control of wind power plants

34
7/23/2019 Control of Wind Power Plants http://slidepdf.com/reader/full/control-of-wind-power-plants 1/34 1 Control of wind power plants Poul Sørensen, Professor Anca D. Hansen, Senior Researcher Braulio Barahona, (former) Post Doc DTU Wind Energy, Technical University of Denmark DTU – Excellence since 1829 MISSION DTU will develop and create value using the natural sciences and the technical sciences to benefit society 2015-08-06

Upload: diegodisouza

Post on 19-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 1/34

1

Control of wind power plants

Poul Sørensen, Professor

Anca D. Hansen, Senior Researcher

Braulio Barahona, (former) Post Doc

DTU Wind Energy, Technical University of Denmark

DTU – Excellence since 1829

MISSIONDTU will develop and create valueusing the natural sciences and the

technical sciences to benefit society

2015-08-06

Page 2: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 2/34

2

DTU Wind Energy, Technical University of Denmark

DTU organization

2015-08-06

DTU Wind Energy, Technical University of Denmark

DTU Wind Technology Expertise

2015-08-06

Wind Energy Division

Materials Research Division

Composites and Materials Mechanics

Materials Science and Characterisation

Fluid Mechanics

Test and Measurements

Wind Turbines Structures

Aerolastic Design

Meteorology

Wind Energy Systems

Fluid Dynamics

Composite Mechanics

Page 3: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 3/34

3

DTU Wind Energy, Technical University of Denmark

Control issues

• List purposes of controlling wind power plants:

2015-08-06

DTU Wind Energy, Technical University of Denmark

4 wind turbine types

2015-08-06

GBASG

QC

ASG: Asynchronous generatorGB: GearboxQC: Reactive power compensationTR: TransformerVRR: Variable rotor resistance

TR

Type 1

GBASG

QC

TR

Type 2

VRR

GBASG

TR

Type 3

=

        ~

~

        =

CHCL

CRGSC LSC

GSC: Generator side converterLSC: Line side converterCR: CrowbarC: DC link capacitorCH: ChopperL: Series inductanceSG: Synchronous generator

SG/ASG

GB

TR

Type 4

=

        ~

~

        =

CHCL

GSC LSC

Page 4: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 4/34

4

DTU Wind Energy, Technical University of Denmark

Outline

• General about wind turbine control

– blade angle control

– rotor speed control

• Electrical design and controllability / control strategies

– fixed speed

– variable speed

• Control examples

– Normal wind turbine operation control

• Fixed speed example (Active stall control)

• Variable speed example (doubly-fed and pitch control)

– Fault ride through wind turbine control• Active stall

• Doubly fed

– Wind turbine load reducing control

– Wind farm control

2015-08-06

DTU Wind Energy, Technical University of Denmark

Aerodynamic power – power curve

2015-08-06

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25

Wind speed [m/s]

   P   o  w   e   r   (   p .  u

 .   )

•   P : aerodynamic power [W]

•   U : wind speed

Power curve basedon 10 min averages

Page 5: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 5/34

5

DTU Wind Energy, Technical University of Denmark

Aerodynamic power – power coefficient

•   P : aerodynamic power [W]

•     : air density [kg/m3]

•   A : rotor (swept) area

•   U : wind speed

•   C  p : power coefficient

•     : blade pitch angle

•     : tip speed ratio

2015-08-06

       ,2

1   3

 pC  AU P 

 R

v  

    

  tip

 A

vtip

 U 

Front view Side view

 

vtip

Top view

DTU Wind Energy, Technical University of Denmark

Aerodynamic power – power coefficient

2015-08-06

•   P : aerodynamic power [W]

•   U : wind speed

•     : air density [kg/m3]

•   A : rotor (swept) area

•     : blade pitch angle

•     : tip speed ratio

•   C  p : power coefficient

       ,2

1   3

 pC  AU P 

-90

-45

0

45

90

5

10

15

20

0.0

0.1

0.2

0.3

0.4

0.5

Cp

P i t c h  a n g l e   [  d e g  ] 

 T i p  s p e

 e d  r a t i o

Page 6: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 6/34

6

DTU Wind Energy, Technical University of Denmark

Passive stall control

2015-08-06

W : relative speed seen from rotating blade

: angle of attack 

 L: lift

Power curve sensitive to• electrical grid frequency (3rd order)

• air density (1st order)

• dirt on blades

vtip =  r 

 L

W  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25

Wind speed (m/s)

   P   o   w

   e   r   (   p .   u .   )

50 Hz

48 Hz

51 Hz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-5 0 5 10 15 20

 Angl e of at tack [de g]

   L   i   f   t  c  o  e   f   f   i  c   i  e  n   t

DTU Wind Energy, Technical University of Denmark

Pitch control

2015-08-06

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25

Wind speed [m/s]

    P

   o   w

   e   r

    (   p .

   u .

