chapter 06 compression slides 091806chapter 06 compression.pdftest time test pins why can we...

70
EE141 1 VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 1 Chapter 6 Chapter 6 Test Compression Test Compression

Upload: others

Post on 23-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

1

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 1

Chapter 6Chapter 6

Test CompressionTest Compression

Page 2: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

2

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 2

What is this chapter about?What is this chapter about?

� Introduce the basic concepts of test data

compression

� Focus on stimulus compression and response

compaction techniques

� Present and discuss commercial tools on test

compression

Page 3: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

3

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 3

Test CompressionTest Compression

� Introduction

� Test Stimulus Compression

� Test Response Compaction

� Industry Practices

� Concluding Remarks

Page 4: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

4

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 4

IntroductionIntroduction

� Why do we need test compression?

� Test data volume

� Test time

� Test pins

� Why can we compress test data?

� Deterministic test vector has “don’t care” (X’s)

Page 5: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

5

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 5

(Source: Blyler, Wireless System Design, 2001)

1 2 4 8 16 32 640

10

20

30

40

50

60

70

Gate count (Mg)

Vo

lum

e o

f test d

ata

(Gb)

Test data volume increases with circuit size

Test Test ddata ata vvolume olume v.sv.s. . ggate ate ccountount

Page 6: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

6

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 6

Test compression categoriesTest compression categories

� Test Stimulus Compression� Code-based schemes

� Linear-decompression-based schemes

� Broadcast-scan-based schemes

� Test Response Compaction� Space compaction

� Time compaction

� Mixed time and space compaction

Page 7: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

7

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 7

Architecture for test compressionArchitecture for test compression

Core

De

co

mp

resso

r

Co

mp

acto

rStimulus Response

Compacted Response

Compressed Stimulus

Low-Cost

ATE

Page 8: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

8

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 8

Test Test stimulusstimulus compressioncompression

� Code-based schemes

� Linear-decompression-based schemes

� Broadcast-scan-based schemes

Page 9: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

9

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 9

Test stimulus compressionTest stimulus compression

� Code-based schemes

� Dictionary code (fixed-to-fixed)

� Huffman code (fixed-to-variable)

� Run-length code (variable-to-fixed)

� Golomb code (variable-to-variable)

Page 10: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

10

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 10

CodeCode--based schemesbased schemes

� Dictionary code (fixed-to-fixed)

Page 11: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

11

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 11

CodeCode--based schemesbased schemes

� Huffman code (fixed-to-variable)

Page 12: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

12

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 12

CodeCode--based schemesbased schemes

� Huffman code (fixed-to-variable)

Page 13: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

13

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 13

CodeCode--based schemesbased schemes

� Run-length code (variable-to-fixed)

Page 14: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

14

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 14

CodeCode--based schemesbased schemes

� Golomb code (variable-to-variable)

Page 15: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

15

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 15

CodeCode--based schemesbased schemes

� Golomb code (variable-to-variable)

Page 16: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

16

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 16

Test stimulus compressionTest stimulus compression

� Linear-decompression-based schemes

� Combinational linear decompressors

� Fixed-length sequential linear decompressors

� Variable-length sequential linear decompressors

� Combined linear and nonlinear decompressors

Page 17: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

17

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 17

LinearLinear--decompressiondecompression--based schemesbased schemes

Page 18: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

18

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 18

LinearLinear--decompressiondecompression--based schemesbased schemes

Page 19: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

19

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 19

LinearLinear--decompressiondecompression--based schemesbased schemes

Page 20: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

20

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 20

LinearLinear--decompressiondecompression--based schemesbased schemes

� Combinational linear decompressors

XOR

NetworkXOR Network

MISR

Page 21: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

21

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 21

s1 s2 s3

o1 o2 o3 o4 o5

XOR XOR nnetwork: a 3etwork: a 3--toto--5 5 eexamplexample

Page 22: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

22

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 22

LinearLinear--decompressiondecompression--based schemesbased schemes

� Fixed-length sequential linear decompressors

Page 23: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

23

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 23

LinearLinear--decompressiondecompression--based schemesbased schemes

� Variable-length sequential linear decompressors

� Can vary the number of free variables

� Better encoding efficiency

� More control logic and control information

Page 24: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

24

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 24

LinearLinear--decompressiondecompression--based schemesbased schemes

� Combined linear and nonlinear decompressors

� Specified bits tend to be highly correlated

� Combine linear and nonlinear decompression together can achieve greater compression than either alone

