chapter 3- multiple random variables-updated

Upload: farouqrazzaz2574

Post on 07-Jul-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    1/25

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    2/25

    CEN 343 Chapter 3: Multiple random variables

    2

    1. Vector Random Variables

    • 

    Let two random variables X with value x and Y with value y are defined on a sample space S,then the random point (x, y) is a random vector in the XY plane.

    •  In the general case where N r.v's. X1, X2, . . . XN are defined on a sample space S, they

    become N-dimensional random vector or N-dimensional r.v.

    2. Joint distribution

     

    Let two events  = {  ≤ }   = { ≤ }, ( X  and Y  two random variables ) withprobability distribution functions () and (), respectively:

    () = (  ≤ )  (1) () = ( ≤ )  (2) 

    •  The probability of the joint event {  ≤ , ≤ } , which is a function of the members  and is called the joint probability distribution function {  ≤ , ≤ } = (  ∩ ). It isgiven as follows:

    ,(,) = (  ≤ , ≤ )  (3) 

    •  If X  and Y  are two discrete random variables, where  X  have N possible values  and Y  haveM possible values , then:

    ,(,) = ∑ ∑   (,)( )( )=1=1   (4) 

    •  If X  and Y  are two continues random variables, then:

    Probability of the joint

    event {  = , = } Unit step function

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    3/25

    CEN 343 Chapter 3: Multiple random variables

    3

    ,(,) = ,(, )

    −  (5) 

    Example 1-a:

    Sol: a-

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    4/25

    CEN 343 Chapter 3: Multiple random variables

    4

    b-

    Example 1-b:

    Let X  and Y  be two discrete random variables. Let us assume that the joint space has only three

    possible elements (1, 1), (2, 1) and (3, 3). The probabilities of these events are:

    (1,1) = 0.2, (2, 1) = 0.3,  (3, 3) = 0.5. Find and plot ,(, ). Solution:

    Proprieties of the joint distribution  ,(,):1.   ,(∞,∞) =  ,(∞,) =  ,(,∞) =  2.

       ,(∞,∞) =  3.  ≤  ,(,) ≤  4.  {

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    5/25

    CEN 343 Chapter 3: Multiple random variables

    5

    5.   ,(,) is a non decreasing function of both  and  Marginal distributions: 

    • 

    The marginal distribution functions of one random variable is expressed as:

       ,(,∞) = ()    ,(∞,) = () 

    Example 1-c

    Suppose that we have two random variables X and Y with joint density function:

    Sol:

    =13/160

    Example 2:

    = {(1,1), (2,1), (3,3)} 

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    6/25

    CEN 343 Chapter 3: Multiple random variables

    6

    (1,1) = 0.2,   (2,1) = 0.3,   (3,3) = 0.5 Find ,(,) and the marginal distributions X() and Y() of example 1 Solution:

    3. Joint density

    • 

    For two continuous random variables X  and Y, the joint probability density function is given

    by:

     ,(,) = 2,(,)   (6) 

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    7/25

    CEN 343 Chapter 3: Multiple random variables

    7

    •  If  X  and Y, are tow discrete random variables then the joint probability density function is

    given by:

     ,(,) = (,)( )( )=1

    =1

      (7) 

    Proprieties of the joint density function   ,(,):1.  ,(,) ≥ 0 2.

      ∫ ∫   ,(,) = 1−−  3.  ,(, ) = ∫ ∫   ,(,)−−  4.

      () = ∫ ∫   ,(,)−− , () = ∫ ∫   ,(,)−−  5.  {1

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    8/25

    CEN 343 Chapter 3: Multiple random variables

    8

    In tabular form, the marginal distributions of X  and Y  are:

    Example:

    Note that g(x) stands for f X(x) and h(y) for f Y(y). By definition, we have:

    Note that, we have:

    Example:

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    9/25

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    10/25

    CEN 343 Chapter 3: Multiple random variables

    10

    •  For discrete random variables:

    Suppose we have:

     (y)   = 

    =1  (12) 

     ,(,) = ∑ ∑   ,( )=1=1     (13) Assume =  is the specific value of y, then:

    (| = ) =   ( ,)

    ()

    =1  ( ) (14) and (| = ) =   (,)()

    =1

     ( ) (15) Example 4:

    Let us consider the joint pdf: ,(,) = ()() −(+1) 

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    11/25

    CEN 343 Chapter 3: Multiple random variables

    11

    Find (|)  if the marginal pdf of X  is given by: () = ()− Solution:

     ,(,) and () are nonzero only for > 0   > 0, (|) is nonzero only for > 0   > 0, therefore, we keep u(x). 

    Calculate the probability: Pr( ≤ |  = )? ( ≤ |  = ) = ∫ (| = ) =∫ − =  − = .  

    Example 5:

    What represents the corresponding figure ? 

    Find (| = 3) 

    Solution:

    Example:

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    12/25

    CEN 343 Chapter 3: Multiple random variables

    12

    Example:

    Sol:

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    13/25

    CEN 343 Chapter 3: Multiple random variables

    13

    4.2 Interval conditioning: The Radom variable in the interval {

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    14/25

    CEN 343 Chapter 3: Multiple random variables

    14

    Show that: ∫ ∫   ,(, )− = ,(, ) ,(, ) 

    Example 6:

    Let ,(, ) = ()() −(+1)  (18)  () = ()−,    () =   ()(+1) 

    Find  (| ≤ )?Solution 6:

    Numerical application: Find (

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    15/25

    CEN 343 Chapter 3: Multiple random variables

    15

    •  Note that if X and Y are independent, then

     (

    |

    ) =

     (

     

     (

    |

    ) =

     (

    )  (21)

    Example:

    Example 7:

    In example 6, are X  and Y  independent?

