chapter 5 : part ii composite curve (heat integrations) · exchange, limits the amount of heat...

32
CHAPTER 5 : Part II COMPOSITE CURVE (HEAT INTEGRATIONS) 1

Upload: others

Post on 09-May-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

CHAPTER 5 : Part II COMPOSITE CURVE

(HEAT INTEGRATIONS)

1

2

Determining the Minimum Energy Requirement (MER) using Process Composite Curves for Process energy

targets (minimum steam and cooling water requirements)

Composite Curves

“Representation of process streams’ heat content on a plot of temperature (T) versus enthalpy (DH)”

Reactor 200 oC 30 oC

50 oC

Feed Feed

Product

Steam

Cooling Water

Process Before integration

DH (MW)

Hot Stream e.g. product)

Cold Stream (e.g. feed)

200

50 30

T(oC)

CW

Steam T-DH Plot

Temperature vs Enthalpy Diagram

Process After Integration

Reactor 200 oC 30 oC

50 oC

Feed Feed

Product

Steam

Cooling Water

Working Session - HEN “Design by intuition (awareness)”

R2

R1

Cool FCP=1

Heat FCP=4

Cool FCP=2

Heat FCP=1.8

30°

120°

130°

40°

60°

100°

120°

180° 80°

C1

Inlet Hot stream

Inlet Hot stream

Inlet Cold stream

Inlet Cold stream

C1 Cold 60 100 4.0

C2 Cold 30 120 1.8

H1 Hot 180 80 1.0

H2 Hot 130 40 2.0

Stream Type FCP (KW/K)

T supply T target

(oC) (oC)

Stream data

DTmin = 10oC

• Design a network of steam heaters, coolers and Heat exchangers for the four process streams.

• Where possible, use heat interchange in preference to utilities

Steam @ 200oC, Water @ 25oC

• Where to begin placing a match? • Which streams to match?

Potential streams for heat exchange

Properties of T-DH Diagram

Given the stream data :

Stream Number

Stream Type

FCP (MW/K)

DH (MW)

T target

(°C ) T supply

(°C )

1 Cold 40 130 2.0 180

T vs DH Plot

130

T(°C)

DH (MW)

Tsupply

Ttarget

40

bigger FCp

smaller FCp

DH

DT

DH is a relative quantity. Thus, the T-DH line can be shifted horizontally

1/FCp is the slope of the T-DH line:

DH = FCpDT ==> DT/DH = 1/FCp

- smaller FCp: steep or - bigger FCp: flat

Example: Front End PFD of a Process Plant

30ºC

190ºC

95ºC 35ºC

110ºC

100ºC

Reactor 2

Product Splitter

For further separation

EX2

95ºC 285ºC

65ºC

Reactor 1

EX1 EX3

EX4

V1

The Stream Data

Stream Number

Stream Type

FCP (MW/K)

Tsupply ( °C )

DH (MW)

Ttarget ( °C )

1 Hot 285 65 1 220

2 Hot 95 35 2.5 150

3 Cold 95 285 0.5 -95

4 Cold 30 190 1 -160

Temperature (T) vs Enthalpy (DH)

Diagram for multiple streams

Introducing the composite curves…

Temperature (T) vs Enthalpy (ΔH)

Diagram for multiple streams

The Hot Composite Curve

H2

H1

T (ºC) T (ºC)

DH (MW) DH (MW)

H1+H2 = 370

220 150

285

65 95

35

FCPH1 = 1 MW/K Composite (resultant) Hot Stream

FCPH2 = 2.5 MW/K

75 105 190

FCPH1

FCPH1 + FCPH2

FCPH

2

Individual Composite

Stream Number

Stream Type

FCP (MW/K)

Tsupply ( °C )

DH (MW)

Ttarget ( °C )

1 Hot 285 65 1 220

2 Hot 95 35 2.5 150

3 Cold 95 285 0.5 -95

4 Cold 30 190 1 -160

The Cold Composite Curve

C3

C4

C3 + C4= 255

DH (MW) DH (MW)

285

190

95

30

95 160

FCPC3 = 0.5 MW/K

FCPC4 = 1 MW/K

FCPC3

FCPC3

+ FCPC4

FCPC4

65 142.5 47.5

T (ºC) Individual Composite T (ºC)

Stream Number

Stream Type

FCP (MW/K)

Tsupply ( °C )

DH (MW)

Ttarget ( °C )

1 Hot 285 65 1 220

2 Hot 95 35 2.5 150

3 Cold 95 285 0.5 -95

4 Cold 30 190 1 -160

The “PINCH”

Pinch

Hot composite

curve

Cold composite

curve

H (kW)

T (ºC)

“The Pinch”

Hot and cold composites on the same T-ΔH diagram

Process-to-process heat

transfer

Composite Curves (CC)

Pinch

DTmin

Hot composite curve

Cold composite curve

H (kW)

T (ºC) QH,min

QC,min

QH= External Heating Duty

QC= External Cooling Duty

Smallest ΔT (driving force). - The most constrained part of the process (in terms of heat transfer) is at the Pinch

Energy Targets

Process to Process Heat

Exchange

QH= External Heating Duty

QC= External Cooling Duty

Q C = Cold Utility Requirement

Q H = Hot Utility

Effect of ΔTmin

Pinch

H (kW)

T (ºC) QH,min

QC,min

DTmin

Move

horizontally

Effect of ΔTmin

Less Process-to-Process

heat transfer

Pinch

DT > DTmin

H (kW)

T (ºC) QH,min

QC,min

QH >QH,min

QC >QC,min

DTmin

Move

horizontally

Working Session 1- Composite Curves

R2

R1

Cool FCP=1

Heat FCP=4

Cool FCP=2

Heat FCP=1.8

30°

120°

130°

40°

60°

100°

120°

180° 80°

C1

• Set up Stream Data Table • Construct Composite Curves • Read- Energy Targets for ΔTmin = 10°C • Compare your result with design by intuition

Heat Exchanger Network

Working Session 2– Composite Curve [Linnhoff et al.]