    )

 

 L

positive pitch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-5 0 5 10 15 20

 Angl e of at tack [de g]

   L   i   f   t  c  o  e   f   f   i  c   i  e  n   t

vtip =  r 

Page 7: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 7/34

7

DTU Wind Energy, Technical University of Denmark

Aktiv stall control (or kombi-stall)

2015-08-06

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25

Wind speed [m/s]

    P

   o   w

   e   r

    (   p .

   u .

    )

 

 L

negative pitch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-5 0 5 10 15 20

 Angl e of at tack [de g]

   L   i   f   t  c  o  e   f   f   i  c   i  e  n   t

vtip =  r 

DTU Wind Energy, Technical University of Denmark

Fixed speed – active stall or pitch control

• Active (Combi) stall

• Moderate instantaneous responsegradients (fixed speed no problem)

• Slow blade angle control sufficient

• Pitch control

• Large instantaneous response gradientsfor power limitation (variable speeddesirable)

• Fast blade angle control necessary

2015-08-06

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 5 10 15 20 25

Wind speed [m/s]

   P  o  w  e  r   [  p  u   ]   Pitch = 0 deg

Pitch = 5 deg

Pitch = 10 deg

Pitch = 15 deg

Pitch = 20 deg

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 5 10 15 20 25

Wind speed [m/s]

   P  o  w  e  r   [  p  u   ]   Pitch = 0 deg

Pitch = -3 deg

Pitch = -6 deg

Pitch = -9 deg

Pitch = -12 deg

Page 8: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 8/34

8

DTU Wind Energy, Technical University of Denmark

Fixed speed – directly connected induction

generator

•    WTR  : wind turbine rotor speed

•    gen : generator speed

•   g : gear ratio

•    0 : electric grid radial speed (2 50 inEurope, 2 60 in USA)

•   N  pp : number of generator pole pairs

(typically 2 or 3)

•   s << 1 : generator speed almost

 “constant” 

2015-08-06

Gear 

 box  Induction

generator 

0

 pp

gen

1    

 N 

sContactor 

Main panel

 bus bar 

 WTR 

 gen 0~

WTR gen         g

DTU Wind Energy, Technical University of Denmark

Fixed speed – directly connected inductiongenerator

gen 

2015-08-06

0 5 10 15 20  Time [ms]

 N  pp = 1

0

 pp

gen

1    

 N 

s

WTR gen         g

•    WTR  : wind turbine rotor speed

•    gen : generator speed

•   g : gear ratio

•    0 : electric grid radial speed (2 50 inEurope, 2 60 in USA)

•   N  pp : number of generator pole pairs

(typically 2 or 3)

•   s : slip. s << 1 : generator speed almost

 “constant” 

gen 

Page 9: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 9/34

9

DTU Wind Energy, Technical University of Denmark

•    WTR  : wind turbine rotor speed

•    gen : generator speed

•   g : gear ratio

•    0 : electric grid radial speed (2 50 inEurope, 2 60 in USA)

•   N  pp : number of generator pole pairs

(typically 2 or 3)

•   s : slip. s << 1 : generator speed almost

 “constant” 

Fixed speed – directly connected induction

generator

2015-08-06

0 5 10 15 20  Time [ms]

 N  pp = 2

0

 pp

gen

1    

 N 

s

WTR gen         g

gen 

20 

DTU Wind Energy, Technical University of Denmark

Fixed speed – directly connected inductiongenerator

2015-08-060

Gear 

 box  Induction

generator 

Contactor 

Main panel bus bar 

 WTR 

 gen 0~

0.5Slip

•    WTR  : generator speed

•    gen : generator speed

•   g : gear ratio

•    0 : electric grid radial speed (2 50 inEurope, 2 60 in USA)

•   N  pp : number of generator pole pairs

(typically 2 or 3)

•   s : slip. s << 1 : generator speed almost

 “constant” 

WTR gen         g

0

 pp

gen

1    

 N 

s

Page 10: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 10/34

10

DTU Wind Energy, Technical University of Denmark

Fixed speed continuous operation - summary

• Wind turbines with directly connected induction generators are speedcontrolled by the generator torque, which is approximately proportionalto the slip (slip is difference between grid synchronous rotor speed andactual generator rotor speed).

• The generator can be “geared” by increasing the number of pole pairs

• Fixed speed turbines can control the speed by changing the number ofpole pairs, typically between 2 and 3, depending on the wind speed.

2015-08-06

DTU Wind Energy, Technical University of Denmark

Exercise 1: fixed speed

• Open excel sheet with C  p data

• A fixed speed wind turbine with the C  p data in table has rotor diameter 40m, tip speed 70 m/s. The air density i    = 1.25 kg/m2. Make the power

curve if the pitch angle is 0 deg.

• At which pitch angle (integer degree) should the blades be mounted tothe hub to obtain the maximum power 600 kW? Hint: try to increase the

pitch angle negatively step by step and observe the power curve untilyou get the desired maximum.

• The turbine uses N  pp=2 coupling of generator windings for high windspeeds and  N  pp=3 for low wind speeds. What is the tip speed for low wind

speeds?

