calcium signaling

28
Calcium Signaling • Describe models of low-force overuse • Identify the main calcium- dependent signaling molecules and their mechanism • Explain how calcium homeostasis contributes to muscle adaptation

Upload: ziarre

Post on 15-Jan-2016

41 views

Category:

Documents


3 download

DESCRIPTION

Calcium Signaling. Describe models of low-force overuse Identify the main calcium-dependent signaling molecules and their mechanism Explain how calcium homeostasis contributes to muscle adaptation. Low force overuse. Models Chronic stimulation Endurance training Physiological stresses - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Calcium Signaling

Calcium Signaling• Describe models of low-force overuse• Identify the main calcium-dependent signaling

molecules and their mechanism• Explain how calcium homeostasis contributes

to muscle adaptation

Page 2: Calcium Signaling

Low force overuse• Models

– Chronic stimulation– Endurance training

• Physiological stresses– Electrophysiological– Oxygen delivery/handling– ATP metabolism

• Adaptation– SR swelling– Mitochondrial hypertrophy– “Slow” phenotype expression– Atrophy

Page 3: Calcium Signaling

Acute changes during contraction• Phosphate redistribution

– pCrATP– ATP2 Pi + AMP

• pH decline

Kushmerick & al., 1985

2 Hz

10 Hz

Time (min)

Page 4: Calcium Signaling

Changes in blood composition• Lactate appears ~3 min• pH falls in parallel• Norepinepherine

5 min exercise 10 min recovery

Gaitanos &al 1993

Page 5: Calcium Signaling

Glucose and FFA liberation• 70% VO2 max, 2h• Muscle glycogen

falls• Energetic

molecules released from non-muscle stores

Krssak & al 2000

Page 6: Calcium Signaling

Rest 60 min Ex 30 min Rest 60 min Rest

Calcium redistribution• Mitochondrial

– Rise ~2x during exercise– Remains elevated > 1 hour

• Cytoplasmic– Spikes to 1 uM (diminishing)– Baseline to 300 nM

• Metabolite imbalance exceedsexercise period

Madsen & al., 1996

Page 7: Calcium Signaling

Stimulation-dependent signaling• Calcium

– Troponin/tropomyosin: contraction– Calcineurin: gene transcription– Calpain: structural remodeling– CaMK: transcription, channel activity

• Energy/ATP– AMP kinase: glucose transport, protein balance– PPAR: mitochondrial hypertrophy– ROS: complicated

Page 8: Calcium Signaling

Chronic electrical stimulation• Stanley Salmons & Gerta Vrbova, 1969• Spinal-isolated & tenotomized soleus

– ie: no voluntary or reflex activation– Normally highly active muscle– Stimulate 1-40 Hz, 67% duty cycle 8 hr/day

• Implanted stimulator tibialis anterior– 24/7, 10 Hz– Normally low activity muscle

Page 9: Calcium Signaling

Stim frequency contraction time• Soleus (slow muscle)

– Tenotomyatrophy– Tenotomyfaster– Tenotomy+low frequency

preserve speed– Tenotomy+high frequency

faster

• Stimulation frequency influences– Calcium kinetics– Troponin kinetics– Myosin kinetics

Normal

10 Hz

40 Hz

Page 10: Calcium Signaling

Stim frequency contraction time• TA (fast muscle)

– No tenotomy no atrophy

• Stim effects– Slower– Reduce Twitch-

tetanus ratio– Reduce sag

10 Hz

Twitch forces Tetanic forces

Page 11: Calcium Signaling

Mechanical performance changes• P0 declines (atrophy)

• Vmax declines (slower)

• Endurance increases

Jarvis, 1993

Control muscle

2 weeks CLFS

Page 12: Calcium Signaling

Structural adaptation• Reduced T-tubules• Wider Z-lines• More mitochondria• More capillaries

Eisenberg, 1985

Normal

Stimulated

Stimulation Recovery

Z-li

ne w

idth

Page 13: Calcium Signaling

Endurance training• Typically 6 weeks, 5/week 30-120 min @ 60-

80% VO2max• Performance & oxygen adapts• Contractile proteins less so

Lact

ate

Hea

rt R

ate

Power (watt)

