centrifugal liquid chillers - york

38
MODEL YK (STYLE H) R-134a WITH OPTIVIEW TM CONTROL CENTER FOR ELECTRO-MECHANICAL STARTER, SOLID STATE STARTER AND VARIABLE SPEED DRIVE CENTRIFUGAL LIQUID CHILLERS OPERATIONS AND MAINTENANCE New Release Form 160.76-O1 (615) LD15222 Issue Date: June 15, 2015

Upload: others

Post on 18-Dec-2021

36 views

Category:

Documents


0 download

TRANSCRIPT

MODEL YK (STYLE H) R-134a

WITH OPTIVIEWTM CONTROL CENTER FOR ELECTRO-MECHANICAL STARTER,

SOLID STATE STARTER AND VARIABLE SPEED DRIVE

CENTRIFugAL LIquID CHILLERS

OPERATIONS AND MAINTENANCE New Release Form 160.76-O1 (615)

LD15222

Issue Date: June 15, 2015

JOHNSON CONTROLS2

FORM 160.76-O1 ISSUE DATE: 6/15/2015

This equipment is a relatively complicated apparatus. During rigging, installation, operation, maintenance, or service, individuals may be exposed to certain com-ponents or conditions including, but not limited to: heavy objects, refrigerants, materials under pressure, rotating components, and both high and low voltage. Each of these items has the potential, if misused or handled improperly, to cause bodily injury or death. It is the obligation and responsibility of rigging, instal-lation, and operating/service personnel to identify and recognize these inherent hazards, protect themselves, and proceed safely in completing their tasks. Failure to comply with any of these requirements could result in serious damage to the equipment and the property in

IMPORTANT!READ BEFORE PROCEEDING!

gENERAL SAFETY guIDELINES

which it is situated, as well as severe personal injury or death to themselves and people at the site.

This document is intended for use by owner-authorized rigging, installation, and operating/service personnel. It is expected that these individuals possess independent training that will enable them to perform their assigned tasks properly and safely. It is essential that, prior to performing any task on this equipment, this individual shall have read and understood the on-product labels, this document and any referenced materials. This in-dividual shall also be familiar with and comply with all applicable industry and governmental standards and regulations pertaining to the task in question.

SAFETY SYMBOLS

The following symbols are used in this document to alert the reader to specific situations:

Indicates a possible hazardous situation which will result in death or serious injury if proper care is not taken.

Indicates a potentially hazardous situa-tion which will result in possible injuries or damage to equipment if proper care is not taken.

Identifies a hazard which could lead to damage to the machine, damage to other equipment and/or environmental pollu-tion if proper care is not taken or instruc-tions and are not followed.

Highlights additional information useful to the technician in completing the work being performed properly.

External wiring, unless specified as an optional connection in the manufacturer’s product line, is not to be connected inside the control cabinet. Devices such as relays, switches, transducers and controls and any external wiring must not be installed inside the micro panel. All wiring must be in accor-dance with Johnson Controls’ published specifications and must be performed only by a qualified electrician. Johnson Controls will NOT be responsible for damage/problems resulting from improper connections to the controls or application of improper control signals. Failure to follow this warn-ing will void the manufacturer’s warranty and cause serious damage to property or personal injury.

JOHNSON CONTROLS 3

FORM 160.76-O1 ISSUE DATE: 6/15/2015

ASSOCIATED LITERATuRE

MANuAL DESCRIPTION FORM NuMBER

Variable Speed Drive – Operation 160.00-O1

Solid State Starter – Operation and Maintenance 160.00-O2

Floor Mounted MV SSS – Operation 160.00-O5

Unit Mounted MV SSS – Operation 160.00-O7

Installation – Unit 160.76-N1

Optiview™ Control Center – Operation and Maintenance 160.76-O2

Wiring Diagram – Field Connections for YK Chiller (Style H, Q3-Q7) with OptiView Control Center and Unit-mounted SSS or remote medium Voltage SSS, Medium Voltage VSD, or Medium Voltage EMS

160.75-PW1

Wiring Diagram – Field Connections for YK Chiller (Style H) OptiView Control Center with Remote Medium Voltage SSS

160.75-PW2

Wiring Diagram – Field Connections for YK Chiller (Style H) OptiView Control Center with Remote Medium Voltage VSD

160.75-PW3

Wiring Diagram – Field Control Modifications for YK Chiller (Style H) 160.75-PW4

Wiring Diagram – YK Chiller (Style H) OptiView Control Center and Electro-Mechanical Starter 160.75-PW5

Wiring Diagram – YK Chiller (Style H) OptiView Control Center and SSS W/Modbus, LV VSD W/Modbus 160.75-PW6

Wiring Diagram – Field Connections Model YK Chillers (Style H, Q3-Q7) with Low Voltage VSD 160.75-PW7

Renewal Parts – Unit 160.76-RP1

Renewal Parts – OptiView Control Center 160.54-RP1

CHANgEABILITY OF THIS DOCuMENT

In complying with Johnson Controls’ policy for con-tinuous product improvement, the information con-tained in this document is subject to change without notice. Johnson Controls makes no commitment to update or provide current information automatically to the manual or product owner. Updated manuals, if applicable, can be obtained by contacting the nearest Johnson Controls Service office or accessing the John-son Controls QuickLIT website at http://cgproducts.johnsoncontrols.com.

It is the responsibility of rigging, lifting, and operating/ service personnel to verify the applicability of these documents to the equipment. If there is any question

regarding the applicability of these documents, rig-ging, lifting, and operating/service personnel should verify whether the equipment has been modified and if current literature is available from the owner of the equipment prior to performing any work on the chiller.

CHANgE BARSRevisions made to this document are indicated with a line along the left or right hand column in the area the revision was made. These revisions are to technical in-formation and any other changes in spelling, grammar or formatting are not included.

JOHNSON CONTROLS4

FORM 160.76-O1 ISSUE DATE: 6/15/2015

NOMENCLATuRE YK 6A 6q q7 – EM H

MOTOR CODEPOWER SUPPLY– for 60 Hz5 for 50 Hz

COMPRESSOR CODE*

CONDENSER CODE*

EVAPORATOR CODE*

MODEL*

STYLE (Design Level)

* Refer to YK Engineering Guide for (Form 160.76-EG1) Shell/Motor/Compressor combinations.

JOHNSON CONTROLS 5

FORM 160.76-O1 ISSUE DATE: 6/15/2015

TABLE OF CONTENTS

SECTION 1 - DESCRIPTION OF SYSTEM AND FuNDAMENTALS OF OPERATION ..........................................7System Operation Description .........................................................................................................................7Capacity Control ...............................................................................................................................................7

SECTION 2 - SYSTEM OPERATINg PROCEDuRES .............................................................................................9Oil Heaters .......................................................................................................................................................9Oil Heater Operation ........................................................................................................................................9Checking The Oil Level In The Oil Reservoir .....................................................................................................................................................9Start-Up Procedure ..........................................................................................................................................9Start-Up ............................................................................................................................................................9Chiller Operation ............................................................................................................................................ 11Condenser Water Temperature Control ............................................................................................................................................................ 11Operating Log Sheet ...................................................................................................................................... 11Operating Inspections ....................................................................................................................................12Need For Maintenance Or Service .................................................................................................................13Stopping The System .....................................................................................................................................13Prolonged Shutdown ......................................................................................................................................13

SECTION 3 - SYSTEM COMPONENTS DESCRIPTION .......................................................................................15General ...........................................................................................................................................................15Compressor ....................................................................................................................................................15Capacity Control .............................................................................................................................................15Compressor Lubrication System ...................................................................................................................15Oil Pump .........................................................................................................................................................15Oil Heater .......................................................................................................................................................19Motor Driveline ...............................................................................................................................................19Heat Exchangers ............................................................................................................................................19Refrigerant Flow Control ................................................................................................................................19Optional Service Isolation Valves ...................................................................................................................20Optional Hot Gas Bypass ...............................................................................................................................20Optiview Control Center .................................................................................................................................20Solid State Starter (Optional) .........................................................................................................................20Variable Speed Drive (Optional) .....................................................................................................................20

SECTION 4 - OPERATIONAL MAINTENANCE .....................................................................................................21Oil Return System ..........................................................................................................................................21Changing The Dehydrator ..............................................................................................................................21The Oil Charge ...............................................................................................................................................22Oil Charging Procedure ..................................................................................................................................22

SECTION 5 - TROuBLESHOOTINg ......................................................................................................................23

SECTION 6 - MAINTENANCE ................................................................................................................................25Renewal Parts ................................................................................................................................................25Checking System For Leaks ..........................................................................................................................25Conducting R-134a Pressure Test..................................................................................................................25

JOHNSON CONTROLS6

FORM 160.76-O1 ISSUE DATE: 6/15/2015

LIST OF FIguRES

LIST OF TABLES

TABLE OF CONTENTS (CONT'D)

FIguRE 1 - Compressor Prerotation Vanes ..............................................................................................................7FIguRE 2 - Refrigerant Flow-Thru Chiller (Falling Film Evaporator) ........................................................................8FIguRE 3 - Oil Level Indicator .................................................................................................................................9FIguRE 4 - Chiller Starting Sequence And Shutdown Sequence (Em Starter And Solid State Starter) ................10FIguRE 5 - Chiller Starting Sequence And Shutdown Sequence (Variable Speed Drive) .....................................10FIguRE 6 - Liquid Chiller Log Sheets .....................................................................................................................12FIguRE 7 - System Components Front View .........................................................................................................16FIguRE 8 - System Components Rear View ..........................................................................................................17FIguRE 9 - Schematic Drawing – (Yk) Compressor Lubrication System ...............................................................18FIguRE 10 - Oil Return System..............................................................................................................................21FIguRE 11 - Charging Oil Reservoir With Oil .........................................................................................................22FIguRE 12 - Evacuation Of Chiller .........................................................................................................................25FIguRE 13 - Saturation Curve ................................................................................................................................27FIguRE 14 - Diagram, Megging Motor Windings ...................................................................................................28FIguRE 15 - Motor Starter Temperature And Insulation Resistances ....................................................................29

TABLE 1 - Operation Analysis Chart .......................................................................................................................23TABLE 2 - System Pressures .................................................................................................................................26TABLE 3 - SI Metric Conversion .............................................................................................................................37

Vacuum Testing ..............................................................................................................................................26Vacuum Dehydration ......................................................................................................................................27Operation ........................................................................................................................................................27Refrigerant Charging ......................................................................................................................................27Checking The Refrigerant Charge During Unit Shutdown ..............................................................................28Handling Refrigerant For Dismantling And Repairs ........................................................................................28Megging The Motor .........................................................................................................................................28Compressor ....................................................................................................................................................32Electrical Controls ..........................................................................................................................................32

SECTION 7 - PREVENTIVE MAINTENANCE ........................................................................................................33Compressor ....................................................................................................................................................33Compressor Motor ..........................................................................................................................................33Greased Bearings .........................................................................................................................................33Motor Re-lubrication Instruction .....................................................................................................................33Leak Testing ...................................................................................................................................................34Evaporator And Condenser ............................................................................................................................34Oil Return System ..........................................................................................................................................35Electrical Controls ..........................................................................................................................................35Temperature ...................................................................................................................................................37

JOHNSON CONTROLS 7

FORM 160.76-O1 ISSUE DATE: 6/15/2015

1

The refrigerant vapor, which is produced by the boil-ing action in the evaporator, flows to the compressor where the rotating impeller increases its pressure and temperature and discharges it into the condenser. Wa-ter flowing through the condenser tubes absorbs heat from the refrigerant vapor, causing it to condense. The condenser water is supplied to the chiller from an ex-ternal source, usually a cooling tower. The condensed refrigerant drains from the condenser into the liquid return line, where the variable orifice meters the flow of liquid refrigerant to the evaporator to complete the refrigerant circuit.