• The turbine is passive stall controlled. Show the power curve for low windspeeds and high wind speeds, and identify the wind speed at whichswitching between generator speeds is feasible.

2015-08-06

Page 11: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 11/34

11

DTU Wind Energy, Technical University of Denmark

Active Stall example

2015-08-06

• General operation modes active stall

– Power optimisation (lookup table)

– Power limitation (closed loop powercontrol)

• Normal operation (averagedpower, sample & hold)

• Overpower protection(instant. power, continuouspitching )

– Transition between optimisationand limitation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25

Wind speed [m/s]

    P   o   w

   e   r    (   p .

   u .

    )

DTU Wind Energy, Technical University of Denmark

‐6

‐4

‐2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g    l   e    [    d   e   g    ]

Wind 

speed 

[m/s]

0.0

0.1

0.2

0.3

0.4

0.5

‐10   ‐5 0 5 10

    C   p

Pitch 

angle 

[deg]

4 m/s

Power Optimisation

2015-08-06

Page 12: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 12/34

12

DTU Wind Energy, Technical University of Denmark

Power Optimisation

2015-08-06

0.0

0.1

0.2

0.3

0.4

0.5

‐10   ‐5 0 5 10

    C   p

Pitch 

angle 

[deg]

4 m/s

5 m/s

6 m/s

7 m/s

8 m/s

9 m/s

10 m/s

11 m/s

12 m/s

13 m/s

‐6

‐4

‐2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g    l   e    [    d   e   g    ]

Wind speed [m/s]

DTU Wind Energy, Technical University of Denmark

Power Limitation

2015-08-06

0.0

0.5

1.0

1.5

2.0

2.5

3.0

‐10

  ‐8

  ‐6

  ‐4

  ‐2 0

    P   o   w   e   r    [    M    W    ]

Pitch angle [deg]

13 m/s

‐6

‐4

‐2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g    l   e    [    d   e   g    ]

Wind speed [m/s]

Page 13: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 13/34

13

DTU Wind Energy, Technical University of Denmark

Power Limitation

2015-08-06

0.0

0.5

1.0

1.5

2.0

2.5

3.0

‐10   ‐8   ‐6   ‐4   ‐2 0

    P   o   w   e   r    [    M    W    ]

Pitch angle [deg]

13 m/s

14 m/s

15 m/s

16 m/s

17 m/s

18 m/s

19 m/s

20 m/s

21 m/s

22 m/s

23 m/s

24 m/s

‐6

‐4

‐2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g    l   e    [    d   e   g    ]

Wind speed [m/s]

DTU Wind Energy, Technical University of Denmark

Transision

2015-08-06

‐6

‐4

2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g    l   e    [    d   e   g    ]

Wind speed [m/s]

Optimisation

Limitation

‐6

‐4

‐2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g    l   e    [    d   e   g    ]

Wind speed [m/s]

Optimisation

Limitation

Transition

‐6

‐4

‐2

0

2

0 5 10 15 20 25

    P    i    t   c    h   a   n   g

    l   e    [    d   e   g    ]

Wind speed [m/s]

Optimisation

Limitation

Transition

Soft strategy

Page 14: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 14/34

14

DTU Wind Energy, Technical University of Denmark

Control Circuit

2015-08-06

Actual

Power

Power

Setpoint

Lookup

S&H

anti windup

mode selection:- up: power limitation- down: power optimisation

DTU Wind Energy, Technical University of Denmark

Simulation Power Optimisation

2015-08-06

250.0200.0150.0100.0050.000.00 [s]

8.667

8.296

7.924

7.553

7.181

6.810

Windfilter_moving_average_Common Model: o1

Windfilter_moving_average_Common Model: yo

wind speed8.1 m/s

250.0200.0150.0100.0050.000.00 [s]

900.9

812.5

724.0

635.5

547.1

458.6

Power_in_kW_Common Model: power 

Powerfilter_moving_average_Common Model: yo

el. power 758.5 kW

250.0200.0150.0100.0050.000.00 [s]

 0.50

 0.39

 0.27

 0.16

 0.04

-0.070

pitch_control_I_Common Model: w2

pitch_control_I_Common Model: limit

pitch angle0.193 deg

power optimisation 0.000

   D   I  g   S   I   L   E   N   T

Page 15: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 15/34

15

DTU Wind Energy, Technical University of Denmark

Simulation Transition

2015-08-06

250.0200.0150.0100.0050.000.00 [s]

13.53

12.83

12.13

11.43

10.73

10.04

Windfilter_moving_average_Common Model: o1

Windfilter_moving_average_Common Model: yo

wind speed12.177 m/s

250.0200.0150.0100.0050.000.00 [s]

2381.

2189.

1998.

1806.

1615.

1424.