Pre-train6 wks6 mos

Hoppeler & al 1985

Page 14: Calcium Signaling

Endurance adaptation paradigm• Elevated calcium and AMP activate

mitochondrial genes– AMPK, PGC-1, pPAR, MEF2

• Elevated calcium activates muscle genes

Baar, 2006

Page 15: Calcium Signaling

Ca mediated protein modification• CaMK (I – IV)

– Calmodulin mediated– Serine/threonine kinases– CaMK-III = eEF2 kinase– Post-synaptic density

• Protein kinase C• Calcineurin

– Calmodulin mediated– Serine/threonine phosphatase

• Calpain (I-III)– Cysteine protease– Cytoskeletal remodeling

Page 16: Calcium Signaling

Calcium controls everythinghttp://www.genome.jp/kegg-bin/show_pathway?hsa04020

Page 17: Calcium Signaling

Calcineurin (Cn)• Calcium & calmodulin dependent• Serine/threonine phosphatase• High calcium sensitivity: 200 nM• Transcriptional targets

– NFAT– MEF2

• Functional targets– DHPR– BAD

Li & al., 2011

CnBCnA

CaM

Page 18: Calcium Signaling

MEF2• MEF2 A/C/D “MADS-box” transcription factor

– Compliment myogenic regulatory factors– Cn and p38-dependent– Blocked by class 2 HDACs– MHC, MLC, Tm, Tn– NADH dehydrogenase (complex 1), GLUT4

MEF2 protein map (NLM)

Activation Domain: HDAC/MRF interactions

Page 19: Calcium Signaling

NFAT• Stimulation-dependent nuclear translocation

– 30 minutes, 10 Hz; recovery

Liu & al 2001

Page 20: Calcium Signaling

NFAT• NFAT 1/2/3/4 transcription factor

– MEF2, AP-1 cooperation– Cn, GSK3, PKA dependent– Sensitive to mitochondrial calcium handling– Myoglobin, TnI(slow), MHC(slow)

NFAT protein map (NLM)

Page 21: Calcium Signaling

SURE and FIRE• Slow Upstream Regulatory Element (SURE)

– Identified in TnI-slow– 110 bp, contains both MEF2, E-box, GT-box

• Fast Intronic Regulatory Element (FIRE)– Identified in TnI-fast– 150 bp in Intron 1, MEF2, E-Box, GT-box

• NFAT-binding– Upstream: promoter– Intron: repressor

Page 22: Calcium Signaling

HDAC• Histone deacetylase : gene inactivation• HDAC 2-5; Sirt• MEF2 compliment• CaMK/PDK1 phosphorylation

– Nuclear export– 14-3-3 binding

• ie: blocks MEF2-mediated transcription when not phosphorylated

Page 23: Calcium Signaling

Activity dependent transcription

Infrequent activity

Frequent activity

Low Resting Calcium

High Resting Calcium

Transient Calcium Spike

Cn Active

CaMK Active

Cn Inactive

MEF2

NFAT

HDAC2Myosin

Actin

Myoglobin

NADH-D

Page 24: Calcium Signaling

CaMKII autophosphorylation• CaM Kinase II (CaMKII)

– CaM dependent kinase– CaM kd = 2 nM, koff 0.3/s

– High affinity, fast kinetics

• Phospho-CaMKII– CaM independent kinase– CaM kd = 0.1 pM, koff 10-6/s

– Very high affinity, slow kinetics

• CaMKII autophosphorylation locks itself in an active conformation

Page 25: Calcium Signaling

Rate decoding• Autophosphorylation is like integration• Dephosphorylation is like a high pass filter• eg: Deliver regular calcium pulses

– Measure Ca independent activity– Elevated > 1 hr after exercise in muscle

Page 26: Calcium Signaling

CaMK effectors• MEF2• CREB

– CBP/p300 Histone Acetyltransferase partner– Creatine Kinase, SIK (HDAC)

• PGC-1a– Carnitine palmitoyltransferase– Mitochondrial transcription factor A (Tfam)

Page 27: Calcium Signaling

VEGF• Vascular Endothelial Growth Factor• Angiogenesis

Page 28: Calcium Signaling

Summary• Sustained contractile activity disrupts calcium

and ATP homeostasis• Calcium-dependent kinases (CaMK) and

phosphatasis (Cn) alter transcription (MEF2, NFAT, PGC1)

• Altered gene expression results in mitochondrial biogenesis and calcium buffering

• Subsequent activity causes less disruption