The major components of a chiller are selected to han-dle the refrigerant, which would be evaporated at full load design conditions. However, most systems will be called upon to deliver full load capacity for only a relatively small part of the time the unit is in operation.

CAPACITY CONTROLThe major components of a chiller are selected for full load capacities, therefore capacity must be controlled to maintain a constant chilled liquid temperature leav-ing the evaporator. Prerotation vanes (PRV), located at the entrance to the compressor impeller, compensate for variation in load (Refer to Figure 1 on Page 7).

The position of these vanes is automatically controlled through a lever arm attached to an electric motor lo-cated outside the compressor housing. The automatic adjustment of the vane position in effect provides the performance of many different compressors to match various load conditions from full load with vanes wide open to minimum load with vanes completely closed.

SECTION 1 - DESCRIPTION OF SYSTEM AND FuNDAMENTALS OF OPERATION

SYSTEM OPERATION DESCRIPTION The YORK Model YK Chiller is commonly applied to large air conditioning systems, but may be used on other applications. The chiller consists of an open motor mounted to a compressor (with integral speed increasing gears), condenser, evaporator and variable flow control.

The chiller is controlled by a modern state of the art Microcomputer Control Center that monitors its opera-tion. The Control Center is programmed by the opera-tor to suit job specifications. Automatic timed start-ups and shutdowns are also programmable to suit night-time, weekends, and holidays. The operating status, temperatures, pressures, and other information perti-nent to operation of the chiller are automatically dis-played and read on a graphic display. Other displays can be observed by pressing the keys as labeled on the Control Center. The chiller with the OptiView Control Center is compatible with an electro-mechanical start-er, YORK Solid State Starter (optional), or Variable Speed Drive (optional).

In operation, a liquid (water or brine to be chilled) flows through the evaporator, where boiling refrigerant absorbs heat from the liquid. The chilled liquid is then piped to fan coil units or other air conditioning terminal units, where it flows through finned coils, absorbing heat from the air. The warmed liquid is then returned to the chiller to complete the chilled liquid circuit.

7619A(D)

FIguRE 1 - COMPRESSOR PREROTATION VANES

JOHNSON CONTROLS8

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 1 - DESCRIPTION OF SYSTEM AND FUNDAMENTALS OF OPERATION

Refrigerant Flow-Thru Chiller (Falling Film Evaporator)

FIguRE 2 - REFRIGERANT FLOW-THRU CHILLER (FALLING FILM EVAPORATOR)Rev. 2 (10-11-2010)Dan [email protected](717) 771-7535

YK Mod GRefrigerant Flow-Thru Cross-Section Diagram

(Falling-Film Evaporator)

LEGEND

High Pressure Vapor

High Pressure Liquid Refrigerant

Low Pressure Liquid Refrigerant

Low Pressure Vapor

COMPRESSOR

EVAPORATOR

DISCHARGE

PRE-ROTATIONVANES

SUCTIONBAFFLE

SUB-COOLER

LIQUID LEVEL

CONDENSER

LIQUID LEVELVALVE

HOT GASBYPASS VALVE

LIQUID LEVEL

SUCTION

OPTIONALISOLATIONVALVE

OPTIONALISOLATIONVALVE

OPTIONAL HOT GASBYPASS LINE

LD00924A

JOHNSON CONTROLS 9

FORM 160.76-O1 ISSUE DATE: 6/15/2015

2• If the oil level during operation is in the OVER FULL region of the oil level indicator, oil should be removed from the oil reservoir, This reduces the oil level to the OPERATING RANGE.

• If the oil level during operation is in the LOW OIL region of the oil level indicator, oil should be added to the oil reservoir. (Refer to Oil Charging Procedure on Page 22.)

Comply with EPA and local regulations when removing or disposing of refrigera-tion system oil!

START-uP PROCEDuRE

Pre-StartingPrior to starting the chiller, observe the Optiview™ Control Center – Operation and Maintenance (Form 160.54-O1). Make sure the display reads SYSTEM READY TO START.

Vent any air from the chiller waterboxes prior to starting the water pumps. Failure to do so will result in pass baffle damage.

START-uP1. If the chilled water pump is manually operated,

start the pump. The Control Center will not al-lowthechillertostartunlesschilledliquidflowisestablished through the unit. If the chilled liquid pump is wired to the Microcomputer Control Cen-ter the pump will automatically start, therefore, this step is not necessary.

2. To start the chiller, press the COMPRESSOR START switch. This switch will automatically spring return to the RUN position. (If the unit was previously started, press the STOP/RESET side of the COMPRESSOR switch and then press the START side of the switch to start the chill-er.) When the start switch is energized, the Con-trol Center is placed in an operating mode and any malfunction will be noted by messages on a graphic display.

SECTION 2 - SYSTEM OPERATINg PROCEDuRES

OIL HEATERSIf the oil heater is de-energized during a shutdown pe-riod, it must be energized for 12 hours prior to starting compressor, or remove all oil and recharge compres-sor with new oil. (Refer to Oil Charging Procedure on Page 22.)

OIL HEATER OPERATIONThe oil heater operation is controlled by the OptiV-iew™ Control Center. The heater is turned on and off to maintain the oil temperature differential to a value 50°F (27.8°C) above the condenser saturation tem-perature. This target value is maintained by the control panel.

If the target value is greater than 160°F (71°C), the tar-get defaults to 160°F (71°C). If the target value is less than 110°F (43.3°C), it defaults to 110°F (43.3°C).

To prevent overheating of the oil in the event of a con-trol center component failure, the oil heater thermostat (1HTR) is set to open at 180°F (82°C).

CHECKINg THE OIL LEVEL IN THE OIL RESERVOIRProper operating oil level – During operation, the oil level should fall to the OPERATING RANGE identified on the vertical oil level indicator label (Refer to Figure 3 on Page 9).

FIguRE 3 - OIL LEVEL INDICATOR

LD08647

JOHNSON CONTROLS10

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 2 - SYSTEM OPERATING PROCEDURES

LD06502

FIguRE 4 - CHILLER STARTING SEQUENCE AND SHUTDOWN SEQUENCE (EM STARTER AND SOLID STATE STARTER)

0 10 13 45 50 110 (0.17) (0.22) (0.75) (0.83) (1.83)START

VANESSTART

TOCLOSE

VANESCLOSED

1800(30)

RESTART

FLOWBYPASSSWITCH

MAN. OILPUMPDISABLED

AUTO ZEROING DIFFERENTIALOIL PRESSURE TRANSDUCERS

ENERGIZE (OPEN) OIL RETURN SOLENOID & LIQUID LINESOLENOID (J COMPRESSOR ONLY)

** VANES CLOSING - TIMEDEPENDENT ON INITIAL VANE POSITION

OIL PRESSURE CHECK

OIL PUMP ON

150 SEC.(2.5 MIN)

"SYSTEMCOASTDOWN"

"SYSTEMSHUTDOWN"

TIME IN SECONDS (MINUTES)

DISPLAYMESSAGE

"SYSTEM RUN"

"SYSTEM PRELUBE"

** "VANES CLOSINGBEFORE

SHUTDOWN"

** Not for all shutdowns. Refer to “Display Messages” in manual Optiview™ Control Center – Operation and Maintenance (Form 160.54-O1).

FIguRE 5 - CHILLER STARTING SEQUENCE AND SHUTDOWN SEQUENCE (VARIABLE SPEED DRIVE)

0 10 13 45 50 110 (0.17) (0.22) (0.75) (0.83) (1.83)START

VANESSTART

TOCLOSE

VANESCLOSED

FLOWBYPASSSWITCH

MAN. OILPUMPDISABLED

AUTO ZEROING DIFFERENTIALOIL PRESSURE TRANSDUCERS

ENERGIZE (OPEN) OIL RETURN SOLENOID & LIQUID LINESOLENOID (J COMPRESSORS ONLY)

** VANES CLOSING - TIMEDEPENDENT ON INITIAL VANE POSITION

OIL PRESSURE CHECK

OIL PUMP ON

150 SEC.(2.5 MIN)

"SYSTEMCOASTDOWN"

"SYSTEMSHUTDOWN"

TIME IN SECONDS (MINUTES)

DISPLAYMESSAGE

600(10)

RESTART(ONLY AFTER FIFTH

SUCCESSIVE RESTART)

RESTART(IF FIVE SUCCESSIVERESTARTS HAVE NOT

OCCURED)

"SYSTEM RUN"

"SYSTEM PRELUBE"

** "VANES CLOSINGBEFORE

SHUTDOWN"

** Not for all shutdowns. Refer to “Display Messages” in manual Optiview™ Control Center – Operation and Maintenance (Form 160.54-O1).

LD06504

JOHNSON CONTROLS 11

SECTION 2 - SYSTEM OPERATING PROCEDURESFORM 160.76-O1 ISSUE DATE: 6/15/2015

2

For display messages and information pertaining to the operation refer to Optiview™ Control Center – Opera-tion and Maintenance (Form 160.54-O1).

Any malfunctions which occur during STOP/RESET are also displayed.