Power_in_kW_Common Model: power 

Powerfilter_moving_average_Common Model: yo

el. power 2117.9 kW

250.0200.0150.0100.0050.000.00 [s]

1.236

 0.20

-0.839

-1.876

-2.913

-3.951

pitch_control_I_Common Model: w2

pitch_control_I_Common Model: limit

power optimisation

 0.000

pitch angle-2.301 deg

   D   I  g   S   I   L   E   N   T

DTU Wind Energy, Technical University of Denmark

Simulation Power Limitation

2015-08-06

250.0200.0150.0100.0050.000.00 [s]

26.11

24.72

23.32

21.92

20.52

19.12

Windfilter_moving_average_Common Model: o1

Windfilter_moving_average_Common Model: yo

wind speed23.5 m/s

250.0200.0150.0100.0050.000.00 [s]

2180.

2113.

2045.

1977.

1910.

1842.

Power_in_kW_Common Model: power 

Powerfilter_moving_average_Common Model: yo

el. power 2042.0 kW

250.0200.0150.0100.0050.000.00 [s]

1.288

 0.02

-1.250

-2.519

-3.788

-5.057

pitch_control_I_Common Model: w2

pitch_control_I_Common Model: limit

pitch angle-4.768 deg

power limitation 1.000

   D   I  g   S   I   L   E   N   T

Page 16: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 16/34

16

DTU Wind Energy, Technical University of Denmark

Simulation Overpower

2015-08-06

250.0200.0150.0100.0050.000.00 [s]

18.42

16.52

14.62

12.72

10.81

8.914

Windfilter_moving_average_Common Model: o1

Windfilter_moving_average_Common Model: yo

wind speed10.89 m/s

wind speed16.5 m/s

250.0200.0150.0100.0050.000.00 [s]

2908.

2546.

2184.

1821.

1459.

1097.

Power_in_kW_Common Model: power 

Powerfilter_moving_average_Common Model: yo

el. power 2001.2 kW

el. power 2804.9 kW

250.0200.0150.0100.0050.000.00 [s]

1.336

-0.143

-1.622

-3.101

-4.580

-6.059

pitch_control_I_Common Model: w2

pitch_control_I_Common Model: limit

power optimisation 0.000

power limitation 1.000

pitch angle-2.5 deg

   D   I  g   S   I   L   E   N   T

DTU Wind Energy, Technical University of Denmark

Overpower Protection

• Function of overpower protection

– Disable sample and hold

• (continuous controller action possible)

– Instantaneous power signal for power controller

• (controller uses instantaneous power instead of averagedpower)

– Overpower protection active for fixed period of time

2015-08-06

Page 17: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 17/34

Page 18: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 18/34

18

DTU Wind Energy, Technical University of Denmark

Exercise 2 – variable speed

• The Cp data is used for a variable speed / pitch controlled wind turbinewith rotor diameter 80 m. Specify equation for power curve inoptimisation region A-B

• Specify the corresponding relation between wind turbine rotor speed andpower

• The generator is a doubly fed induction generator with two pole pairs( N  pp=2). The generator speed at rated wind speed is 1650 rpm (i.e. the

maximum generator speed). The rated grid frequency is 50 Hz. Find thegenerator slip corresponding to rated wind speed.

• The rated rotor tip speed (rotor speed at rated wind speed) is 70 m/s.Find the gear ratio.

• Specify the relation between generator speed and power in region A-B

• Specify the relation between generator speed and torque in region A-B

2015-08-06

DTU Wind Energy, Technical University of Denmark

Variable speed control loops

2015-08-06

+

-

PI

ref 

grid P

meas

gen 

meas

grid P   ref 

convP

Pel

P-   curve

+

-

meas

gen 

rated 

gen 

PI  Pitch

actuator 

c

Speed loop

Power loop

Page 19: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 19/34

19

DTU Wind Energy, Technical University of Denmark

Doubly fed generator (DFG)

2015-08-06

 DFIG control 

Speed control loop  Power control loop

Wind turbine control 

 Rotor side

 converter control 

 Network side

 converter control 

Measurement

grid point M

 

 AC 

 DC   AC 

 DC 

 I rotor 

gen 

PWM    PWM 

 N

T

ref 

grid P

ref 

grid Q

meas

dcU 

meas

grid P

meas

grid P

meas

grid Q

meas

ac I 

ref 

dcU 

rated ref 

grid P   ,

DTU Wind Energy, Technical University of Denmark

Doubly fed generator – power flow vs. rotorspeed

2015-08-06

0stator P

Sub-synchronous Over-synchronous

0stator P

S t a t o r c i r c u i t  

0rotor P

Sub-synchronous Over-synchronous

0rotor P

Ro t o r c i r c u i t  

rotor stator grid    PPP   mecP

 Partial scale power converter

WRIG Grid 

 AC 

 DC   AC 

 DC 

 Rotor side

converter Grid side

converter 

Page 20: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 20/34

20

DTU Wind Energy, Technical University of Denmark

Simulation – optimal power control (AB)

2015-08-06

360.00287.98215.96143.9471.919-0.1000 ..

 0.200

 0.150

 0.100

 0.050

 0.000

-0.0500

G: Protor [MW]

360.00287.98215.96143.9471.919-0.1000 ..