Given Stream data

C1 Cold 20 135 2

C2 Cold 80 140 4

H1 Hot 170 60 3

H2 Hot 150 30 1.5

DTmin = 10°C

Stream Type FCP

(MW/K) T supply T target

(°C) (°C)

(Answers) : Verify that QH,min=20MW; QC,min=60MW

Significance of The "Pinch"

DH (kW)

T (ºC)

No heat

transfer

Process below the pinch in heat balance with QC

Process above the pinch in heat balance with QH

“Pinch”

QH DHH + QH = DHC DHH

QC DHC DHC + QC = DHH

DHH

DHC

…Heat exchange should be confined to only each side of the pinch !

QH

Significance of The "Pinch"

“Pinch”

QC

DHH DHC

QH@ 180ºC

CW@ 30ºC

Heat Sink = only accepts heat

Heat Source – only rejects heat

QXS

unused process heat

DHs

“Heating below

pinch”

•QH used for heating

instead of hot stream

with DHs

• more excess heat

• must add CW

besides additional

QH to reject Qxs heat

“Cooling above

pinch”

• DHH potential heat

from rejected to

CW

• must compensate

for loss of DHH with

additional steam for

heating

DH (kW)

T (ºC)

DHH

QH

Significance of The "Pinch"

“Pinch”

QC

DHH DHC

Heat Sink = only accepts heat

Heat Source – only rejects heat

DHs

DH (kW)

T (ºC)

DHH • Cross Pinch Heat

Transfer - “upsets”

the heat balance

Implications:

• Not enough process

heat above

• excess heat below

Simple Rule:

Exchange only

• high Temp with high

temp,

• low T with low T

X-Pinch heat transfer

Significance of The "Pinch"

H (kW)

T (ºC)

QH,min

QC,min

No heat

transfer

“No Cooling above the

pinch”

“No Heating below the

pinch”

1. DTmin, which is the smallest approach temperature for heat exchange, limits the amount of heat recovery in a process (i.e. the heat recovery “pinch”).

2. There should be no heat transfer across the pinch. To guarantee this, • do not heat below the pinch (no external heating), or • do not cool above the pinch (external cooling) • do not transfer heat across the pinch (in last example, Q=0)

3. Any external cooling above the pinch, or heating below the pinch

will result in cross-pinch heat transfer, thereby increasing the external utility requirements.

Summary – Significance of The "Pinch"

Pinch Application 1 – Retrofit of an Existing Aromatics Complex

T-1 T-2 T-3

P-2 P-4 P-6

X-13

X-3

X-2

X-1

P-1

R-1

6

23

3

4

5

P-3 P-5 P-7

X-5 X-8

X-11

8

10

13

15

7

9 11

12

1416

18

17

19 21

20

22

21

X-4

X-6

X-7

X-9

X-10

X-12

Exchangers causing highest losses

Assignment 1 – Composite Curves for Palm Oil Refinery

Effluent Effluent

Effluent

Effluent

Activated

Clay H2PO3

Acid

Degummer

Bleacher

Deodorizer

Citric Acid

Filters

CPO

RBDPO

50°C

97°C

104°C

124°C

50°C

120°C

86°C 86°C

260°C

230°C

83°C

230°C

70°C 160°C

160°C

86°C

86°C 50°C

120°C

86°C

Q

Q

Q

160ºC

60ºC

70ºC

high loss

better “heat sink” (recipient)

Practical Use of the Composite Curve & Pinch

• Baseline Utility Consumption

• Maximum Heat Recovery

• Guidelines for heat recovery matches

• Avoid forbidden matches (follow 1st and 2nd thermo. Law)

• Implication of forbidden matches

• Diagnose heat recovery inefficiencies

• Guide for favorable process changes

• Guide for CHP and heat pump integration

Assignment – Energy Targeting & Process Diagnosis

a) Construct the process composite curves. b) Use the problem table method to verify your

results in (a). c) Read-off energy targets for ΔTmin = 10oC. d) Identify locations in the plant where these are

possible violations of the pinch rules. e) Through careful inspection of the process, identify

scopes for further heat recovery.

Using the stream data for the palm oil refinery,

Stream data for Palm Oil Refinery

Stream

No.

Stream

type

Supply

Temperature,

TS (oC)

Target

Temperature,

TT (oC)

Heat capacity

flow rate, FCp

(kW/oC)

1 Hot 120 86 10.99

2 Hot 260 160 6.04

3 Hot 83.3 70 13.13

4 Hot 160 50 6.56

5 Cold 50 97 11.83

6 Cold 104 124 14.89

7 Cold 86 230 5.69

THANK YOU

32