CHILLER OPERATIONThe unit capacity will vary to maintain the leaving CHILLED LIQUID TEMPERATURE setpoint by the Pre-rotation Vanes which are modulated by an actua-tor under the control of the Microprocessor Board. The vane control routine employs proportional plus deriva-tive (rate) control action. A drop in chilled liquid tem-perature will cause the actuator to close the Prerotation Vanes to decrease chiller capacity. When the chilled liquid temperature rises, the actuator will open the Pre-rotation Vanes to increase the capacity of the chiller.

However, the current draw (amperes) by the compres-sor motor is also limited to FLA setpoint by the micro-processor.

If the load continues to decrease, after the Prerotation Vanes are entirely closed, the chiller will be shut down by the Leaving Chilled Liquid – Low Temperature Control.

The coolant temperature inside any JCI-supplied liq-uid-cooled motor starter must be maintained above the dewpoint temperature in the equipment room to pre-vent condensing water vapor inside the starter cabinet. Therefore, an additional temperature-controlled throttle valve is needed in the flow path for the starter heat ex-changer to regulate cooling above the equipment room dewpoint for applications using cooling sources other than evaporative air-exchange methods, such as wells, bodies of water, and chilled water. The temperature control valve should be the type to open on increasing drive coolant temperature, fail-closed, and set for a tem-perature above dewpoint. It can be requested as factory- supplied on a chiller order by special quotation.

CONDENSER WATER TEMPERATuRE CONTROLThe YORK chiller is designed to use less power by tak-ing advantage of lower than design temperatures that are naturally produced by cooling towers throughout the operating year. Exact control of condenser water

such as a cooling tower bypass, is not necessary for most installations. The minimum entering condenser water temperature for full and part load conditions is specified in the chiller engineering guide.

where:

Min. ECWT = LCWT – C RANGE + 5ºF + 12 ( )

Min. ECWT = LCWT – C RANGE + 2.8ºC + 6.6 ( )

ECWT = Entering Condensing Water Temperature

LCWT = Leaving Chilled Water Temperature

C Range = Condensing water temperature range at the given load condition.

% Load100

% Load100

At start-up, the entering condenser water temperature may be as much as 25°F (14°C) colder than the stand-by return chilled water temperature. Cooling tower fan cycling will normally provide adequate control of the entering condenser water temperature on most instal-lations.

Heat recovery chillers and chillers using optional head pressure control would use a signal provided by the microprocessor to control main condenser bundle heat rejection or pressure, respectively.

OPERATINg LOg SHEETA permanent daily record of system operating condi-tions (temperatures and pressures) recorded at regular intervals throughout each 24 hour operating period should be kept.

An optional status printer is available for this purpose or Figure 6 on Page 12 shows a log sheet used by Johnson Controls Personnel for recording test data on chiller systems. It is available from the factory in pads of 50 sheets each under Form 160.44-F7 and may be obtained through the nearest Johnson Controls office. Automatic data logging is possible by connecting the optional printer and programming the DATA LOG-GER function.

An accurate record of readings serves as a valuable ref-erence for operating the system. Readings taken when a system is newly installed will establish normal condi-tions with which to compare later readings.

For example, an increase in condenser approach tem-perature (condenser temperature minus leaving con-denser water temperature) may be an indication of dirty condenser tubes.

JOHNSON CONTROLS12

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 2 - SYSTEM OPERATING PROCEDURES

OPERATINg INSPECTIONSBy following a regular inspection using the display readings of the Microcomputer Control Center, and maintenance procedure, the operator will avoid serious operating difficulty. The following list of inspections and procedures should be used as a guide.

Daily1. Check OptiView™ Control Center displays.

2. If the compressor is in operation, check the bear-ing oil pressure on the SYSTEM Screen. Also check the oil level in the oil reservoir. Operating oil level should be operating range of oil indicator. Drain or add oil if necessary.

3. Check entering and leaving condenser water pres-sure and temperatures for comparison with job design conditions. Condenser water temperatures can be checked on the SYSTEM Screen.

4. Check the entering and leaving chilled liquid tem-peratures and evaporator pressure for compari-son with job design conditions on the SYSTEM Screen.

5. Check the condenser saturation temperature (based upon condenser pressure sensed by the condenser transducer) on the SYSTEM Screen.

6. Check the compressor discharge temperature on the SYSTEM Screen. During normal operation discharge temperature should not exceed 220°F (104°C).

7. Check the compressor motor current on the SYSTEM Screen.

8. Check for any signs of dirty or fouled condenser tubes. (The temperature difference between wa-ter leaving condenser and saturated condensing temperature should not exceed the difference re-corded for a new unit by more than 4°F (2.2°C)).

Weekly1. Check the refrigerant charge. (Refer to Checking

The Refrigerant Charge During Unit Shutdown on Page 28.)

Monthly1. Leak check the entire chiller.

quarterly1. Perform chemical analysis of oil.

Semi-Annually (or more often as required)1. Changeandinspectcompressoroilfilterelement.

2. Oil return system.

a. Change dehydrator.

b. Check nozzle of eductor for foreign particles.

3. Check controls and safety cutouts.

FIguRE 6 - LIQUID CHILLER LOG SHEETS

*NOTE: These items can be printed by an electronic printer connected to the Microboard and pressing the PRINT key on the Keypad, or automatically using the Data Logger feature.

LD00467

23889A

JOHNSON CONTROLS 13

SECTION 2 - SYSTEM OPERATING PROCEDURESFORM 160.76-O1 ISSUE DATE: 6/15/2015

2

Annually (more often if necessary)1. Drain and replace the oil in the compressor oil

sump. (Refer to Oil Charging Procedure on Page 22.)

2. Evaporator and Condenser.

a. Inspect and clean water strainers.

b. Inspect and clean tubes as required.

c. Inspect end sheets.

3. Compressor Drive Motor (See motor manufactur-ers maintenance and service instruction supplied with unit)

a. Clean air passages and windings per manu-facturers instructions.

b. Meg motor windings – Refer to Figure 14 on Page 28 for details.

c. Lubricate per motor manufacturer recom-mendations.

4. Inspect and service electrical components as neces-sary.

5. Perform refrigerant analysis.If quarterly inspection indicates oil is fine, replacing the oil is not necessary

NEED FOR MAINTENANCE OR SERVICEIf the system is malfunctioning in any manner or the unit is stopped by one of the safety controls, consult the Operation Analysis Chart, Table 1 on Page 23 of this manual. After consulting this chart, if you are un-able to make the proper repairs or adjustments to start the compressor or the particular trouble continues to hinder the performance of the unit, please call the near-est Johnson Controls District Office. Failure to report constant troubles could damage the unit and increase the cost of repairs.

STOPPINg THE SYSTEMThe Optiview™ Control Center can be programmed to start and stop automatically (maximum, once each day) whenever desired. Refer to the Optiview™ Control Center – Operation and Maintenance (Form 160.54-O1). To stop the chiller, proceed as follows:

1. Push the soft shutdown key on the homescreen on the OptiView panel or rapid stop with the COM-PRESSOR STOP/RESET switch. The compressor will stop automatically. The oil pump will contin-ue to run for coastdown period. The oil pump will then stop automatically.

2. Stop the chilled water pump (if not wired into the Microcomputer Control Center, in which case it will shut off automatically simultaneously with the oil pump.) (The actual water pump con-tact operation is dependent upon the position of Microboard jumper J54.)

3. Open the switch to the cooling tower fan motors, if used.

4. The compressor sump oil heater is energized when the unit is stopped.

PROLONgED SHuTDOWNIf the chiller is to be shut down for an extended period of time (for example, over the winter season), the fol-lowing paragraphs outline the procedure to be followed.

1. Test all system joints for refrigerant leaks with a leak detector. If any leaks are found, they should be repaired before allowing the system to stand for a long period of time.

During long idle periods, the tightness of the sys-tem should be checked periodically.

2. If freezing temperatures are encountered while the system is idle, carefully drain the cooling wa-ter from the cooling tower, condenser, condenser pump, and the chilled water system-chilled water pump and coils.

Open the drains on the evaporator and condenser liquid heads to assure complete drainage. (If a Variable Speed Drive, drain its cooling system. If Solid State Starter equipped drain liquid from starter cooling loop.)

3. If freezing temperatures are encountered for peri-ods longer than a few days, the refrigerant should be recovered to containers to prevent leakage from O-ring joints.

4. On the SETUP Screen, disable the clock. This conserves the battery.

5. Open the main disconnect switches to the com-pressor motor, condenser water pump and the chilled water pump. Open the 115 volt circuit to the Control Center.

JOHNSON CONTROLS14

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 2 - SYSTEM OPERATING PROCEDURES

THIS PAGE INTENTIONALLY LEFT BLANK

JOHNSON CONTROLS 15

FORM 160.76-O1 ISSUE DATE: 6/15/2015

3

SECTION 3 - SYSTEM COMPONENTS DESCRIPTION

gENERALThe YORK Model YK Centrifugal Liquid Chiller is completely factory-packaged including evaporator, condenser, compressor, motor, lubrication system, OptiView Control Center, and all interconnecting unit piping and wiring.

COMPRESSORThe compressor is a single-stage centrifugal type pow-ered by an open-drive electric motor.

The rotor assembly consists of a heat-treated alloy steel drive shaft and impeller shaft with a cast aluminum, fully shrouded impeller. The impeller is designed for balanced thrust and is dynamically balanced and over-speed tested. The inserted type journal and thrust bear-ings are fabricated of aluminum alloy. Single helical gears with crowned teeth are designed so that more than one tooth is in contact at all times. Gears are inte-grally assembled in the compressor rotor support and are film lubricated. Each gear is individually mounted in its own journal and thrust bearings.

The open-drive compressor shaft seal is a double bel-lows cartridge style with ceramic internal and atmo-spheric seal faces. The seal is oil-flooded at all times and is pressure-lubricated during operation.

CAPACITY CONTROLPrerotation vanes (PRV) modulate chiller capacity from 100% to as low as 15% of design for normal air conditioning applications. Operation is by an external, electric PRV actuator which automatically controls the vane position to maintain a constant leaving chilled liq-uid temperature.

COMPRESSOR LuBRICATION SYSTEM The chiller lubrication system consists of the oil pump, oil filter, oil cooler and all interconnecting oil piping and passages. There are main points within the com-pressor which must be supplied with forced lubrication as follows:

1. Compressor Drive Shaft (Low Speed)

a. Shaft seal.

b. Front and rear journal bearings – one on each side of driving gear.

c. Low speed thrust bearing (forward and re-verse).