1.2673

1.1064

 0.945

 0.784

 0.624

 0.463

G: Pstator[MW]

Gen_PQ_controller: Pgrid [MW]

360.00287.98215.96143.9471.919-0.1000 ..

9.2525

8.7577

8.2629

7.7682

7.2734

6.7787

Tower shadow model: Wind [m/s]

   D   I  g   S   I   L   E   N   T

 Below synchronous

(variable reference speed)

 Below synchronous

(variable reference speed) Above synchronous

(fixed reference speed)

DTU Wind Energy, Technical University of Denmark

Simulation – optimal power control (AB)

2015-08-06

360.00288.00216.00144.0072.0000.000 ..

1.1813

1.1352

1.0890

1.0429

 0.997

 0.951

G: Speed

360.00288.00216.00144.0072.0000.000 ..

750804.

624643.

498482.

372322.

246161.

120000.

Transmission model: Aerodynamic rotor [Nm]

360.00288.00216.00144.0072.0000.000 ..

 0.555

 0.493

 0.431

 0.370

 0.308

 0.246

G: Electrical Torque in p.u.

360.00288.00216.00144.0072.0000.000 ..

1.0000

 0.600

 0.200

-0.2000

-0.6000

-1.0000

Limited_power_controller model: Pitch

   D   I  g   S   I   L   E   N   T

 Below synchronous

(variable reference speed)

 Below synchronous

(variable reference speed) Above synchronous

(fixed reference speed)

Page 21: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 21/34

21

DTU Wind Energy, Technical University of Denmark

Simulation - wind 7m/s – optimisation

strategy

2015-08-06

600.00479.98359.96239.94119.92-0.1000 ..

 0.685

 0.612

 0.539

 0.466

 0.393

 0.321

Gen_PQ_controller: P1

600.00480.00360.00240.00120.000.000 ..

8.3761

7.7706

7.1650

6.5594

5.9539

5.3483

Rotor wind model: wsfic

600.00480.00360.00240.00120.000.000 ..

1611.9

1540.1

1468.4

1396.7

1324.9

1253.2

Speed controller model: rotation_real

Speed controller model: rotation_ref 

600.00480.00360.00240.00120.000.000 ..

 0.420

 0.206

-0.0075

-0.2213

-0.4352

-0.6490

Speed controller model: error 

   D   I  g   S   I   L   E   N   T

Power grid

Wind

Gen. Speed and Gen. ref. speed

Error

DTU Wind Energy, Technical University of Denmark

Simulation - wind 15 m/s

2015-08-06

600.00479.98359.96239.94119.92-0.1000 ..

2.0485

2.0318

2.0150

1.9982

1.9814

1.9647

Gen_PQ_controller: P1

600.00480.00360.00240.00120.000.000 ..

18.443

16.977

15.511

14.045

12.578

11.112

Rotor wind model: wsfic

600.00480.00360.00240.00120.000.000 ..

1712.2

1700.5

1688.9

1677.3

1665.6

1654.0

Speed controller model: rotation_real

Speed controller model: rotation_ref 

600.00480.00360.00240.00120.000.000 ..

17.265

13.787

10.310

6.8323

3.3548

-0.1227

Power controller model: pitch

   D   I  g   S   I   L   E   N   T

Power grid

Gen. Speed and gen. ref. speed

Pitch

Wind

Page 22: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 22/34

22

DTU Wind Energy, Technical University of Denmark

Simulation - wind 22 m/s

2015-08-06

600.00479.98359.96239.94119.92-0.1000 ..

2.4742

2.3253

2.1765

2.0276

1.8787

1.7299

Gen_PQ_controller: P1

600.00480.00360.00240.00120.000.000 ..

27.182

24.936

22.691

20.445

18.200

15.954

Rotor wind model: wsfic

600.00480.00360.00240.00120.000.000 ..

1856.4

1780.0

1703.6

1627.2

1550.8

1474.4

Speed controller model: rotation_real

Speed controller model: rotation_ref 

600.00480.00360.00240.00120.000.000 ..

25.835

22.162

18.489

14.816

11.143

7.4701

Power controller model: pitch

   D   I  g   S   I

   L   E   N   T

DTU Wind Energy, Technical University of Denmark

Gain scheduling

2015-08-06

0 5 10 15 20 25 30-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

 d 

dP

ba y      

     0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

 d 

dP

ba y z

 

11

1

 d 

dPK K   pitchPI 

 d 

dPK K  PI system

 pitchPI    K K   

Page 23: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 23/34

23

DTU Wind Energy, Technical University of Denmark

Simulation - wind 22 m/s – gain schedulling

2015-08-06

600.00479.98359.96239.94119.92-0.1000 ..

2.4742

2.3254

2.1765

2.0277

1.8788

1.7300

Gen_PQ_controller: P1

600.00479.98359.96239.94119.92-0.1000 ..

27.182

24.935

22.688

20.441

18.194

15.947

Rotor wind model: wsfic

600.00479.98359.96239.94119.92-0.1000 ..