    Solution

    ⟹      . Example 8:

    Let  ,(, ) = 112 ()()−4−  are X and Y independent?

    Solution

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    16/25

    CEN 343 Chapter 3: Multiple random variables

    16

    Example:

    Sol:

    6. Sum of two random variables

    •  Here the problem is to determine the probability density function of the sum of two

    independent  random variables X  and Y :

    =  +   (22) •  The resulting probability density function of  can be shown to be the convolution of the

    density functions of X  and Y:

     () = () ∗ () 

     () =  () ( )

    −= () ( )

    −  (23) 

    Convolution

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    17/25

    CEN 343 Chapter 3: Multiple random variables

    17

    Proof:

    Example 9:

    Let us consider two independent random variables X and Y with the following pdfs:

     () = 1 [() ( )] 

     () = 1 [() ( )] Where 0

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    18/25

    CEN 343 Chapter 3: Multiple random variables

    18

    7. Central Limit Theorem

    The probability distribution function of the sum of a large number of random variables

    approaches a Gaussian distribution. More details will be given in Chapter 5.

    a+b

     () 

    w

    1

     

    a b

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    19/25

    CEN 343 Chapter 3: Multiple random variables

    19

    8. Expectations and Correlations

    •  If  (,) is a function of two random variables X  and Y   ( their joint probability densityfunction 

      ,(

    ,

    )). Then the expected value of

    (

    ,

    ), a function of the two random

    variables X  and Y  is given by:

    [( ,)] =  (,)  ,(,)∞

    −∞ 

    −∞  () 

    Example 10

    Let ( ,) =  + , find [( ,)]? Solution:

    •  If we have n functions of random variables (,),(,), … , (,) : 

    [(,) + (,) + … + (,)] = [(,)] + [(,)] + ⋯+ [(,)] 

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    20/25

    CEN 343 Chapter 3: Multiple random variables

    20

    Which means that the expected value of the sum of the functions is equal to the sum of the

    expected values of the functions.

    8.1 Joint Moments about the origin

    = [ ] = 

    −  ,(,)  (25) 

    We have the following proprieties:

      0 = [ ] are the moments of  X  

      0 = [] are the moments of Y    The sum n+k is called the order of the moments. ( 20,02 and 11 are called second

    order moments).

     

    10=

     [

     ] and

    01=

     [

    ]  are called first order moments.

    8.2 Correlation

    •  The second-order joint moment 11 is called the correlation between X  and Y .•  The correlation is a very important statistic and its denoted by : 

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    21/25

    CEN 343 Chapter 3: Multiple random variables

    21

    = [ ] = 11 = 

    −    ,(,)  (26) 

    •  If

    =

     [

     ]

    [

    ]  then X  and Y are said to be uncorrelated.

    •  If X  and Y  are independent then ,(x, y) = () () and

    =  ()∞

    −  ()

    −= [ ][]  (27) 

    •  Therefore, if X  and Y  are independent ℎ they are uncorrelated. •  However, if X and Y are uncorrelated, it is not necessary that they are independent.

    • 

    If   = 0 ℎ    Y are called orthogonal.

    Example 11

    Let [ ] = 3 ,2 = 2, let also = 6  + 22Find ? Are  X  and Y  Orthogonal?

    Are  X  and Y  uncorrelated?

    Solution:

    Or X and Y are correlated.

    Example:

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    22/25

    CEN 343 Chapter 3: Multiple random variables

    22

    Find the marginal PDF: (),  |(|), and E(XY)Solution:

    1.  () =   √ −  

    2.   |(|) =   −−

     

    3.  ( ) = ∫  

    √ 

    −−   = 

     

    8.3 Joint central moments

    •  The joint central moment is defined as:

    = [(  �)( �)]=  ( �)( �)

    −  ,(,)  (28) 

    We note that:20 = [(  �)2] = 2  is the variance of X.2 = [( �)2] = 2  is the variance of Y .

    8.4 Covariance

    •  The second order joint central moment  is called the covariance of  X  and Y  and denoted by . 

    = 11 = [(  �)( �)] = ∫ ∫ ( �)( �)−−   ,(,)  (29) We have

    = [ ] �� =   [ ][]  (30) •  If  X  and Y  are uncorrelated (or independent), then = 0 •  If  X  and Y  are orthogonal, then =  �� 

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    23/25

    CEN 343 Chapter 3: Multiple random variables

    23

    •  If  X  and Y  are correlated, then the  correlation coefficient  measures the degree of correlation between X and Y:

    =    =

      = [

    −� 

    −� ] (31)

     

    It is important to note that: 1 ≤ ≤ 1 Example 12

    Let =  +   find 2  when  X  and Y  are uncorrelatedSolution:

    9 Joint Characteristic functions

    •  The joint characteristic function of two random variables is defined by:

    ∅,(1,2)=+ = ∫ ∫   −   ,(,)−   (32) 1 and 2 are real numbers.• 

    By setting 1 = 0  2 = 0, we obtain the marginal characteristic function:∅(1) = ∅,(1, 0) 

    ∅(2) = ∅,(0,2)  (33)

    •  The joint moments are obtained as :

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    24/25

    CEN 343 Chapter 3: Multiple random variables

    24

    = ()+   ∅,(,)    | =0,=0  (34)

    Example 1Let us consider the joint characteristic function:  ∅ ,(,) = −−  Find E [ X ] and E [Y ]

    Are X  and Y  uncorrelated?

    Solution:

    For =  = , the joint characteristic function of: Z=X+Y is:

  • 8/19/2019 Chapter 3- Multiple Random Variables-Updated

    25/25

    CEN 343 Chapter 3: Multiple random variables

    25

    Problem