2. Compressor Driven Shaft (High Speed)

a. Forward and reverse high speed thrust bearing.

b. Two journal bearings.

3. Speed Increasing Gears

a. Meshing surfaces of drive and pinion gear teeth.

To provide the required amount of oil under the neces-sary pressure to properly lubricate these parts, a motor driven submersible oil pump is located in a remote oil sump.

Upon pressing of the COMPRESSOR START switch on the Control Center, the oil pump is immediately en-ergized. After a 50 second pre-lube period, the com-pressor motor will start. The oil pump will continue to run during the entire operation of the compressor, and for 150 seconds during compressor coastdown.

The submerged oil pump takes suction from the sur-rounding oil and discharges it to the oil cooler where heat is rejected. The oil flows from the oil cooler to the oil filter. The oil leaves the filter and flows to the emergency oil reservoir where it is distributed to the compressor bearings. The oil lubricates the compressor rotating components and is returned to the oil sump.

There is an emergency oil reservoir located at the high-est point in the lubrication system internally in the com-pressor. It provides an oil supply to the various bear-ings and gears in the event of a system shutdown due to power failure. The reservoir, located on the top of the compressor, allows the oil to be distributed through the passages by gravity flow, thus providing necessary lubrication during the compressor coastdown.

OIL PuMPFor normal operation, the oil pump should operate at all times during chiller operation.

On shutdown of the system for any reason, the oil pump operates and continues to run for 150 seconds. The system cannot restart during that time interval.

JOHNSON CONTROLS16

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 3 - SYSTEM COMPONENTS DESCRIPTION

FRONT VIEW

FIguRE 7 - SYSTEM COMPONENTS FRONT VIEW

VARIABLE SPEED DRIVE

EVAPORATOR

COMPRESSOR

SUCTION

RELIEF VALVES

SIGHT GLASS

VARIABLE SPEED OIL PUMP CONTROL BOX

OPTIVIEW CONTROL CENTER

LD15222

JOHNSON CONTROLS 17

SECTION 3 - SYSTEM COMPONENTS DESCRIPTIONFORM 160.76-O1 ISSUE DATE: 6/15/2015

3

3

LD15223

FIguRE 8 - SYSTEM COMPONENTS REAR VIEW

DISCHARGE LINE

COMPRESSOR

OIL PUMP HOUSING

LIQUID LINE

REAR VIEW

MOTOR

OIL FILTER

CONDENSER

JOHNSON CONTROLS18

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 3 - SYSTEM COMPONENTS DESCRIPTION

HOTTHERMISTOR

OILHEATER

ANGLEDRAIN VALVE

OILFILTER

OILSUMP

OILPUMP

SUCTION

SUBMERSIBLEOIL PUMP

WITH 3-PHASE MOTOR

LOW OIL PRESSURE

TRANSDUCER

SIGHTGLASSES

OILCOOLER

OIL TEMP.CONTROL

REFRIG.

THRUSTCOLLAR BEARING

(PRV)INLET

VALVES

BEARING(PINION GEAR

SHAFT)

IMPELLER

H.S.SHAFTSEAL

LOW SPEEDTHRUSTCOVER

LOWSPEED GEAR

LOW SPEED-GEAR REAR

BEARING

DOUBLEBELLOWS

SHAFT SEAL

HIGH SPEEDTHRUST COVER

THRUST COLLAR

MAIN JOURNALAND THRUST

BEARING

HIGH PRESSURE

TRANSDUCER

EMERGENCYOIL RESERVE

COMPRESSOR ROTORSUPPORT SECTION

OIL

FIguRE 9 - SCHEMATIC DRAWING – (YK) COMPRESSOR LUBRICATION SYSTEMLD15200

JOHNSON CONTROLS 19

SECTION 3 - SYSTEM COMPONENTS DESCRIPTIONFORM 160.76-O1 ISSUE DATE: 6/15/2015

3

OIL HEATERDuring long idle periods, the oil in the compressor oil reservoir tends to absorb as much refrigerant as it can hold, depending upon the temperature of the oil and the pressure in the reservoir. As the oil temperature is lowered, the amount of refrigerant absorbed will be increased. If the quantity of refrigerant in the oil be-comes excessive, violent oil foaming will result as the pressure within the system is lowered on starting. This foaming is caused by refrigerant boiling out of the oil as the pressure is lowered. If this foam reaches the oil pump suction, the bearing oil pressure will fluctuate with possible temporary loss of lubrication, causing the oil pressure safety cutout to actuate and stop the sys-tem. Refer to Optiview™ Control Center – Operation and Maintenance (Form 160.54-O1).

MOTOR DRIVELINEThe compressor motor is an open-drip-proof, squir-rel cage, induction type constructed to YORK design specifications. 60 hertz motors operate at 3570 rpm. 50 hertz motors operate at 2975 rpm.

The open motor is provided with a D-flange, cast iron adapter mounted to the compressor and supported by a motor support.

Motor drive shaft is directly connected to the compres-sor shaft with a flexible disc coupling. This coupling has all metal construction with no wearing parts to as-sure long life, and no lubrication requirements to pro-vide low maintenance.

For units utilizing remote Electro-Mechanical starters, a terminal box is provided for field connected conduit. Motor terminals are brought through the motor cas-ing into the terminal box. Jumpers are furnished for three-lead type of starting. Motor terminal lugs are not furnished. Overload/over current transformers are fur-nished with all units.

HEAT ExCHANgERSEvaporator and condenser shells are fabricated from rolled carbon steel plates with fusion welded seams.

Heat exchanger tubes are internally enhanced type.

The evaporator is a shell and tube type with customer process fluid flowing inside the tubes and refrigerant removing heat on the shell side via evaporation. Evap-orator codes 2*, 4*, 6* utilize a hybrid falling film de-sign. It contains a balance of falling film technology to optimize efficiency, minimize refrigerant charge,

and maintain reliable control. A specifically designed spray distributor provides uniform distribution of re-frigerant over the entire length to yield optimum heat transfer. The hybrid falling film evaporator design has suction baffles around the sides and above the falling film section to prevent liquid refrigerant carryover into the compressor.

A 1-1/2" (38 mm) liquid level sight glass is conve-niently located on the side of the shell to aid in deter-mining proper refrigerant charge. The evaporator shell contains a dual refrigerant relief valve arrangement set at 235 psig (16.2 barg) on Q compressor models; or single-relief valve arrangement, if the chiller is sup-plied with optional refrigerant isolation valves. A 1" (25.4 mm) refrigerant charging valve is provided. The condenser is a shell and tube type, with a discharge gas baffle to prevent direct high velocity impingement on the tubes. The baffle is also used to distribute the refrigerant gas flow properly for most efficient heat transfer. An integral sub-cooler is located at the bottom of the condenser shell providing highly effective liquid refrigerant subcooling to provide the highest cycle ef-ficiency. The condenser contains dual refrigerant relief valves set at 235 psig (16.2 barg).

The removable waterboxes are fabricated of steel. The design working pressure is 150 psig (10.3 barg) and the boxes are tested at 225 psig (15.5 barg). Integral steel water baffles are located and welded within the waterbox to provide the required pass arrangements. Stub-out water nozzle connections with ANSI/AWWA C-606 grooves are welded to the waterboxes. These nozzle connections are suitable for ANSI/AWWA C-606 couplings, welding or flanges, and are capped for shipment. Plugged 3/4" (19 mm) drain and vent connections are provided in each waterbox.

REFRIgERANT FLOW CONTROLRefrigerant flow to the evaporator is controlled by a variable orifice.

A level sensor senses the refrigerant level in the con-denser and outputs an analog voltage to the Microboard that represents this level (0% = empty; 100% = full). Under program control, the Microboard modulates a variable orifice to control the condenser refrigerant level to a programmed setpoint. Other setpoints affect the control sensitivity and response. These setpoints must be entered at chiller commissioning by a qualified service technician. Only a qualified service technician may modify these settings.

JOHNSON CONTROLS20

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 3 - SYSTEM COMPONENTS DESCRIPTION

While the chiller is shut down, the orifice will be in the fully open position causing the sensed level to be ap-proximately 0%. When the chiller is started, after the vane motor end switch (VMS) opens when entering SYSTEM RUN, if actual level is less than the level setpoint, a linearly increasing ramp is applied to the lev-el setpoint. This ramp causes the setpoint to go from the initial refrigerant level (approximately 0%) to the pro-grammed setpoint over a programmable period of time.

If the actual level is greater than the setpoint when the VMS opens, there is no pulldown period, it immedi-ately begins to control to the programmed setpoint.

While the chiller is running, the refrigerant level is nor-mally controlled to the level setpoint. However, any-time the vanes fully close (VMS closes), normal level control is terminated, any refrigerant level setpoint in effect is cancelled and the outputs to the level control will be constant open.

OPTIONAL SERVICE ISOLATION VALVESIf your chiller is equipped with optional service iso-lation valves on the discharge and liquid line, these valves must remain open during operation. These valves are used for isolating the refrigerant charge in either the evaporator or condenser to allow service ac-cess to the system. A refrigerant pump-out unit will be required to isolate the refrigerant.

Isolation of the refrigerant in this system must be performed by a qualified service technician.

OPTIONAL HOT gAS BYPASSHot gas bypass is optional and is used to eliminate compressor surge during light load or high head op-eration. The OptiView control panel will automati-cally modulate the hot gas valve open and closed as required. Adjustment of the hot gas control valve must be performed by a qualified service technician follow-ing the Hot Gas Set-up procedure.

Changes in chilled water flow will require re-adjustment of the hot gas control to insure proper operation.

OPTIVIEW CONTROL CENTERThe OptiView Control Center is factory-mounted, wired and tested. The electronic panel automatically controls the operation of the unit in meeting system cooling requirements while minimizing energy usage. For detailed information on the Control Center, refer to SECTION 2 - SYSTEM OPERATING PROCEDURES of this manual.

SOLID STATE STARTER (OPTIONAL)The Solid State Starter is a reduced voltage starter that controls and maintains a constant current flow to the motor during start-up. It is mounted on the chiller. Pow-er and control wiring between the starter and chiller are factory installed. The starter enclosure is NEMA-1 with a hinged access door with lock and key. Electrical lugs for incoming power wiring are provided.