1767.2

1730.8

1694.4

1657.9

1621.5

1585.0

Speed controller model: rotation_real

Speed controller model: rotation_ref 

600.00479.98359.96239.94119.92-0.1000 ..

28.381

25.594

22.806

20.018

17.230

14.442

Power control schedulling model: pitch

   D   I  g   S   I   L   E   N   T

Power grid

Gen. Speed and Gen. ref. speed

Pitch

DTU Wind Energy, Technical University of Denmark

Fault-ride-through control

• Example active stall

– short circuit at “Fault Bus” 

– isolation of fault

2015-08-06

Page 24: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 24/34

24

DTU Wind Energy, Technical University of Denmark

No fault-ride-through control

2015-08-06

6.0004.8003.6002.4001.200-0.000 [s]

3.380

2.610

1.840

1.070

0.30

-0.470

WT Generator: Active Power in MW

6.0004.8003.6002.4001.200-0.000 [s]

1.030

0.85

0.68

0.50

0.33

0.15

WT Generator: Terminal Voltage in p.u.

6.0004.8003.6002.4001.200-0.000 [s]

1.100

1.078

1.056

1.034

1.012

0.99

WT Generator: Speed in p.u.

6.0004.8003.6002.4001.200-0.000 [s]

1.800

0.85

-0.095

-1.043

-1.990

-2.938

WT Generator: Reactive Power in MVAr 

   D   I  g   S   I   L   E   N   T

DTU Wind Energy, Technical University of Denmark

Simple fault-ride-thorugh control: fast pitchto zero-power

2015-08-06

-14

-12

-10

-8

-6

-4

-2

0

2

4

4 5 6 7 8 9 10 11 12 1 3 14 15 16 1 7 18 19 2 0 21 2 2 23 24 2 5

wind speed [m/s]

  p   i   t  c   h 

  a  n

  g   l  e 

   [   d  e  g   ]

normal operation pitch

0.0 MW pitch

Page 25: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 25/34

25

DTU Wind Energy, Technical University of Denmark

Short circuit simulated with fault-ride-

through control

2015-08-06

6.0004.8003.6002.4001.200-0.000 [s]

3.039

2.391

1.743

1.096

0.45

-0.200

WT Generator: Active Power in MW

6.0004.8003.6002.4001.200-0.000 [s]

1.098

0.91

0.72

0.53

0.34

0.15

WT Generator: Terminal Voltage in p.u.

6.0004.8003.6002.4001.200-0.000 [s]

1.077

1.058

1.038

1.019

1.00

0.98

WT Generator: Speed in p.u.

6.0004.8003.6002.4001.200-0.000 [s]