Page 25: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

25

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 25

Test stimulus compressionTest stimulus compression

� Broadcast-scan-based schemes

� Broadcast scan

� Illinois scan

� Multiple-input broadcast scan

� Reconfigurable broadcast scan

� Virtual scan

Page 26: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

26

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 26

BroadcastBroadcast--scanscan--based schemesbased schemes

� Broadcast scan

Page 27: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

27

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 27

Generate patterns for broadcast scan Generate patterns for broadcast scan

� Force ATPG tool to generate patterns for broadcast scan

Page 28: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

28

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 28

Broadcast scan for a pipelined circuitBroadcast scan for a pipelined circuit

� Broadcast scan for a pipelined circuit

Page 29: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

29

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 29

BroadcastBroadcast--scanscan--based schemesbased schemes

� Illinois scan architecture

(a) Broadcast mode

(b) Serial chain mode

Page 30: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

30

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 30

BroadcastBroadcast--scanscan--based schemesbased schemes

� Reconfigurable broadcast scan

� Reduce the number of channels that are required

� Static reconfiguration

– The reconfiguration can only be done when a new pattern is to be applied

� Dynamic reconfiguration

– The configuration can be changed while scanning in a pattern

Page 31: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

31

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 31

BroadcastBroadcast--scanscan--based schemesbased schemes

� First configuration is: 1->{2,3,6}, 2->{7}, 3->{5,8}, 4->{1,4}

� Other configuration is: 1->{1,6}, 2->{2,4}, 3->{3,5,7,8}

Page 32: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

32

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 32

BroadcastBroadcast--scanscan--based schemesbased schemes

� Block diagram of MUX network

Page 33: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

33

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 33

BroadcastBroadcast--scanscan--based schemesbased schemes

� Virtual scan

� Pure MUX and XOR networks are allowed

� No need to solve linear equations

� Dynamic compaction can be effectively utilized during the ATPG process

� Very little or no fault coverage loss

Page 34: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

34

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 34

Test Test responseresponse compactioncompaction

� Space compaction

� Time compaction

� Mixed time and space compaction

Page 35: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

35

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 35

Test Test responseresponse compactioncompaction

Page 36: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

36

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 36

Taxonomy of various response compaction schemesTaxonomy of various response compaction schemes

√√√Scalable Selector [Wohl 2004]

√√√√Compactor for SA [Wohl 2001]

√√√i-Compact [Patel 2003]

√√√√Block Compactor [Wang 2003]

√√√√OPMISR [Barnhart 2002]

√√√√Convolutional Compactor [Rajski 2005]

√√√√q-Compactor [Han 2003]

√√√X-Compact [Mitra 2004]

√√√√Enhanced Parity Tree [Sinanoglu 2003]

√√√Parity Tree [Karpovsky 1987]

√√√Zero-aliasing Compactor

[Chakrabarty 1998] [Pouya 1998]

NonlinearityLinearityCFICFSTimeSpace

IIIIIICompaction Schemes

Page 37: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

37

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 37

Test Test responseresponse compactioncompaction

� Space compaction

� Zero-aliasing linear compaction

� X-compact

� X-blocking

� X-masking

� X-impact

Page 38: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

38

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 38

Space compactionSpace compaction

� Zero-aliasing linear compaction

Page 39: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

39

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 39

An example of response graphAn example of response graph

Page 40: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

40

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 40

Space compactionSpace compaction

� X-compact

� X-tolerant response compaction technique

� X-compact matrix

� Error masking

Page 41: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

41

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 41

Space compactionSpace compaction

� X-compact

Page 42: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

42

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 42

Space compactionSpace compaction

� X-compactor with 8 inputs and 5 outputs

Page 43: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

43

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 43

XX--compact Matrixcompact Matrix

S=

SC1

SC2

SC3

SC4

SC5

SC6

SC7

SC8

O=

O1

O2

O3

O4

O5

M X S = OT

Page 44: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

44

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 44

Space compactionSpace compaction

� X-blocking (or X-bounding)