VARIABLE SPEED DRIVE (OPTIONAL)A Variable Speed Drive can be factory packaged with the chiller. It is designed to vary the compressor mo-tor speed and prerotation vane position by controlling the frequency and voltage of the electrical power to the motor. Operational information is contained in the Variable Speed Drive – Operation (Form 160.00-O1). The control logic automatically adjusts motor speed and compressor prerotation vane position for maxi-mum part load efficiency by analyzing information fed to it by sensors located throughout the chiller.

JOHNSON CONTROLS 21

FORM 160.76-O1 ISSUE DATE: 6/15/2015

4

SECTION 4 - OPERATIONAL MAINTENANCE

OIL RETuRN SYSTEMThe oil return system continuously maintains the proper oil level in the compressor oil sump (Refer to Figure 10 on Page 21).

High pressure condenser gas flows continuously through the eductor inducing the low pressure, oil rich liquid to flow from the evaporator, through the dehy-drator to the compressor sump.

CHANgINg THE DEHYDRATORTo change the dehydrator, use the following procedure:

1. Isolate the dehydrator at the stop valves.2. Remove the dehydrator (Refer to Figure 10 on

Page 21).3. Assemblethenewfilter-drier.4. Open evaporator stop valve and check dehydrator

connections for refrigerant leaks.5. Open all the dehydrator stop valves.

OIL EDUCTOR BLOCK

SOLENOID VALVE

SOLENOID VALVE

CONDENSER

EVAPORATOR

DEHYDRATOR

STOP VALVE

STOP VALVE

CHECK VALVE

COMPRESSOR

FIguRE 10 - OIL RETURN SYSTEMLD08578

JOHNSON CONTROLS22

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 4 - OPERATIONAL MAINTENANCE

THE OIL CHARgEThe nominal oil charge for Q3-Q7 YK compressors is 11 gallons of type YORK K or YORK H oil.

New YORK Refrigeration oil must be used in the cen-trifugal compressor. Since oil absorbs moisture when exposed to the atmosphere, it should be kept tightly capped until used.

OIL CHARgINg PROCEDuREDuring operation the compressor oil level must be maintained in the OPERATING RANGE identified on the vertical oil level indicator. If the oil level falls into the lower sight glass, it is necessary to add oil to the compressor oil reservoir. The oil should be charged into the oil reservoir using the YORK Oil Charging Pump – YORK Part No. 070-10654. To charge oil into the oil reservoir, proceed as follows:

1. The unit must be shut down.

2. Immerse the suction connection of the oil charging pump in a clean container of new oil and connect the pump discharge connection to the oil charg-ing valve (A) located on the remote oil reservoir

cover plate. (Refer to Figure 11 on Page 22) Do not tighten the connection at the charging valve until after the air is forced out by pumping a few strokesof theoilpump.Thisfills the lineswithoil and prevents air from being pumped into the system.

3. Open the oil charging valve and pump oil into the system until oil level in the compressor oil reser-voir is in the OVER FULL region of the oil level indicator label. Close the charging valve and dis-connect the hand oil pump.

4. As soon as oil charging is complete, close the power supply to the starter to energize the oil heater. This will keep the concentration of refrig-erant in the oil to a minimum.

When the oil reservoir is initially charged with oil, the oil pump should be started manually to fill the lines, passages, oil cooler and oil filter. This will lower the oil level in the reservoir. It may then be necessary to add oil to bring the level back into the OPERATING RANGE of the oil level indicator label.

FIguRE 11 - CHARGING OIL RESERVOIR WITH OIL

OIL CHARGING PUMP

LD08579LD08648OIL CHARGING VALVE

JOHNSON CONTROLS 23

FORM 160.76-O1 ISSUE DATE: 6/15/2015

5

SECTION 5 - TROuBLESHOOTINg

TABLE 1 - OPERATION ANALYSIS CHART

RESuLTS POSSIBLE CAuSE REMEDY1. SYMPTOM: ABNORMALLY HIgH DISCHARgE PRESSuRETemperature difference between condensing temperature and water off condenser higher than normal.

Air in condenser.

High discharge pressure.

Condenser tubes dirty or scaled.Clean condenser tubes. Check water conditioning.

High condenser water temperature.Reduce condenser water inlet temperature. (Check cooling tower and water circulation.)

Temperature difference between condenser water on and water off higher than normal, with normal evaporator pressure.

Insufficient condensing water flow.Increase the quantity of water through the condenser to proper value.

2. SYMPTOM: ABNORMALLY LOW SuCTION PRESSuRETemperature difference between leaving chilled water and refrigerant in evaporator greater than normal with high discharge temperature.

Insufficient charge of refrigerant.Check for leaks and charge refrigerant into system.

Variable orifice problem. Remove obstruction.

Temperature difference between leaving chilled water and refrigerant in the evaporator greater than normal with normal discharge temperature.

Evaporator tubes dirty or restricted. Clean evaporator tubes.

Temperature of chilled water too low with with low motor amperes.

Insufficient load for system capacity.Check prerotation vane motor operation and setting of low water temperature cutout.

3. SYMPTOM: HIgH EVAPORATOR PRESSuRE

High chilled water temperature.

Prerotation vanes fail to open.Check the prerotation vane motor positioning circuit.

System overload.Be sure the vanes are wide open (without overloading the motor) until the load decreases.

4. SYMPTOM: NO OIL PRESSuRE WHEN SYSTEM START BuTTON PuSHED

Low oil pressure displayed on control center; compressor will not start.

Oil pump running in wrong direction.Check rotation of oil pump (Electrical Connections).

Oil pump not running.Troubleshoot electrical problem with oil pump VSD.

5. SYMPTOM: uNuSuALLY HIgH OIL PRESSuRE DEVELOPS WHEN OIL PuMP RuNSUnusually high oil pressure is displayed when the oil pressure display key is pressed when the oil pump is running.

High oil pressure. Transducer defective.

Replace low or high oil pressure transducer.

JOHNSON CONTROLS24

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 5 - TROUBLESHOOTING

RESuLTS POSSIBLE REMEDY6. SYMPTOM: OIL PuMP VIBRATES OR IS NOISYOil pump vibrates or is extremely noisy with some oil pressure when pressing OIL PRESSuRE display key.

When oil pump is run without an oil supply it will vibrate and become extremely noisy.

Oil not reaching pump suction inlet in sufficient quantity.

Check oil level.

Worn or failed oil pump. Repair/Replace oil pump.

7. SYMPTOM: REDuCED OIL PuMP CAPACITY

Oil pump pumping capacity.Excessive end clearance pump. Other worn pump parts.

Inspect and replace worn parts.

Partially blocked oil supply inlet. Check oil inlet for blockage.8. SYMPTOM: OIL PRESSuRE gRADuALLY DECREASES (Noted by Observation of Daily Log Sheets)When oil pump VSD frequency increases to 55 + hz to maintain target oil pressure.

Oil filter is dirty. Change oil filter.

9. SYMPTOM: OIL PRESSuRE SYSTEM CEASES TO RETuRN AN OIL/REFRIgERANT SAMPLE

Oil refrigerant return not functioning.Filter-drier in oil return system dirty. Replace old filter-drier with new.

Jet or orifice of oil return jet clogged.Remove jet, inspect for dirt. Remove dirt using solvent and replace.

10. SYMPTOM: OIL PuMP FAILS TO DELIVER OIL PRESSuRENo oil pressure registers when pressing OIL PRESSuRE display key when oil pump runs.

Faulty oil pressure transducer. Faulty wiring/connectors.

Replace oil pressure transducer.

TABLE 1 - OPERATION ANALYSIS CHART (CONT'D)

JOHNSON CONTROLS 25

FORM 160.76-O1 ISSUE DATE: 6/15/2015

6

SECTION 6 - MAINTENANCE

RENEWAL PARTSFor any required Renewal Parts, refer to the Renewal Parts – Unit (Form 160.75-RP1).

CHECKINg SYSTEM FOR LEAKS

Leak Testing During OperationThe refrigerant side of the system is carefully pressure tested and evacuated at the factory.

After the system has been charged, the system should be carefully leak tested with a R-134a compatible leak detector to be sure all joints are tight.

If any leaks are indicated, they must be repaired im-mediately. Usually, leaks can be stopped by tighten-ing flare nuts or flange bolts. However, for any major repair, the refrigerant charge must be removed. (Refer to Handling Refrigerant For Dismantling And Repairs on Page 28)

CONDuCTINg R-134A PRESSuRE TESTWith the R-134a charge removed and all known leaks repaired, the system should be charged with a small amount of R-134a mixed with dry nitrogen so that electronic leak detector can be used to detect any leaks too small to be found by the soap test.

To test with R-134a, proceed as follows:

1. With no pressure in the system, charge R-134a gas into the system through the charging valve to a pressure of 2 PSIG (14 kPa).

2. Build up the system pressure with dry nitrogen to approximately 75 to 100 PSIG (517 to 690 kPa). To be sure that the concentration of refrigerant has reached all part of the system, slightly open the oil charging valve and test for the presence of refrig-erant with a leak detector.

3. Test around each joint and factory weld. It is im-portant that this test be thoroughly and carefully done, spending as much time as necessary and us-ing a good leak detector.

4. To check for refrigerant leaks in the evaporator and condenser, open the vents in the evaporator and condenser heads and test for the presence of refrigerant. If no refrigerant is present, the tubes and tube sheets may be considered tight. If refrig-erant is detected at the vents, the heads must be removed, the leak located (by means of soap test or leak detector) and repaired.

EVACuATION AND DEHYDRATION OF uNIT

FIguRE 12 - EVACUATION OF CHILLER

27385A(D)

LD00949

STOP VALVE

CHARGING VALVE

VACUUM PUMPWET BULB TEMPERATUREINDICATOR OR VACUUM GAUGE

JOHNSON CONTROLS26

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 6 - MAINTENANCE

VACuuM TESTINgAfter the pressure test has been completed, the vacuum test should be conducted as follows:

1. Connect a high capacity vacuum pump, with in-dicator, to the system charging valve as shown in Figure 12 on Page 25 and start the pump. (Re-fer to Vacuum Dehydration on Page 27.)

2. Open wide all system valves. Be sure all valves to the atmosphere are closed.

3. Operate the vacuum pump in accordance with VACUUM DEHYDRATION until a wet bulb temperature of +32°F or a pressure of 5 mm Hg is reached. Refer to Table 2 on Page 26 for cor-responding values of pressure.

4. To improve evacuation circulate hot water (not to exceed 125°F, 51.7ºC) through the evaporator and condenser tubes to thoroughly dehydrate the shells. If a source of hot water is not readily avail-able, a portable water heater should be employed.