2.051

1.059

0.07

-0.926

-1.918

-2.910

WT Generator: Reactive Power in MVAr 

   D   I  g   S   I   L   E   N   T

DTU Wind Energy, Technical University of Denmark

Fault ride through – DFG with crowbar

2015-08-06

Crowbar

DFIG

~=

~~~

Power convertercontrol

ref Qref P

 

Control mode :• normal operation• fault operation

~=

RSC GSC

Faultdetection

Drive train

with gearbox

Wind turbine

Pitch anglecontrol

DFIG system – control and protection

Aerodynamics

c

Page 26: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 26/34

26

DTU Wind Energy, Technical University of Denmark

Crowbar effects

• On voltage dip:

– RSC overcurrents

– Crowbar activtates / RSCdisconnects

– DFG behaves as SCIG (nocontrol)

– GSC can still be used as aSTATCOM

• Effect of increased crowbarresistance :

– improves the torquecharacteristic

– reduces reactive powerdemand

– improves dynamic stability ofthe generator

2015-08-06

Damping controller

-1 -0.5 0 0.5 1 1.5 2 2.5 3-25

-20

-15

-10

-5

0

Speed [p.u.]

   R  e  a  c   t   i  v  e  p  o  w  e  r   [

   M  v  a  r   ]

.   . .   .

-1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2

-1

0

1

2

3

Speed [p.u.]

   E   l  e  c   t  r  o  m  a  g  n  e   t   i  c

   t  o  r  q  u  e

   [  p .  u .   ]

crowbar crowbar crowbar  R R R 321  

crowbar crowbar crowbar  R R R 321  

DTU Wind Energy, Technical University of Denmark

Load reduction – active damping

2015-08-06

Wind

speed 

ref  

 

grid 

ref P

-+

Damping controller 

PIOptimal

speed 

10.007.505.002.500.00 [s]

1.150

1.125

1.100

1.075

1.050

1.025

10.007.505.002.500.00 [s]

3.0E+4

2.0E+4

1.0E+4

0.0E+0

-1.0E+4

10.007.505.002.500.00 [s]

10.00

8.000

6.000

4.000

2.000

0.00

10.007.505.002.500.00 [s]

2.40

2.20

2.00

1.80

1.60

1.40

1.20

   D   I  g   S   I   L   E   N   T

   G  e  n  e  r  a   t  o  r  s  p  e  e   d

   [  p  u

   ]

Withoutdampingcontroller Withdampingcontroller 

   M

  e  c   h  a  n

   i  c  a   l   t  o  r  q  u  e

   [   N  m

   ]

[sec]

[sec]

[sec]

[sec]

   P   i   t  c   h  a  n  g

   l  e   [   d  e  g

   ]

   A  e  r  o .

  p  o  w  e  r

   [   M   W   ]

10.007.505.002.500.00 [s]

1.150

1.125

1.100

1.075

1.050

1.025

10.007.505.002.500.00 [s]

3.0E+4

2.0E+4

1.0E+4

0.0E+0

-1.0E+4

10.007.505.002.500.00 [s]

10.00

8.000

6.000

4.000

2.000

0.00

10.007.505.002.500.00 [s]

2.40

2.20

2.00

1.80

1.60

1.40

1.20

   D   I  g   S   I   L   E   N   T

   G  e  n  e  r  a   t  o  r  s  p  e  e   d

   [  p  u

   ]

Withoutdampingcontroller Withoutdampingcontroller Withdampingcontroller Withdampingcontroller 

   M

  e  c   h  a  n

   i  c  a   l   t  o  r  q  u  e

   [   N  m

   ]

[sec]

[sec]

[sec]

[sec]

   P   i   t  c   h  a  n  g

   l  e   [   d  e  g

   ]

   A  e  r  o .

  p  o  w  e  r

   [   M   W   ]

Page 27: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 27/34

27

DTU Wind Energy, Technical University of Denmark

Integrated design analysis

and load reduction

• Integrated analysis model

– Aeroelastic model of windturbine (HAWC2)

– Pitch control (Simulink)

– Asynchronous machine +control (Simulink)

• Rotor and Statorfluxes

• Current and powercontrol of rotorside converter

• Resonant dampingcontrol

2015-08-06

DTU Wind Energy, Technical University of Denmark

Resonant damping control – load reductionUnbalanced fault

2015-08-06

Electrical loads:Generator rotor current

Structural loads:Tower top side-to-side moment

Page 28: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 28/34

28

DTU Wind Energy, Technical University of Denmark

Resonant damping control – load reduction

2015-08-06

Load ranges(max – min)

Equivalent loads(fatigue)

DTU Wind Energy, Technical University of Denmark

Storm control

High Wind Shut Down High Wind Ride Through

(SIEMENS HWRT™)

2015-08-06

Page 29: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 29/34

29

DTU Wind Energy, Technical University of Denmark

Offshore wind power variability 2020

2015-08-06

DTU Wind Energy, Technical University of Denmark

Wind farm control – wind power plants

• Contribute to control of grid voltage: amplitude and frequency, like otherpower plants

• Indirect grid control: active and reactive power control

2015-08-06

Page 30: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 30/34

30

DTU Wind Energy, Technical University of Denmark

Balance control

• Balance control provides power output according to reference signal

• Balance control implemented in first time in Horns Rev 2002

• Why ramp limitation

2015-08-06

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Time [s]

   P  o  w  e  r   [  p  u .   ]

PavailPbalPref,wf 

DTU Wind Energy, Technical University of Denmark

Delta control

• Delta control provides fixedreserve

• Delta control implemented firsttime in Horns Rev 2002

• Reserve can be utilised infrequency control (droop anddeadband)

2015-08-06

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Time [s]

   P  o  w  e  r   [  p  u .   ]

Pref,wf 

Power

Frequency

Pavail

 f s   f s+ f d    f d +

PdelPavailPdelPdel

Page 31: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 31/34

31

DTU Wind Energy, Technical University of Denmark

Double fed wind turbine – power control

2015-08-06

Wind turbine controller Wind turbine controller Wind turbine controller 