� X’s can be blocked before reaching the response compactor

� Can ensure that no X’s will be observed

� May result in fault coverage loss

� Add area overhead and may impact delay

Page 45: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

45

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 45

Space compactionSpace compaction

� Illustration of the x-blocking scheme

Page 46: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

46

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 46

Space compactionSpace compaction

� X-masking

� X’s can be masked off right before the response compactor

� Mask data is required to indicate when the

masking should take place

� Mask date can be compressed

– Possible compression techniques are weighted pseudo-random LFSR reseeding or run-length encoding

Page 47: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

47

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 47

Space compactionSpace compaction

� An example of X-masking circuit

Page 48: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

48

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 48

Space compactionSpace compaction

� X-impact

� Simply use ATPG to algorithmically handle the impact of residual x’s on the space compactor

� Without adding any extra circuitry

Page 49: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

49

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 49

Space compactionSpace compaction

� Handling of X-impact

Page 50: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

50

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 50

Space compactionSpace compaction

� Handling of aliasing

Page 51: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

51

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 51

Test Test responseresponse compactioncompaction

� Time compaction

� A time compactor uses sequential logic to compact test responses

� MISR is most widely adopted

� n-stage MISR can be described by specifying a

characteristic polynomial of degree n

Page 52: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

52

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 52

MultipleMultiple--input signature register (MISR)input signature register (MISR)

Page 53: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

53

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 53

Test Test responseresponse compactioncompaction

� Mixed time and space compaction

Page 54: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

54

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 54

Industry practicesIndustry practices

� OPMISR+

� Embedded Deterministic Test

� Virtual Scan and UltraScan

� Adaptive Scan

� ETCompression

Page 55: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

55

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 55

Industry solutions categoriesIndustry solutions categories

� Linear-decompression-based schemes

� Two steps

– ETCompression, LogicVision

– TestKompress, Mentor Graphics

– SOCBIST, Synopsys

� Broadcast-scan-based schemes

� Single step

– SPMISR+, Cadence

– VirtualScan and UltraScan, SynTest

– DFT MAX, Synopsys

Page 56: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

56

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 56

Industry practicesIndustry practices

� OPMISR+

� Cadence

� Roots in IBM ‘s logic BIST and ATPG technology

Page 57: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

57

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 57

General scan architecture for OPMISR+ General scan architecture for OPMISR+

Page 58: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

58

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 58

Industry practicesIndustry practices

� Embedded Deterministic Test (TestKompress)

� Mentor Graphics

� First commercially available on-chip test

compression product

Page 59: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

59

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 59

EDT (EDT (TestKompressionTestKompression) architecture) architecture

Page 60: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

60

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 60

TestKompressTestKompress stimuli compressionstimuli compression

Page 61: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

61

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 61

TestKompressTestKompress response compactionresponse compaction

Page 62: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

62

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 62

Industry practicesIndustry practices

� Virtual Scan and UltraScan

� SynTest

� First commercial product based on the broadcast

scan scheme using combinational logic for pattern

decompression

Page 63: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

63

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 63

VirtualScanVirtualScan architecturearchitecture

Page 64: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

64

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 64

UltraScanUltraScan architecturearchitecture

Page 65: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

65

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 65

Industry practicesIndustry practices

� Adaptive Scan

� Synopsys

� Designed to be the next generation scan

architecture

Page 66: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

66

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 66

Adaptive scan architectureAdaptive scan architecture

Page 67: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

67

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 67

Industry practicesIndustry practices

� ETCompression

� LogicVision

� Built upon embedded logic test (ELT) technology

Page 68: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

68

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 68

ETCompressionETCompression architecturearchitecture

Page 69: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

69

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 69

Summary of industry practicesSummary of industry practices

MISR: multiple-input signature register

MUX: multiplexers

PRPG: pseudo-random pattern generator

TDDM: time-division demultiplexer

TDM: time-division multiplexers

XOR: exclusive-OR

Page 70: Chapter 06 Compression slides 091806Chapter 06 Compression.pdfTest time Test pins Why can we compress test data? Deterministic test vector has “don’t care” (X’s) EE141 5

EE141

70

VLSI Test Principles and Architectures Ch. 6 - Test Compression – P. 70

� Test compression is

� An effective method for reducing test data volume

and test application time with relatively small cost

� An effective test structure for embedded hard

cores

� Easy to implement and capable of producing

high-quality tests

� Successfully as part of design flow

� Need to unify different compression

architectures

Concluding remarksConcluding remarks