DO NOT USE STEAM. A suggested method is to connect a hose between the source of hot water under pressure and the evaporator head drain con-nection, out the evaporator vent connection, into the condenser head drain and out the condenser vent. To avoid the possibility of causing leaks, the temperature should be brought up slowly so that the tubes and shell are heated evenly.

5. Close the system charging valve and the stop valve between the vacuum indicator and the vac-uum pump. Then disconnect the vacuum pump leaving the vacuum indicator in place.

6. Hold the vacuum obtained in Step 3 in the system for 8 hours; the slightest rise in pressure indicates a leak or the presence of moisture, or both. If, after 24 hours the wet bulb temperature in the vacuum indi-cator has not risen above 40°F (4.4°C) or a pressure of 6.3 mm Hg, the system may be considered tight.

7. If the vacuum does not hold for 8 hours within the limitsspecifiedinStep6above,theleakmustbefound and repaired.

WATER FREEZES

*One standard atmosphere = 14.696 PSIA = 760 mm Hg. absolute pressure at 32°F = 29.921 inches Hg. absolute at 32°F

NOTES: PSIA = Lbs. per sq. in. gauge pressure = Pressure above atmosphere PSIA = Lbs. per sq. in. absolute pressure = Sum of gauge plus atmospheric pressure

TABLE 2 - SYSTEM PRESSURES

*gAugE ABSOLuTEBOILINg

TEMPERATuRES OF

WATER °F

INCHES OF MERCuRY (Hg)

BELOW ONE STANDARD

ATMOSPHERE

PSIA MILLIMETERS OF MERCuRY (Hg) MICRONS

0 14.696 760. 760,000 21210.24" 9.629 500. 500,000 19222.05" 3.865 200. 200,000 15125.98" 1.935 100. 100,000 12427.95" .968 50. 50,000 10128.94" .481 25. 25,000 7829.53" .192 10. 10,000 5229.67" .122 6.3 6,300 4029.72" .099 5. 5,000 35

29.842" .039 2. 2,000 1529.882" .019 1.0 1,000 +129.901" .010 .5 500 –1129.917" .002 .1 100 –3829.919" .001 .05 50 –50

29.9206" .0002 .01 10 –7029.921" 0 0 0

JOHNSON CONTROLS 27

SECTION 6 - MAINTENANCEFORM 160.76-O1 ISSUE DATE: 6/15/2015

6

Be sure the vacuum indicator is valved off while holding the system vacuum and be sure to open the valve between the vacuum indicator and the system when checking the vacuum after the 8 hour period.

VACuuM DEHYDRATIONTo obtain a sufficiently dry system, the following in-structions have been assembled to provide an effective method for evacuating and dehydrating a system in the field. Although there are several methods of dehydrating a system, we are recommending the following, as it pro-duces one of the best results, and affords a means of ob-taining accurate readings as to the extent of dehydration.

The equipment required to follow this method of dehy-dration consists of a wet bulb indicator or vacuum gauge, a chart showing the relation between dew point tempera-ture and pressure in inches of mercury (vacuum), (Refer to Table 2 on Page 26) and a vacuum pump capable of pumping a suitable vacuum on the system.

OPERATIONDehydration of a refrigerant system can be obtained by this method because the water present in the system reacts much as a refrigerant would. By pulling down the pressure in the system to a point where its satu-ration temperature is considerably below that of room temperature, heat will flow from the room through the walls of the system and vaporize the water, allowing a large percentage of it to be removed by the vacuum pump. The length of time necessary for the dehydra-tion of a system is dependent on the size or volume of the system, the capacity and efficiency of the vacuum pump, the room temperature and the quantity of water present in the system. By the use of the vacuum indi-cator as suggested, the test tube will be evacuated to the same pressure as the system, and the distilled water will be maintained at the same saturation temperature as any free water in the system, and this temperature can be observed on the thermometer.

If the system has been pressure tested and found to be tight prior to evacuation, then the saturation tempera-ture recordings should follow a curve similar to the typ-ical saturation curve shown as Figure 13 on Page 27.

The temperature of the water in the test tube will drop as the pressure decreases, until the boiling point is reached, at which point the temperature will level off and remain at this level until all of the water in the shell is vaporized. When this final vaporization has

taken place the pressure and temperature will continue to drop until eventually a temperature of 35°F (1.6°C) or a pressure of 5 mm Hg. is reached.

When this point is reached, practically all of the air has been evacuated from the system, but there is still a small amount of moisture left. In order to provide a medium for carrying this residual moisture to the vacuum pump, nitrogen should be introduced into the system to bring it to atmospheric pressure and the indicator temperature will return to approximately ambient temperature. Close off the system again, and start the second evacuation.

The relatively small amount of moisture left will be carried out through the vacuum pump and the tem-perature or pressure shown by the indicator should drop uniformly until it reaches a temperature of 35°F (1.6°C) or a pressure of 5 mm Hg.

When the vacuum indicator registers this temperature or pressure, it is a positive sign that the system is evac-uated and dehydrated to the recommended limit. If this level cannot be reached, it is evident that there is a leak somewhere in the system. Any leaks must be corrected before the indicator can be pulled down to 35°F or 5 mm Hg. in the primary evacuation.

During the primary pulldown, keep a careful watch on the wet bulb indicator temperature, and do not let it fall below 35°F (1.6°C). If the temperature is allowed to fall to 32°F (0°C), the water in the test tube will freeze, and the result will be a faulty temperature reading.

FIguRE 13 - SATURATION CURVE

LD00474

IND

ICAT

OR

REA

DIN

g -°

F

TIME

PRIMARY EVACuATIONN

ITR

Og

EN A

DD

ED SECONDARY

EVACuATION

REFRIgERANT CHARgINgTo avoid the possibility of freezing liquid within the evaporator tubes when charging an evacuated system, only refrigerant vapor from the top of the drum or cyl-

JOHNSON CONTROLS28

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 6 - MAINTENANCE

inder must be admitted to the system pressure until the system pressure is raised above the point correspond-ing to the freezing point of the evaporator liquid. For water, the pressure corresponding to the freezing point is 8.54 PSIG (58.9 kPa) for R-134a (at sea level).

While charging, every precaution must be taken to pre-vent moisture laden air from entering the system. Make up a suitable charging connection from new copper tub-ing to fit between the system charging valve and the fit-ting on the charging drum. This connection should be as short as possible but long enough to permit sufficient flexibility for changing drums. The charging connection should be purged each time a full container of refriger-ant is connected and changing containers should be done as quickly as possible to minimize the loss of refrigerant.

Refrigerant may be furnished in cylinders containing either 30, 50, 125, 1,025 or 1750 lbs. (13.6, 22.6, 56.6, 464 or 794 kg) of refrigerant.

The nameplate on the chiller contains the correct refrigerant charge information for the chiller.

CHECKINg THE REFRIgERANT CHARgE DuRINg uNIT SHuTDOWNThe refrigerant charge is specified for each chiller model. Charge the correct amount of refrigerant and record the level in the evaporator sight glass.

The refrigerant charge should always be checked and trimmed when the system is shut down.

The refrigerant charge level must be checked after the pressure and temperature have equalized between the condenser and evaporator. This would be expected to be 4 hours or more after the compressor and water pumps are stopped. The level should visible in the sight glass.

Charge the refrigerant in accordance with the meth-od shown under the REFRIGERANT CHARGING, above. The refrigerant level should be observed and the level recorded after initial charging.

HANDLINg REFRIgERANT FOR DISMANTLINg AND REPAIRSIf it becomes necessary to open any part of the refriger-ant system for repairs, it will be necessary to remove the charge before opening any part of the unit. If the chiller is equipped with optional valves, the refrigerant can be isolated in either the condenser or evaporator / compressor while making any necessary repairs.

MEggINg THE MOTORWhile the main disconnect switch and compressor mo-tor starter are open, meg the motor as follows:

1. Using a megohm meter (megger), meg between phases and each phase to ground (Refer to Figure 14 on Page 28); these readings are to be interpreted using the graph shown in Figure 15 on Page 29.

2. If readings fall below shaded area, remove exter-nal leads from motor and repeat test.

Motor is to be megged with the starter at ambient temperature after 24 hours of idle standby.

FIguRE 14 - DIAGRAM, MEGGING MOTOR WINDINGS

LD00475

MAIN DISCONNECT(OPEN)

STARTER (OPEN)MEGOHM METER

MEGOHM EACHWINDING TO GROUND

MEGOHM METER

MEGOHM BETWEENWINDINGS

JOHNSON CONTROLS 29

SECTION 6 - MAINTENANCEFORM 160.76-O1 ISSUE DATE: 6/15/2015

6

LD00476

FIguRE 15 - MOTOR STARTER TEMPERATURE AND INSULATION RESISTANCES

TEMPERATuRE – °F

MEg

OH

MS

Min

imum

Insu

latio

n R

esis

tanc

e vs

. Tem

pera

ture

(per

IEEE

Std

43)

O

pen

Mot

ors

1. M

egge

r rea

ding

s sh

ould

be

take

n af

ter M

egge

r vol

tage

has

bee

n ap

plie

d on

e m

inut

e.

2. I

f ins

ulat

ion

resi

stan

ce li

es to

the

right

of t

he a

pplic

able

cur

ve th

e m

otor

is a

ccep

tabl

e fo

r use

.

3. I

f ins

ulat

ion

resi

stan

ce li

es to

the

left

of th

e ap

plic

able

cur

ve, t

he m

otor

sho

uld

not b

e ru

n. T

he m

otor

sh

ould

be

heat

ed to

250

°F in

an

effo

rt to

rem

ove

moi

stur

e an

d ob

tain

an

acce

ptab

le re

adin

g at

room

am

bien

t. Th

is c

an b

e do

ne e

ither

by

baki

ng in

a fo

rced

hot

air

oven

or,

if pr

oper

vol

tage

is a

vaila

ble,

ap

ply

5 - 1

0% o

f rat

ed v

olta

ge to

mot

or w

indi

ngs.

4. A

ny g

radu

al o

r abr

upt d

ecre

ase

in M

egge

r rea

ding

s ov

er a

n ex

tend

ed p

erio

d of

tim

e is

an

indi

catio

n of

de

terio

ratio

n of

insu

latio

n an

d / o

r moi

stur

e ab

sorp

tion

or o

il / d

irt c

onta

min

atio

n.