Power

control

meas 

Speed

control

 pitch 

gen

ref P

max ~~

ref P

 

DTU Wind Energy, Technical University of Denmark

Double fed wind farm – power control

2015-08-06

Wind turbine controller Wind turbine controller Wind farm controller Operator Wind turbine controller 

Power

reference

setting

Pbalance

P

Ramp rate settings

Dispatch

controlPower

control

wf 

ref P

wf 

measP

meas 

Speed

control

 pitch 

gen

ref P

~~

inst 

availP

 

measP

ref P

max 

Page 32: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 32/34

32

DTU Wind Energy, Technical University of Denmark

Double fed wind farm – power control

2015-08-06

Wind turbine controller Wind turbine controller Wind farm controller Operator Wind turbine controller 

Power

reference

setting

Pbalance

P

Ramp rate settings

Dispatch

controlPower

control

wf 

ref P

wf 

measP

meas 

Speed

control

 pitch 

gen

ref P

ref  Speed

optimum

~~

measu

inst 

availP

DTU Wind Energy, Technical University of Denmark

Double fed wind farm – power control

2015-08-06

Wind turbine controller Wind turbine controller Wind farm controller Operator Wind turbine controller 

Power

reference

setting

Pbalance

P

Ramp rate settings

Dispatch

controlPower

control

wf 

ref P

wf 

measP

meas 

Speed

control

 pitch 

gen

ref P

ref  Speed

optimum

Wind

speeds

forecasts  ~~

measu

inst 

availP

t expu

Page 33: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 33/34

33

DTU Wind Energy, Technical University of Denmark

Double fed wind farm – frequency control

2015-08-06

Wind turbine controller Wind turbine controller Wind farm controller Operator Wind turbine controller 

Power

reference

setting

Pbalance

P

Ramp rate settings

Droop settings

Deadband settings

Dispatch

controlPower

control

wf 

ref P 0

meas f 

wf 

ref P

wf ref 

P

wf 

measP

meas 

Speed

control

 pitch 

gen

ref P

ref  

Speed

optimum

~~

measu

inst 

availP

t expuWind

speeds

forecasts

DTU Wind Energy, Technical University of Denmark

Wind farm power control – wind turbines

2015-08-06

350.0280.0210.0140.070.000.00 [s]

21.00

18.00

15.00

12.00

9.00

6.00

350.0280.0210.0140.070.000.00 [s]

2.10

1.80

1.50

1.20

0.90

0.60

0.30

350.0280.0210.0140.070.000.00 [s]

1700.00

1600.00

1500.00

1400.00

1300.00

350.0280.0210.0140.070.000.00 [s]

20.00

16.00

12.00

8.00

4.00

-0.00

-4.00

   D   I  g   S   I   L   E   N   T

Wind -WT1

Wind -WT2

Wind -WT3

Measured power -WT1

Measured power -WT2Measured power -WT3

Generator speed -WT1

Generator speed -WT2

Generator speed -WT3

Pitch angle -WT1

Pitch angle -WT2

Pitch angle -WT3

    [      M W 

    ]  

     [     m     /    s      ]  

     [     r   p      m

     ]  

     [       d    e    g  

     ]  

[sec]

350.0280.0210.0140.070.000.00 [s]

21.00

18.00

15.00

12.00

9.00

6.00

350.0280.0210.0140.070.000.00 [s]

2.10

1.80

1.50

1.20

0.90

0.60

0.30

350.0280.0210.0140.070.000.00 [s]

1700.00

1600.00

1500.00

1400.00

1300.00

350.0280.0210.0140.070.000.00 [s]

20.00

16.00

12.00

8.00

4.00

-0.00

-4.00

   D   I  g   S   I   L   E   N   T

Wind -WT1

Wind -WT2

Wind -WT3

Measured power -WT1

Measured power -WT2Measured power -WT3

Generator speed -WT1

Generator speed -WT2

Generator speed -WT3

Pitch angle -WT1

Pitch angle -WT2

Pitch angle -WT3

    [      M W 

    ]  

     [     m     /    s      ]  

     [     r   p      m

     ]  

     [       d    e    g  

     ]  

[sec]

Page 34: Control of Wind Power Plants

7/23/2019 Control of Wind Power Plants

http://slidepdf.com/reader/full/control-of-wind-power-plants 34/34

DTU Wind Energy, Technical University of Denmark

Wind farm power control

2015-08-06350.0280.0210.0140.070.000.00 [s]

6.50

6.00

5.50

5.00

4.50

4.00

3.50

350.0280.0210.0140.070.000.00 [s]

2.20

2.00

1.80

1.60

1.40

1.20

1.00

350.0280.0210.0140.070.000.00 [s]

2.20

2.00

1.80

1.60

1.40

1.20

350.0280.0210.0140.070.000.00 [s]

2.40

2.00

1.60

1.20

0.80

0.40

   D   I  g   S   I   L   E   N   T

Dispatch reference power -WT1

Dispatch reference power - WT2

Dispatch reference power -WT3

Available power -WT1

Available power -WT2

Available power -WT3

Wind farm available power Wind farm PCC measured power

    [       M    W     ]  

    [      M    W     ]  

    [       M    W     ]  

    [       M    W     ]  

[sec]   350.0280.0210.0140.070.000.00 [s]

6.50

6.00

5.50

5.00

4.50

4.00

3.50

350.0280.0210.0140.070.000.00 [s]

2.20

2.00

1.80

1.60

1.40

1.20

1.00

350.0280.0210.0140.070.000.00 [s]

2.20

2.00

1.80

1.60

1.40

1.20

350.0280.0210.0140.070.000.00 [s]

2.40

2.00

1.60

1.20

0.80

0.40

   D   I  g   S   I   L   E   N   T

Dispatch reference power -WT1

Dispatch reference power - WT2

Dispatch reference power -WT3

Available power -WT1

Available power -WT2

Available power -WT3

Wind farm available power Wind farm PCC measured power

    [       M    W     ]  

    [      M    W     ]  

    [       M    W     ]  

    [       M    W     ]  

[sec]

DTU Wind Energy, Technical University of Denmark

Summary / conclusions

• Control can

– optimise production

– reduce structural loads

– support grid integration

• Controllability varies very much, depending on turbine design (fixed/varspeed, fixed/var pitch)

• QUESTIONS?

2015-08-06