

re-l

atch

Res

et p

re-l

atch

Page 6: COPE-01 Digital Logic

96

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

96

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Dig

ital

Lo

gic

• B

oole

an A

lgeb

ra

• Tr

uth

tab

les

and

Bo

ole

an o

per

atio

ns

• M

inte

rms

and

sim

plif

yin

g ex

pre

ssio

ns

• C

ombi

nati

onal

Log

ic

• Lo

gic

gate

s

• N

um

ber

s

• A

dd

ers,

ALU

• St

ate-

orie

nted

Log

ic

• Fl

ip-F

lop

s, r

egis

ters

an

d c

ou

nte

rs

• C

PU A

rchi

tect

ure

Sum

mar

y

92

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

92

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

STM

32L4

76 D

isco

very

Mai

n M

CU

Deb

ugg

er M

CU

Dis

pla

y M

CU

88

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

88

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Togg

le F

lip-F

lop

Q Q

DQ Q≡

S R

J K

Q Q

S R

≡S R

J K

Q Q

S R

D CT

Q Q≡

J K

Q Q

S R

T C

TQ Q≡

DQ Q

XOR

T C

JQ Q≡

DQ Q

CK

AND

ORAN

D

J K

S R

S R

Togg

le F

lip-F

lop

s ch

ange

sta

te w

ith

eve

ry c

lock

cyc

le.

93

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

93

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

STM

32L4

76 D

isco

very

Joys

tick

Res

et

OTG

LED

s

Pow

erD

ebu

gger

st

ate

Use

r LE

Ds

Ove

r cu

rren

t

89

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

89

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Cou

nter

TS R

TS R

TS R

TS R

TS R

TS R

TS R

TS R

1

C

S 0S 1

S 2S 3

S 4S 5

S 6S 7

R

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

11

11

11

1

You

r co

ntr

olle

r h

as m

any

cou

nte

rs w

hic

h c

an

e.g.

be

use

d to

del

ay o

per

atio

ns

wit

ho

ut t

he

nee

d to

exe

cute

inst

ruct

ion

s.

94

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

94

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

STM

32L4

76 D

isco

very

Cu

rren

t met

er to

MC

U 6

0 n

A …

50

mA

UR

Zi

Th

Hea

dp

ho

ne

jack

USB

OTG

Mu

ltip

lexe

d 2

4 b

itRD

-DA

Co

nve

rter

wit

h

ster

eo p

ow

er a

mp

Mic

rop

ho

ne

“9 a

xis”

mo

tio

n s

enso

r (u

nd

ern

eath

dis

pla

y):

3 ax

is a

ccel

ero

met

er

3 ax

is g

yro

sco

pe

3 ax

is m

agn

eto

met

er

90

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

90

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

Sim

ple

CPU

Arc

hite

ctur

e

You

can

alr

ead

y b

uild

mo

st o

f th

e co

mp

on

ents

of a

CPU

by

no

w.

(Th

e m

ost

ess

enti

al m

issi

ng

com

po

nen

t is

the

sequ

ence

r w

hic

h is

a s

pec

ializ

ed s

tate

-mac

hin

e.)

We

will

co

me

bac

k to

the

CPU

arc

hit

ectu

res

tow

ard

s th

e en

d o

f th

e co

urs

e.

Th

e n

ext c

hap

ter

will

be

abo

ut

pro

gram

min

g a

CPU

at m

ach

ine

leve

l.

ALU

Memory

Sequ

ence

rD

ecod

er

Cod

e m

anag

emen

t

Reg

iste

rs

IP SP

Flag

s

Dat

a m

anag

emen

t

95

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

95

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

STM

32L4

76 D

isco

very

Ther

e is

a lo

t mo

re h

ard

war

e h

ere

than

yo

u c

ou

ld p

oss

ibly

m

aste

r in

on

e se

mes

ter

… a

nd

yo

u w

ill m

aste

r a

lot

mo

re a

bo

ut

CPU

s at

th

e en

d t

he

cou

rse

than

yo

u t

hin

k n

ow

.

91

Dig

ital

Lo

gic

© 2

021

Uw

e R

. Zim

mer

, The

Aus

tral

ian

Nat

iona

l Uni

vers

ity

page

91

of 4

81 (c

hapt

er 1

: “D

igita

l Log

ic”

up to

pag

e 96

)

STM

32L4

76 D

isco

very