5. M

egge

r rea

ding

s of

indi

vidu

al p

hase

coi

ls o

f 200

- 60

0V m

otor

s sh

ould

be

mad

e w

ith c

oils

not

und

er

test

bei

ng g

roun

ded.

LEg

END

A 2

00 -

600V

D

ELTA

CO

NN

.

B 2

300V

(E

ntire

Win

ding

s)

C 2

00 -

600V

(P

er P

hase

) N

ote

5

D 3

300

- 416

0V

(Ent

ire W

indi

ngs)

JOHNSON CONTROLS30

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 6 - MAINTENANCE

Condensers And Evaporators generalMaintenance of condenser and evaporator shells is im-portant to provide trouble free operation of the chiller. The water side of the tubes in the shell must be kept clean and free from scale. Proper maintenance such as tube cleaning, and testing for leaks, is covered on the following pages.

Chemical Water TreatmentSince the mineral content of the water circulated through evaporators and condensers varies with almost every source of supply, it is possible that the water be-ing used may corrode the tubes or deposit heat resistant scale in them. Reliable water treatment companies are available in most larger cities to supply a water treat-ing process which will greatly reduce the corrosive and scale forming properties of almost any type of water.

As a preventive measure against scale and corrosion and to prolong the life of evaporator and condenser tubes, a chemical analysis of the water should be made preferably before the system is installed. A reliable wa-ter treatment company can be consulted to determine whether water treatment is necessary, and if so, to fur-nish the proper treatment for the particular water con-dition.

Cleaning Evaporator And Condenser Tubes

EvaporatorIt is difficult to determine by any particular test wheth-er possible lack of performance of the water evaporator is due to fouled tubes alone or due to a combination of troubles. Trouble which may be due to fouled tubes is indicated when, over a period of time, the cooling capacity decreases and the split (temperature differ-ence between water leaving the evaporator and the refrigerant temperature in the evaporator) increases. A gradual drop-off in cooling capacity can also be caused by a gradual leak of refrigerant from the system or by a combination of fouled tubes and shortage of refrigerant charge. An excessive quantity of oil in the evaporator can also contribute to erratic performance.

CondenserIn a condenser, trouble due to fouled tubes is usually indicated by a steady rise in head pressure, over a pe-riod of time, accompanied by a steady rise in condens-ing temperature, and noisy operation. These symptoms may also be due to foul gas buildup. Purging will re-move the foul gas revealing the effect of fouling.

Tube FoulingFouling of the tubes can be due to deposits of two types as follows:

1. Rust or sludge – which finds its way into thetubes and accumulates there. This material usu-ally does not build up on the inner tube surfaces as scale, but does interfere with the heat transfer. Rust or sludge can generally be removed from the tubes by a thorough brushing process.

2. Scale – due to mineral deposits. These deposits, even though very thin and scarcely detectable upon physical inspection, are highly resistant to heat transfer. They can be removed most effec-tively by circulating an acid solution through the tubes.

Tube Cleaning Procedures

Brush Cleaning of TubesIf the tube consists of dirt and sludge, it can usually be removed by means of the brushing process. Drain the water sides of the circuit to be cleaned (cooling wa-ter or chilled water) remove the heads and thorough-ly clean each tube with a soft bristle bronze or nylon brush. DO NOT USE A STEEL BRISTLE BRUSH. A steel brush may damage the tubes.

Improved results can be obtained by admitting water into the tube during the cleaning process. This can be done by mounting the brush on a suitable length of 1/8" pipe with a few small holes at the brush end and con-necting the other end by means of a hose to the water supply.

The tubes should always be brush cleaned before acid cleaning.

Acid Cleaning Of TubesIf the tubes are fouled with a hard scale deposit, they may require acid cleaning. It is important that before acid cleaning, the tubes be cleaned by the brushing process described above. If the relatively loose foreign material is removed before the acid cleaning, the acid solution will have less material to dissolve and flush from the tubes with the result that a more satisfactory cleaning job will be accomplished with a probable sav-ing of time.

JOHNSON CONTROLS 31

SECTION 6 - MAINTENANCEFORM 160.76-O1 ISSUE DATE: 6/15/2015

6

Acid cleaning should only be performed by an expert. Please consult your local water treatment representative for as-sistance in removing scale buildup and preventative maintenance programs to eliminate future problems. COMMER-CIAL ACID CLEANING

In many major cities, commercial organizations now offer a specialized service of acid cleaning evaporators and condensers. If acid cleaning is required, YORK recommends the use of this type of organization. The Dow Industries Service Division of the Dow Chemical Company, Tulsa, Oklahoma, with branches in principal cities is one of the most reliable of these companies.

Testing For Evaporator And Condenser Tube LeaksEvaporator and condenser tube leaks in R-134a sys-tems may result in refrigerant leaking into the water circuit, or water leaking into the shell depending on the pressure levels. If refrigerant is leaking into the water, it can be detected at the liquid head vents after a period of shutdown. If water is leaking into the refrigerant, system capacity and efficiency will drop off sharply. If a tube is leaking and water has entered the system, the evaporator and condenser should be valved off from the rest of the water circuit and drained immediately to prevent severe rusting and corrosion. The refrigerant system should then be drained and purged with dry ni-trogen to prevent severe rusting and corrosion. If a tube leak is indicated, the exact location of the leak may be determined as follows:

1. Remove the heads and listen at each section of tubes for a hissing sound that would indicate gas leakage. This will assist in locating the section of tubes to be further investigated. If the probable location of the leaky tubes has been determined, treat that section in the following manner (if the locationisnotdefinite,all thetubeswillrequireinvestigations).

2. Wash off both tube heads and the ends of all tubes with water.

Do not use carbon tetrachloride for this purpose since its fumes give the same flame discoloration that the refrigerant does.

3. With nitrogen or dry air, blow out the tubes to clear them of traces of refrigerant laden moisture from the circulation water. As soon as the tubes are clear, a cork should be driven into each end of the tube. Pressurize the dry system with 50 to 100 PSIG (345 to 690 kPa) of nitrogen. Repeat this with all of the other tubes in the suspected section or, if necessary, with all the tubes in the evaporator or condenser. Allow the evaporator or condenser to remain corked up to 12 to 24 hours before proceeding. Depending upon the amount of leakage, the corks may blow from the end of a tube, indicating the location of the leakage. If not, if will be necessary to make a very thorough test with the leak detector.

4. After the tubes have been corked for 12 to 24 hours, it is recommended that two men working at both ends of the evaporator carefully test each tube – one man removing corks at one end and the other at the opposite end to remove corks and handle the leak detector. Start with the top row of tubes in the section being investigated. Remove the corks at the ends of one tube simultaneously and insert the exploring tube for 5 seconds – this should be long enough to draw into the detec-tor any refrigerant gas that might have leaked through the tube walls. A fan placed at the end of the evaporator opposite the detector will assure that any leakage will travel through the tube to the detector.

5. Markanyleakingtubesforlateridentification.

6. If any of the tube sheet joints are leaking, the leak should be indicated by the detector. If a tube sheet leak is suspected, its exact location may be found by using a soap solution. A continuous buildup of bubbles around a tube indicates a tube sheet leak.

JOHNSON CONTROLS32

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 6 - MAINTENANCE

COMPRESSORMaintenance for the compressor assembly consists of checking the operation of the oil return system and changing the dehydrator, checking and changing the oil, checking and changing the oil filters, checking the op-eration of the oil heater, checking the operation of the oil pump, and observing the operation of the compressor.

Internal wearing of compressor parts could be a seri-ous problem caused by improper lubrication, brought about by restricted oil lines, passages, or dirty oil fil-ters. If the unit is shutting down on (HOT) High Oil Temperature or Low Oil Pressure (OP), change the oil filter element. Examine the oil filter element for the presence of aluminum particles. Aluminum gas seal

rings can contact the impeller and account for some aluminum particles to accumulate in the oil filter, espe-cially during the initial start up and first several months of operation. However, if aluminum particles continue to accumulate and the same conditions continue to stop the unit operation after a new filter is installed, notify the nearest Johnson Controls office to request the pres-ence of a Johnson Controls Service Technician.

ELECTRICAL CONTROLSFor information covering the OptiView™ Control Center operation, refer to the Optiview™ Control Cen-ter – Operation and Maintenance (Form 160.54-O1).

JOHNSON CONTROLS 33

FORM 160.76-O1 ISSUE DATE: 6/15/2015

7

SECTION 7 - PREVENTIVE MAINTENANCE

It is the responsibility of the owner to provide the nec-essary daily, monthly and yearly maintenance require-ments of the system.

IMPORTANT – If a unit failure occurs due to improper maintenance during the warranty period; Johnson Controls will not be liable for costs incurred to return the system to satisfactory operation.

In any operating system it is most important to pro-vide a planned maintenance and inspection of its func-tioning parts to keep it operating at its peak efficiency. Therefore, the following maintenance should be per-formed when prescribed.

COMPRESSOR1. Oil Filter – When oil pump VSD frequency in-

creases to 55 hz to maintain target oil pressure.

When the oil filter is changed, it should be in-spected thoroughly for any aluminum particles which would indicate possible bearing wear. If aluminum particles are found this should be brought to the attention of the nearest Johnson Controls office for their further investigation and recommendations.

2. Oil Changing – The oil in the compressor must be changed annually or earlier if it becomes dark or cloudy. However, quarterly oil analysis can eliminate the need for an annual change provided the analysis indicates there is no problem with the oil.

COMPRESSOR MOTOR1. Check motor mounting screws frequently to in-

sure tightness.

2. Meg motor windings annually to check for dete-rioration of windings.

gREASED BEARINgS Motor Operation and Maintenance manuals are sup-plied with the chillers providing maintenance sched-ules and instructions for the specific motors. The fol-lowing are lubrication schedules for the most common motors:

MOTOR RE-LuBRICATION INSTRuCTIONAll motor manufacturers have slightly different re-quirements for the exact amount of grease to be added, and the exact interval for re-greasing. The suggested amount should be 1.5 cubic inches of grease, and the interval should be 1000 hours to 1400 hours between re-lubrications. York Optiview control panels provide a warning message to re-lubricate bearings at 1000 hours. When the run clock reaches 1400 hours without lubrication, software will shut down the chiller until re-lubrication has been acknowledged.

grease gun Calibration -Grease guns should be calibrated to determine the number of pumps required to get 1.5 cubic inches of grease. This can be accomplished by forming an open-top cardboard cube, one inch by one inch by one inch. Pump grease into this container until grease is level with the top, counting the number of pumps. When the grease is level with the top, this is the amount for one cubic inch. Multiply this number of pumps times 1.5 to get the number of pumps for York chiller motor bearings.

Over-greasing can be as detrimental as lack of greasing. A bearing housing that is totally filled with grease can run 20 de-grees centigrade higher temperature than one with the proper amount of grease.

Type of grease –All standard York chiller motors utilize a polyurea grease, formulated for high-speed rolling element bearings. Only two greases are approved by all our motor manufacturers, and these are:

1st Choice: Exxon / Mobil Polyrex EM - Grainger Part Number 5XB54

2nd Choice: Texaco / Chevron SRI #2

There are a few exceptions, such as Reliance Q-frame motors built from 1997 to 2003, and some special or-der motors such as high-voltage motors from ABB. In these cases use only the grease called for by the mo-tor manufacturer. In the case of those Reliance mo-tors, there is a metal tag affixed to the motor calling for

JOHNSON CONTROLS34

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 7 - PREVENTIVE MAINTENANCE

Texaco Premium RB. This is a lithium based lubricant and absolutely should never be mixed with polyurea grease. If you are unable to locate this specific Texa-co product, another approved lithium based grease is Shell Alvania RL in NLGI #3.

The motors on York chillers must utilize the greas-es mentioned above. Approval of any other type of grease will not be granted. Typically, we also receive requests to use synthetic grease products, often from very well-recognized major grease manufacturers. Un-fortunately, none of these greases have been approved. It is not recommended to mix synthetic greases with mineral oil based grease, which is the type of grease that is inside the motor bearings as shipped from the York factory.

Procedure –Re-lubrication should be done with the motor shut down with NO rotor rotation. This helps to assure grease is placed in between the balls of the bearing. If the rotor is spinning certain bearing housing designs can force the grease to escape around the clearance holes where the rotor shaft passes through the bearing housing cap. This type of design will cause grease to collect inside the motor. Other bearing designs may not allow any of the grease to penetrate to the bearing housing if the rotor is spinning.

Absolutely NEVER pump grease until you see old grease exiting at the relief port. Only pump the re-quired number of strokes as determined above.

After the proper amount of grease has been added, open the bearing relief port plug typically loated be-low the bearing, and run the motor for 30-45 minutes before re-installing the plug. It is not necessary to see old grease coming out from the relief port.

Operating Temperature –Normal operating temperature for grease lubricated bearings on York chillers is 40-65 degrees centigrade, or 100-150 degrees Fahrenheit. It is normal to see the temperature run higher immediately after re-lubrica-tion, and then come down as much as 20 degrees C after a few hours of operation. Bearing RTDs should be set to shutdown the motor at 90 degrees C (194F). A warning programmed at 65C can be an indication that something is not right and operation should be checked.

Mixing different greases is not recom-mended

Additional information on motor lubrica-tion and other service issues can be found in the A-C Motors Instruction Manual.

LEAK TESTINgThe unit should be leak tested monthly. Any leaks found must be repaired immediately.

EVAPORATOR AND CONDENSERThe major portion of maintenance on the condenser and evaporator will deal with the maintaining the wa-ter side of the condenser and evaporator in a clean condition.

The use of untreated water in cooling towers, closed water systems, etc. frequently results in one or more of the following:

1. Scale Formation.

2. Corrosion or Rusting.

3. Slime and Algae Formation.

It is therefore to the benefit of the user to provide for proper water treatment to provide for a longer and more economical life of the equipment. The following recommendation should be followed in determining the condition of the water side of the condenser and evaporator tubes.

1. The condenser tubes should be cleaned annually or earlier if conditions warrant. If the temperature difference between the water off the condenser and the condenser liquid temperature is more than 5°-6°F (3°-4°C) greater than the difference recorded on a new unit, it is a good indication that the condenser tubes require cleaning. Refer to SECTION 6 - MAINTENANCE of this manual for condenser tube cleaning instructions.

JOHNSON CONTROLS 35

SECTION 7 - PREVENTIVE MAINTENANCEFORM 160.76-O1 ISSUE DATE: 6/15/2015

7

2. The evaporator tubes under normal circumstances will not require cleaning. If the temperature dif-ference between the refrigerant and the chilled water increases slowly over the operating season, it is an indication that the evaporator tubes may be fouling or that there may be a water bypass in the waterbox requiring gasket replacement or refrig-erant may have leaked from the chiller.

3. Heat recovery condenser tubes should be evalu-ated similiar to evaporator tubes when the heating circuit is a treated, closed loop. Fouling could be detected as ability to meet heat load requirements decreases.

OIL RETuRN SYSTEM1. Change the dehydrator in the oil return system

semi-annually or earlier if the oil return system fails to operate.

2. When the dehydrator is changed, the nozzle of the eductor should be checked for any foreign par-ticles that may be obstructing the jet.

ELECTRICAL CONTROLS1. All electrical controls should be inspected for ob-

vious malfunctions.

2. It is important that the factory settings of controls (operation and safety) not be changed. If the set-tings are changed without Johnson Controls ap-proval, the warranty will be jeopardized.

JOHNSON CONTROLS36

FORM 160.76-O1 ISSUE DATE: 6/15/2015SECTION 7 - PREVENTIVE MAINTENANCE

Proc

edur

eD

aily

Wee

kly

Mon

thly

Year

lyO

ther

Rec

ord

oper

atin

g co

nditi

ons

(on

appl

icab

le L

og F

orm

)X

Che

ck o

il le

vels

XC

heck

refri

gera

nt le

vels

XC

heck

oil

retu

rn s

yste

m o

pera

tion

XC

heck

ope

ratio

n of

mot

or s

tarte

rX

Che

ck s

ump

heat

er a

nd th

erm

osta

t ope

ratio

nX

Che

ck th

ree-

phas

e vo

ltage

and

cur

rent

bal

ance

XVe

rify

prop

er o

pera

tion/

setti

ng/c

alib

ratio

n of

saf

ety

cont

rols

1X

Verif

y co

nden

ser a

nd e

vapo

rato

r wat

er fl

ows

XLe

ak c

heck

and

repa

ir le

aks

as n

eede

d1X

Che

ck a

nd ti

ghte

n al

l ele

ctric

al c

onne

ctio

nsX

Meg

ohm

mot

or w

indi

ngs

XR

epla

ce o

il fil

ter a

nd o

il re

turn

filte

r/drie

rsX

Cle

an o

r bac

kflus

h he

at e

xcha

nger

(VS

D, S

SS

App

licat

ions

)X

Rep

lace

sta

rter c

oola

nt (V

SD

, SS

S A

pplic

atio

ns)

XR

epla

ce o

r cle

an s

tarte

r air

filte

rs if

app

licab

leX

2

Per

form

oil

anal

ysis

on

com

pres

sor l

ube

oil1

XP

erfo

rm re

frige

ratio

n an

alys

is1

XP

erfo

rm v

ibra

tion

anal

ysis

XC

lean

tube

sX

2

Per

form

Edd

y cu

rren

t tes

ting

and

insp

ect t

ubes

2-5

Year

sLu

bric

ate

mot

orR

efer

to m

otor

man

ufac

ture

r’s re

com

men

datio

ns

For o

pera

ting

and

mai

nten

ance

requ

irem

ents

list

ed a

bove

, ref

er to

app

ropr

iate

ser

vice

lite

ratu

re, o

r con

tact

you

r loc

al J

ohns

on C

ontro

ls S

ervi

ce O

ffice

. A re

cord

of a

ll pr

oced

ures

bei

ng s

ucce

ssfu

lly c

ar-

ried

out (

as w

ell a

s op

erat

ing

logs

) mus

t be

mai

ntai

ned

on fi

le b

y th

e eq

uipm

ent o

wne

r sho

uld

proo

f of a

dequ

ate

mai

nten

ance

be

requ

ired

at a

late

r dat

e fo

r war

rant

y va

lidat

ion

purp

oses

.

1 Thi

s pr

oced

ure

mus

t be

perfo

rmed

at t

he s

peci

fied

time

inte

rval

by

an In

dust

ry C

ertifi

ed T

echn

icia

n w

ho h

as b

een

train

ed a

nd q

ualifi

ed to

wor

k on

this

type

of Y

OR

K e

quip

men

t. 2 M

ore

frequ

ent s

ervi

ce m

ay b

e re

quire

d de

pend

ing

on lo

cal o

pera

ting

cond

ition

s.

MA

INTE

NA

NC

E R

EQU

IREM

ENTS

FO

R Y

OR

K Y

K C

HIL

LER

S

160.

54-M

R1

(611

) S

uper

sede

s 16

0.54

-MR

1 (8

01)

Issu

e D

ate:

Jun

e 20

, 201

1

JOHNSON CONTROLS 37

SECTION 7 - PREVENTIVE MAINTENANCEFORM 160.76-O1 ISSUE DATE: 6/15/2015

The following factors can be used to convert from English to the most common SI Metric values.

TEMPERATuRETo convert degrees Fahrenheit (°F) to degrees Celsius (°C), subtract 32° and multiply by 5/9 or 0.5556.

Example: (45.0°F - 32°) x 0.5556 = 27.2°C

To convert a temperature range (i.e., a range of 10°F) from Fahrenheit to Celsius, multiply by 5/9 or 0.5556.

Example: 10.0°F range x 0.5556 = 5.6 °C range

TABLE 3 - SI METRIC CONVERSION

MEASuREMENT MuLTIPLY ENgLISH uNIT BY FACTOR TO OBTAIN METRIC uNIT

Capacity Tons Refrigerant Effect (ton) 3.516 Kilowatts (kW)

Power Horsepower 0.7457 Kilowatts (kW)

Flow Rate Gallons / Minute (gpm) 0.0631 Liters / Second (l/s)

LengthFeet (ft) 304.8 Meters (m)

Inches (in) 25.4 Millimeters (mm)

Weight Pounds (lbs) 0.4538 Kilograms (kg)

Velocity Feet / Second (fps) 0.3048 Meters / Second (m/s)

Pressure DropFeet of Water (ft) 2.989 Kilopascals (kPa)

Pounds / Square Inch (psi) 6.895 Kilopascals (kPa)

P.O. Box 1592, York, Pennsylvania USA 17405-1592 800-861-1001 Subject to change without notice. Printed in USACopyright © by Johnson Controls 2015 www.johnsoncontrols.com ALL RIGHTS RESERVEDForm 160.76-O1 (615)Issue Date: June 15, 2015 New Release